JPS6370478A - Manufacture of precise diffraction grating - Google Patents

Manufacture of precise diffraction grating

Info

Publication number
JPS6370478A
JPS6370478A JP61213804A JP21380486A JPS6370478A JP S6370478 A JPS6370478 A JP S6370478A JP 61213804 A JP61213804 A JP 61213804A JP 21380486 A JP21380486 A JP 21380486A JP S6370478 A JPS6370478 A JP S6370478A
Authority
JP
Japan
Prior art keywords
diffraction grating
resist
mask
thin film
shifted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61213804A
Other languages
Japanese (ja)
Inventor
Hajime Okuda
肇 奥田
Hideto Furuyama
英人 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61213804A priority Critical patent/JPS6370478A/en
Publication of JPS6370478A publication Critical patent/JPS6370478A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a pi shifted diffraction grating without a step, by forming the pi shifted diffraction grating on a thin film of a semiconductor substrate, and simultaneously etching a positive part and a negative part with the thin film as a mask. CONSTITUTION:An SiO2 film 12 is formed on an InP substrate 11. Then irregularities are provided at the period of the length of the resonator of a semiconductor laser. Negative type photoresist 13 is applied on the entire surface. Thereafter, positive type photoresist 14 is applied on the entire surface. The positive type photoresist 14 is made to remain only in recess parts by a photographic method. With the resist 14 as a mask, the resist 13 at the projecting parts is removed. After the resist 14 is removed, the resist 14 is applied again on the entire surface. Exposure is performed by a two-luminous-flux exposing method. Then development is performed. With the resist 14 as a mask, a first diffraction grating is transferred on the SiO2. The resist 13 is developed. With the resist 13 as a mask, the diffraction grating is transferred on the SiO2 12. Thus the SiO2 diffraction grating, which is shifted by pi, can be formed. In this way the pishifted diffraction grating without error can be formed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は半導体結晶基板上に半導体レーザの共振器長
に対応した長さごとにπだけシフトした精密回折格子を
製造する方法に関するっ(従来の技術) InP、 InGaAsP  等の半導体結晶基板表面
に形成した周期的凹凸すなわち回折格子は、最近注目を
集めている分布帰還型半導体レーザにとって必須のもの
である。この回折格子を内蔵した分布帰還型半導体レー
ザは端面反射がない場合、2本の縦モードが発振するこ
とは理論的、実験的に明らかにされている。そこで端面
反射率に非対称性を与えることなどを施してやるとある
確率をもって単−縦モードで発振する。これは、レーザ
端面における回折格子の位相が縦モード特性に著しく影
響を与えるためである。そこで11近単−縦モードで確
実に発振させるために半導体レーザの中央付近に回折格
子をπだけシフト(回折格子周期の半分)した分布帰還
型半導体レーザの研究が盛んになっできた。このπだけ
シフトした回折格子を作成する方法としては、ポジ型ホ
トレジストとネガ型ホトレジストを用いて二光束干渉露
光法で作成する方法があり、例えばElectroni
cs Leffers(Vol 20.N124,19
84 PP1008〜1010)アルイi:!昭和61
年春季応用物理学会(講演番号IP−に−1)で作成方
法について発表されている。Electr−onics
 Leffers  で発表された方法の概略を第2図
に示す。この方法では半導体基板上へ回折格子を転写す
る時に、まずポジ型レジストをマスクとして半導体基板
上へ回折格子を転写し1次にネガ型レジストをマスクと
して半導体基板上へ回折格子を転写するため最終的にポ
ジ型部とネガ型部で断差が住じるという欠点があった。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention manufactures a precision diffraction grating shifted by π for each length corresponding to the cavity length of a semiconductor laser on a semiconductor crystal substrate. Related to Method (Prior Art) Periodic unevenness, that is, a diffraction grating, formed on the surface of a semiconductor crystal substrate such as InP or InGaAsP is essential for distributed feedback semiconductor lasers, which have been attracting attention recently. It has been theoretically and experimentally clarified that a distributed feedback semiconductor laser with a built-in diffraction grating oscillates in two longitudinal modes when there is no end face reflection. Therefore, by making the end face reflectance asymmetry, etc., it will oscillate in a single longitudinal mode with a certain probability. This is because the phase of the diffraction grating at the laser end face significantly affects the longitudinal mode characteristics. Therefore, research has become active on distributed feedback semiconductor lasers in which the diffraction grating is shifted by π (half the period of the diffraction grating) near the center of the semiconductor laser in order to reliably oscillate in the 11-near single-longitudinal mode. A method for creating a diffraction grating shifted by π is to use a two-beam interference exposure method using a positive photoresist and a negative photoresist.
cs Leffers (Vol 20.N124, 19
84 PP1008-1010) Alui i:! Showa 61
The creation method was presented at the 2015 Spring Society of Applied Physics (lecture number IP-ni-1). Electr-onics
Figure 2 shows an outline of the method announced in Leffers. In this method, when transferring a diffraction grating onto a semiconductor substrate, first, a positive resist is used as a mask to transfer the diffraction grating onto the semiconductor substrate, and then a negative resist is used as a mask to transfer the diffraction grating onto the semiconductor substrate. However, there was a drawback that there was a difference between the positive mold part and the negative mold part.

