JPS6373682A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6373682A
JPS6373682A JP21845786A JP21845786A JPS6373682A JP S6373682 A JPS6373682 A JP S6373682A JP 21845786 A JP21845786 A JP 21845786A JP 21845786 A JP21845786 A JP 21845786A JP S6373682 A JPS6373682 A JP S6373682A
Authority
JP
Japan
Prior art keywords
layer
groove
active layer
current blocking
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21845786A
Other languages
Japanese (ja)
Inventor
Akihiko Kasukawa
秋彦 粕川
Susumu Kashiwa
柏 享
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP21845786A priority Critical patent/JPS6373682A/en
Publication of JPS6373682A publication Critical patent/JPS6373682A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32391Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers based on In(Ga)(As)P

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To be able to perform a low threshold current and a basic lateral mode operation thereby to control the width of an active layer narrowly by providing the active layer laminated on a clad layer, and a second conductivity type clad layer formed on the active layer to cover the active layer and to block a groove. CONSTITUTION:A striped groove 13 which arrives at the surface of a semiconductor substrate 10 is formed by inserting current blocking layers 11, 12 at predetermined regions of the layers 11, 12. A clad layer 14 made of an n-type InP is formed on the substrate 10 and the layer 12 exposed by the groove 13, and an active layer 15 made of nondoped GaInAsP (lambdag=1.3mum) is formed. The surface of the layer 15 in the groove 13 is recessed. A clad layer 16 made of a p-type InP is formed to bury the groove 13 on the layer 15, and a cap layer 17 made of p-type GaInAsP (lambdag=l.3mum) is formed on the layer 16. These layers 17, 16, 14 and 15 are continuously formed by twice crystal growths.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、VSB (V−grooved 5ubst
rate BuriedH@t*rostruetur
@)半導体レーデに係シ、特に所定の活性層構造を有す
る半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to VSB (V-grooved 5ubst
rate BuriedH@t*rostruetur
@) Related to semiconductor lasers, particularly to semiconductor lasers having a predetermined active layer structure.

[従来の技術] 光7アイパ通信用光源としては、低しきい値電流かつ基
本横モードで動作する半導体レーザが必要である。この
ような半導体レーデの1つとして第2図に示すようなV
8B半導体レーザがある。図中1は、n型のInP基板
である。InP基板1上には、p型のInPからなる電
流阻止層2、n型のInPからなる電流阻止層3が順次
積層されている。
[Prior Art] As a light source for optical 7-eye communication, a semiconductor laser that has a low threshold current and operates in a fundamental transverse mode is required. One such semiconductor radar is the VV shown in Figure 2.
There is an 8B semiconductor laser. In the figure, 1 is an n-type InP substrate. On the InP substrate 1, a current blocking layer 2 made of p-type InP and a current blocking layer 3 made of n-type InP are sequentially laminated.

これらの電流阻止層2,3の所定領域には、InP基板
1に僅に入9込んだ断面略V字型の溝4が形成されてい
る。電流阻止層3の主面上及び溝4内の所定深さ部分に
は、n型InPからなるクラッド層5及びノンドーグG
aInAmP (λg = 1.3 Jim )からな
る活性層6が順次積層されている。また、活性N13上
にはこれを覆うと共に溝4を塞ぐようにしてP型InP
からなるクラッド層7が形成されている。クラッド層7
上には、P型GaInAsP (λ=1.3μm)から
なるキャップ層8が形成されている。
In predetermined regions of these current blocking layers 2 and 3, grooves 4 having a substantially V-shaped cross section are formed slightly into the InP substrate 1. On the main surface of the current blocking layer 3 and at a predetermined depth within the groove 4, a cladding layer 5 made of n-type InP and a non-doped G
Active layers 6 made of aInAmP (λg = 1.3 Jim) are sequentially laminated. In addition, P-type InP is placed on the active N13 so as to cover it and close the groove 4.
A cladding layer 7 consisting of the following is formed. Cladding layer 7
A cap layer 8 made of P-type GaInAsP (λ=1.3 μm) is formed thereon.