これは昭和61年春季応用物理学会での発表においても
同様であった。このような断差があると単−縦モードで
発振することができなくなり、大きな問題点であった。
This was also the case in the presentation at the 1986 spring meeting of the Japan Society of Applied Physics. Such a difference makes it impossible to oscillate in a single longitudinal mode, which is a big problem.

(発明が解決しようとする問題点) πだけシフトした回折格子を作成する際、従来技術では
ポジ部分とネガ部分を別々にエツチングして半導体基板
に回折格子を転写するため、断差を生じるという問題点
があった。そこで本発明の目的はポジ部分とネガ部分を
同時にエツチングすることにより断差のない回折格子周
期の半分のπだけシフトした回折格子を製造することで
ある。
(Problem to be solved by the invention) When creating a diffraction grating shifted by π, the conventional technology etches the positive and negative parts separately and transfers the diffraction grating to the semiconductor substrate, resulting in a difference. There was a problem. Therefore, an object of the present invention is to manufacture a diffraction grating shifted by π, which is half the period of the diffraction grating, without any deviation by etching the positive portion and the negative portion simultaneously.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)ポジ部分とネガ
部分で断差を生じさせないために半導体基板上にSin
、あるいはSiNなどの薄膜をつけ、その上にπだけシ
フトした回折格子を作成した後、この薄膜をマスクとし
てポジ部およびネガ部を同時にエツチングすることによ
り半導体基板上へ回折格子を転写するものである。この
時S io* 、 S iN  などの薄膜にはホトレ
ジストを塗布する前に半導体レーザの共振器長の周期で
凹凸を設けておく必要がある。
(Means and actions for solving the problem) In order to prevent a difference between the positive part and the negative part,
Alternatively, a thin film such as SiN is attached, a diffraction grating shifted by π is created on it, and then the positive and negative parts are simultaneously etched using this thin film as a mask to transfer the diffraction grating onto the semiconductor substrate. be. At this time, it is necessary to provide a thin film such as S io * or S iN with irregularities at a period of the resonator length of the semiconductor laser before applying photoresist.

(実施例) 以下この発明の実施例第1図を参照して説明−・4る。(Example) An embodiment of the present invention will be described below with reference to FIG. 1.

まず第1図(a)に示したようにInP基板上U;ζ−
8in!Q3膜を例えばプラズマCVD法などで約10
0OAの厚さにつける。次にホトプロセスとエツチング
により半導体レーザの共振器長の周期で凹凸を設け、そ
の深さは約50OAとした。次に第1図(b)に示した
ように凹の部分にネガ型ホトレジスト(19を約50O
Aの厚さに塗布する。この時日の部分のみにネガ型ホト
レジストα3を塗布するためには、まず全面にネガ型ホ
トレジスト(131を塗布した後、ポジ型ホトレジスト
α蜀を全面に塗布し、ホトプロセスにより凹部のみにポ
ジ型ホトレジストα4を残す。この後、ポジ型ホトレジ
ストUをマスクとして凸部のネガ型ホトレジ280階を
除去し。
First, as shown in FIG. 1(a), on an InP substrate U;
8in! Q3 film is made by plasma CVD method etc.
Apply to a thickness of 0OA. Next, by photoprocessing and etching, irregularities were formed at a period equal to the resonator length of the semiconductor laser, and the depth thereof was approximately 50 OA. Next, as shown in FIG. 1(b), apply negative photoresist (19 to about 500O
Apply to the thickness of A. In order to apply negative photoresist α3 only to this area, first apply negative photoresist (131) to the entire surface, then apply positive photoresist α3 to the entire surface, and use a photo process to apply positive photoresist only to the concave areas. Photoresist α4 is left behind.After this, using positive photoresist U as a mask, the negative photoresist layer 280 on the convex portion is removed.