而して、活性層6は、第2回目の液相成長時に形成され
熱的なダメージを受けない構造になっており、しかも、
活性層60幅は溝4の幅によって自己整合的に決定され
ている。
Thus, the active layer 6 is formed during the second liquid phase growth and has a structure that is not subject to thermal damage.
The width of the active layer 60 is determined by the width of the groove 4 in a self-aligned manner.

[発明が解決しようとする問題点コ このような半導体レーデでは、製造時に5io2膜をエ
ツチングマスクとして塩酸とリン酸の混合液によシ溝4
を形成する。このため810□膜と電流阻止層3の密着
度合によシ、サイドエッチが起こシn4の幅が広がる。
[Problems to be solved by the invention] In such a semiconductor radar, the grooves 4 are etched with a mixture of hydrochloric acid and phosphoric acid using the 5io2 film as an etching mask during manufacturing.
form. Therefore, depending on the degree of adhesion between the 810□ film and the current blocking layer 3, side etching occurs and the width of n4 increases.

すなわち、活性層60幅が広くなシ、基本横モード動作
範囲を満足することが困難であった( OOMURA 
etal IEIJ J、 Quantum 。
In other words, if the width of the active layer 60 is wide, it is difficult to satisfy the basic transverse mode operating range (OOMURA
etal IEIJ J, Quantum.

El@ctron 、 vol、 QE−20s P8
66s 1984)。
El@ctron, vol, QE-20s P8
66s 1984).

本発明は、かかる点に鑑みてなされたものであシ、低し
きい値電流及び基本横モード動作が可能であると共に、
良好な再現性の下に活性層の幅を狭く制御することがで
きる半導体レーザを提供するものである。
The present invention has been made in view of these points, and is capable of low threshold current and basic transverse mode operation.
The present invention provides a semiconductor laser in which the width of the active layer can be narrowly controlled with good reproducibility.

[問題点を解決するための手段] 本発明は、第1導電型の半導体基板上に少なくとも活性
層よシ禁制帯幅の大きなGax I n 1− xA 
myP、−ア(o < x * y < > )を含ん
で形成された電流阻止層と、該電流阻止層の所定領域な
貫挿して前記半導体基板の表面に達する深さで形成され
たストライプ状の溝と、該溝の底部及び前記電流阻止層
上に形成された第1導電型のクラッド層と、前記溝内の
該クラッド層上に主面を凹ませて形成され、かつ、前記
1!流阻止層の上方の前記クラッド層上に積層された前
記活性層と、前記活性層を覆うと共に前記溝を塞ぐよう
にして前記活性層上に形成された第2導電型のクラッド
層とを具備する半導体レーザである。
[Means for Solving the Problems] The present invention provides a structure in which Gax I n 1-
myP, -a (o < x * y <>), and a stripe-like stripe penetrating through a predetermined region of the current blocking layer to a depth reaching the surface of the semiconductor substrate. a groove, a cladding layer of a first conductivity type formed on the bottom of the groove and the current blocking layer, and a main surface recessed on the cladding layer in the groove, and the 1! The active layer is laminated on the cladding layer above the flow blocking layer, and the cladding layer of a second conductivity type is formed on the active layer so as to cover the active layer and close the groove. It is a semiconductor laser that

[作用コ 本発明に係る半導体レーザによれば、活性層の幅はスト
ライプ状の溝の幅及び電流阻止層の厚さによって決定さ
れるため、1μm程度の狭い幅に容易に設定することが
できる。また、電流阻止層を内在した構造である丸め、
基本横モード及び低しきい値電流での動作を実現する。
[Function] According to the semiconductor laser according to the present invention, the width of the active layer is determined by the width of the striped groove and the thickness of the current blocking layer, so it can be easily set to a narrow width of about 1 μm. . In addition, rounded, which has a structure that includes a current blocking layer,
Achieves operation in fundamental transverse mode and low threshold current.

ことができる。更に、活性層を2回目の結晶成長により
形成できる構造であるため、活性層に熱による損傷が発
生するのを防止することができる。また、結晶層の成長
にLPE (Llquid Phase Epitmx
y )法を採用して平坦な表面の結晶層を設定すること
ができる。
be able to. Furthermore, since the structure allows the active layer to be formed by a second crystal growth, it is possible to prevent damage to the active layer due to heat. In addition, LPE (Lquid Phase Epitmx) is used to grow the crystal layer.
y) method can be used to set a crystal layer with a flat surface.

[実施例] 以下、本発明の実施例について図面を参照して説明する
。第1図は、本発明の一実施例である波長1.3 Ji
InGaInA@P/InP半導体レーザの概略構成を
示す説明図である。図中10は、(100) InPか
らなるn型の半導体基板である。半導体基板JO上には
、511回目結晶成長によシ順次形成されたp型のGa
InAsP (λ、 = 1.1μm)からなる電流阻
止層11、rs型のInPnP2O5けられている。こ
れらの電流阻止層11.12の所定領域には、電流阻止
層11.12を貫挿して半導体基板10の表面に達する
ストライプ状の溝I3が形成されている。この溝13の
形成には、先ず例えば半導体基板10を構成するエビタ
キンヤルウエハ上に幅2〜5μmの窓を持つS10□ス
トライプマスクを<011>方向に形成する。、次いで
−3HCL: H,PO。
[Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows a wavelength of 1.3 Ji, which is an embodiment of the present invention.
FIG. 1 is an explanatory diagram showing a schematic configuration of an InGaInA@P/InP semiconductor laser. In the figure, 10 is an n-type semiconductor substrate made of (100) InP. On the semiconductor substrate JO, p-type Ga is formed sequentially by the 511th crystal growth.
A current blocking layer 11 made of InAsP (λ, = 1.1 μm) is made of rs-type InPnP2O5. Striped grooves I3 penetrating through the current blocking layers 11.12 and reaching the surface of the semiconductor substrate 10 are formed in predetermined regions of these current blocking layers 11.12. To form this groove 13, first, for example, an S10□ stripe mask having a window with a width of 2 to 5 μm is formed in the <011> direction on an Evita core wafer constituting the semiconductor substrate 10. , then -3HCL: H,PO.

のエツチング液を用いてInPnP2O5ツチングし、
ストライプ状のチャネル部を設ける。この時のエツチン
グは、選択エツチングであり自動的にGaIn人IPか
らなる電流阻止層11上で停止する。
InPnP2O5 was etched using an etching solution of
A striped channel portion is provided. The etching at this time is selective etching and automatically stops on the current blocking layer 11 made of GaIn IP.

次に、3H2SO4:H2O:H2O2のエツチング液
を用いてInP ’f@ 12の露出部にエツチングを
施してストライプ状の溝13を得る。このエツチングも
選択エツチングであるので、半導体基板JO上で自動的
に停止する。つまり、溝13はマスクの窓形状及びIn
PnP2O5さによって所望の微細形状に設定されてい
る。溝13によって露出した半導体基板10上及びIn
P層1層上2上、n型のInPからなるクラッド層14
が形成されている。クラッド層14上には、ノンドーグ
GaInAsP (λ、 = 1.3μm)からなる活
性層15が形成されている。溝13内の活性層15の表
面は凹部を形成している。活性層15上には、溝13部
分を埋めるようにしてp型のInPからなるクラッド層
16が形成されている。クラッド層16上には、p型の
GaInAsP(λ、 = 1.3μm)からなるキャ
ップ層17が形成されている。これらのキャップ層17
、クラッド層16,14、活性N15は、2回目の結晶
成長にて連続的に形成されたものである。なお、半導体
基板10を100μm程度の厚さに研摩した後、電極形
成を行ってレーザチップに切り出される。
Next, the exposed portions of the InP'f@ 12 are etched using an etching solution of 3H2SO4:H2O:H2O2 to obtain striped grooves 13. Since this etching is also selective etching, it automatically stops on the semiconductor substrate JO. In other words, the groove 13 is formed by the window shape of the mask and the In
A desired fine shape is set by PnP2O5. The surface of the semiconductor substrate 10 exposed by the groove 13 and the In
Cladding layer 14 made of n-type InP on P layer 1 and layer 2
is formed. An active layer 15 made of non-doped GaInAsP (λ, = 1.3 μm) is formed on the cladding layer 14. The surface of the active layer 15 within the groove 13 forms a recess. A cladding layer 16 made of p-type InP is formed on the active layer 15 so as to fill the trench 13 portion. A cap layer 17 made of p-type GaInAsP (λ, = 1.3 μm) is formed on the cladding layer 16. These cap layers 17
, cladding layers 16, 14, and active N15 are formed continuously in the second crystal growth. Note that after polishing the semiconductor substrate 10 to a thickness of about 100 μm, electrodes are formed and cut into laser chips.

このように構成された半導体レーデ20によれば、溝1
3の形状に基づいて活性層15の幅を所定の狭い幅に容
易に設定することができる。また、電流阻止層11を内
在した構造であり、基本横モード及び低しきい値電流で
の動作が可能である。
According to the semiconductor radar 20 configured in this way, the groove 1
Based on the shape of No. 3, the width of the active layer 15 can be easily set to a predetermined narrow width. Furthermore, it has a structure that includes a current blocking layer 11, and can operate in a fundamental transverse mode and at a low threshold current.

また、活性層15は2回目の一連の結晶成長で形成でき
るので、熱による損傷を防止して高品質のものとするこ
とができる。また、LPg法による結晶層の形成によっ
て表面の平坦化を実現することができる。
Furthermore, since the active layer 15 can be formed by a second series of crystal growth, it can be made of high quality by preventing damage due to heat. Furthermore, the surface can be flattened by forming a crystal layer using the LPg method.

なお、実施例では、波長1.3μm組成のGaInAs
P/InP半導体レーデについて説明したが、1.1〜
1.6μmの波長範囲で所望の発光波長を選択しても良
い。また、結晶材料としては、GaAtAs/GaA−
等の他の結晶系のものを採用しても良いことは勿論であ
る。
In the example, GaInAs with a wavelength of 1.3 μm composition is used.
Although I explained P/InP semiconductor radar, 1.1~
A desired emission wavelength may be selected within the wavelength range of 1.6 μm. In addition, as a crystal material, GaAtAs/GaA-
It is of course possible to use other crystal systems such as.

[発明の効果コ 以上説明した如く、本発明に係る半導体レーザによれば
、低しきい値電流及び基本横モード動作が可能であると
共に、良好な再現性の下に活性層の幅を狭く制御するこ
とができるものである。
[Effects of the Invention] As explained above, the semiconductor laser according to the present invention enables low threshold current and fundamental transverse mode operation, and also allows the width of the active layer to be narrowly controlled with good reproducibility. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の概略構成を示す説明図、
第2図は、従来の半導体レーデの概略構成を示す説明図
である。 10・・・半導体基板、11・・・電流阻止層、13・
・・溝、14.16・・・クラッド層、15・・・活性
層、17・・・キャップ層、20・・・半導体レーザ。
FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention,
FIG. 2 is an explanatory diagram showing a schematic configuration of a conventional semiconductor radar. 10... Semiconductor substrate, 11... Current blocking layer, 13.
...Groove, 14.16...Clad layer, 15...Active layer, 17...Cap layer, 20...Semiconductor laser.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に少なくとも活性層より禁制
帯幅の大きなGa_xIn_1_−_xAs_yP_1
_−_y(0<x、y<1)を含んで形成された電流阻
止層と、該電流阻止層の所定領域を貫挿して前記半導体
基板の表面に達する深さで形成されたストライプ状の溝
と、該溝の底部及び前記電流阻止層上に形成された第1
導電型のクラッド層と、前記溝内の該クラッド層上に主
面を凹ませて形成され、かつ前記電流阻止層の上方の前
記クラッド層上に積層された前記活性層と、前記活性層
を覆うと共に前記溝を塞ぐようにして前記活性層上に形
成された第2導電型のクラッド層とを具備することを特
徴とする半導体レーザ。
Ga_xIn_1_-_xAs_yP_1 having a larger forbidden band width than at least the active layer on the semiconductor substrate of the first conductivity type.
a current blocking layer formed including ____y (0<x, y<1); and a stripe-shaped stripe formed to a depth that penetrates a predetermined region of the current blocking layer and reaches the surface of the semiconductor substrate. a groove, a first layer formed on the bottom of the groove and the current blocking layer;
a conductive type cladding layer, the active layer formed on the cladding layer in the groove with a recessed main surface and laminated on the cladding layer above the current blocking layer; A semiconductor laser comprising: a cladding layer of a second conductivity type formed on the active layer so as to cover and close the groove.
JP21845786A 1986-09-17 1986-09-17 Semiconductor laser Pending JPS6373682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21845786A JPS6373682A (en) 1986-09-17 1986-09-17 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21845786A JPS6373682A (en) 1986-09-17 1986-09-17 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6373682A true JPS6373682A (en) 1988-04-04

Family

ID=16720204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21845786A Pending JPS6373682A (en) 1986-09-17 1986-09-17 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6373682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390077A2 (en) * 1989-03-30 1990-10-03 Oki Electric Industry Co., Ltd. Laser diode and method for fabricating of the same
CN104264147A (en) * 2014-08-08 2015-01-07 西安交通大学 Metal cladding forming device and method restraining layer thickness and layer width of spare part with gap and grooves
CN104711507A (en) * 2015-03-25 2015-06-17 西安交通大学 Metal micro-coating forming system and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390077A2 (en) * 1989-03-30 1990-10-03 Oki Electric Industry Co., Ltd. Laser diode and method for fabricating of the same
CN104264147A (en) * 2014-08-08 2015-01-07 西安交通大学 Metal cladding forming device and method restraining layer thickness and layer width of spare part with gap and grooves
CN104711507A (en) * 2015-03-25 2015-06-17 西安交通大学 Metal micro-coating forming system and method thereof

Similar Documents

Publication Publication Date Title
EP0029167B1 (en) Semiconductor laser device
US4948753A (en) Method of producing stripe-structure semiconductor laser
JP2716693B2 (en) Semiconductor laser
JPS6318877B2 (en)
EP0264225B1 (en) A semiconductor laser device and a method for the production of the same
US4977568A (en) Semiconductor laser device
JPH0474877B2 (en)
EP0076761A1 (en) Semiconductor lasers and method for producing the same
US4377865A (en) Semiconductor laser
JPS6373682A (en) Semiconductor laser
US4360920A (en) Terraced substrate semiconductor laser
US4432092A (en) Semiconductor laser
JPS6119186A (en) Manufacture of two-wavelength monolithic semiconductor laser array
US4358850A (en) Terraced substrate semiconductor laser
JPS6234473Y2 (en)
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JPH01162397A (en) Semiconductor laser element
JPH05226774A (en) Semiconductor laser element and its production
JPH01166592A (en) Semiconductor laser element
JPS61247086A (en) Semiconductor laser element
JPS60235485A (en) Manufacture of semiconductor laser device
JPS6356982A (en) Semiconductor laser
JPH04261082A (en) Semiconductor laser device
JPS6355996A (en) Semiconductor light emitting device
JPS62260380A (en) Semiconductor laser device