次にポジ型ホトレジストa初を除去すればよい。第1図
(b)に示したように全面にポジ型ホトレジスト0荀を
約500λの厚さに塗布し、二光束干渉露光法により露
光する。次に第1図(C)に示したように現俄してこの
ポジ型ホトレジストαJをマスクとしてS i O2U
上へ1次の回折格子をエツチングにより転写する。さら
に第1図(d)に示すようにネガ型ホトレジストqツを
現像して、このネガ型ホトレジストα3をマスクとして
Sin、αつ上へ回折格子を転写する。この時ポジ部の
5in2もエツチングされるが、あらかじめポジ部のS
in、は約s o o A玉r;iくなっているため、
なくなってしまうことはなく最終的にπだけシフトした
5in2の回折格子が作成できる。最後に第1図(el
に示したように5in2をマスクとして回折格子をIn
P基板υυ上へ転写してπシフト回折格子ができあがる
。これより笥2図に見られたような断差を生じることな
く周期が1900〜250OAのπシフト回折格子を再
現性よく作成でき、深さも500A程度であった。
Next, the positive type photoresist a must be removed. As shown in FIG. 1(b), a positive type photoresist is coated on the entire surface to a thickness of about 500λ, and exposed by a two-beam interference exposure method. Next, as shown in FIG. 1(C), using this positive photoresist αJ as a mask, S i O2U
A first order diffraction grating is transferred onto it by etching. Further, as shown in FIG. 1(d), the negative photoresist q is developed, and the diffraction grating is transferred onto Sin, α using this negative photoresist α3 as a mask. At this time, the positive part 5in2 is also etched, but the positive part S
In becomes approximately so o A ball r;i, so
In the end, a 5in2 diffraction grating shifted by π can be created. Finally, Figure 1 (el
As shown in Figure 2, the diffraction grating is
A π-shift diffraction grating is completed by transferring it onto a P substrate υυ. As a result, a π-shifted diffraction grating with a period of 1900 to 250 OA could be produced with good reproducibility without producing the difference seen in Figure 2, and the depth was also about 500 Å.

他の実施例としては用いる半導体基板はInPに限るも
のではな(In0aAsP、Oat’xLAs 、Ga
As等なんでもよい。要するに本発明の決旨を逸脱しな
い範囲で種々変形して実施するこさができる。
In other embodiments, the semiconductor substrate used is not limited to InP (In0aAsP, Oat'xLAs, Ga
Anything such as As is fine. In short, various modifications can be made without departing from the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、断差の全くないπシフト回折格子の作
成が可能であり1分布帰還型半導体レーザの単−縦モー
ド発振確率が著しく増加するなど将来の光A信分野に及
ぼす影響は多大であるっ
According to the present invention, it is possible to create a π-shifted diffraction grating with no difference at all, and the probability of single-longitudinal mode oscillation of a monodistribution feedback semiconductor laser increases significantly, which will have a great impact on the future field of optical A/C communications. It is

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す図であり、第2図は
従来の例を示す図である。 11・・・InP基版 12・・・Sin。 13・・・ネガ型ホトレジスト 14・・・ポジ型ホトレジスト 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 (b) (C) 第2図 9 ′:S    寸η04  ミ      η・+
+((\
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional example. 11...InP base plate 12...Sin. 13...Negative photoresist 14...Positive photoresist Agent Patent attorney Nori Chika Ken Yudo Kikuo Takehana (b) (C) Figure 2 9': S dimension η04 Mi η・+
+((\

Claims (1)

【特許請求の範囲】[Claims] 二光束干渉露光法およびエッチング方法を用いて基板上
に周期構造を形成するにあたり、基板表面にSiO_2
もしくはSiNなどの薄膜をつける工程と前記薄膜上に
半導体レーザの共振器長の周期で凹凸を設ける工程と、
凹部にネガ型ホトレジストを設け、その上全面にポジ型
ホトレジストを設ける工程と、二光束干渉露光法により
ポジ型ホトレジスト上に回折格子を作成し、これをマス
クとして薄膜上に回折格子を転写する工程と、ネガ型ホ
トレジスト上に回折格子を作成し、これをマスクとして
薄膜上に回折格子を転写する工程と、薄膜をマスクとし
て基板上に回折格子を転写し、半導体レーザの共振器長
に対応する長さごとに回折格子周期の半分のπだけシフ
トした精密回折格子を得ることを特徴とする精密回折格
子の製造方法。
When forming a periodic structure on a substrate using two-beam interference exposure method and etching method, SiO_2 is applied to the surface of the substrate.
Alternatively, a step of applying a thin film such as SiN, and a step of providing unevenness on the thin film at a period equal to the resonator length of the semiconductor laser;
A process of providing a negative photoresist in the recess and a positive photoresist on the entire surface, and a process of creating a diffraction grating on the positive photoresist using a two-beam interference exposure method and using this as a mask to transfer the diffraction grating onto a thin film. The first step is to create a diffraction grating on a negative photoresist and use this as a mask to transfer the diffraction grating onto a thin film.The second step is to use the thin film as a mask to transfer the diffraction grating onto a substrate to correspond to the resonator length of the semiconductor laser. A method for manufacturing a precision diffraction grating, characterized by obtaining a precision diffraction grating whose length is shifted by π, which is half the diffraction grating period.
JP61213804A 1986-09-12 1986-09-12 Manufacture of precise diffraction grating Pending JPS6370478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61213804A JPS6370478A (en) 1986-09-12 1986-09-12 Manufacture of precise diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213804A JPS6370478A (en) 1986-09-12 1986-09-12 Manufacture of precise diffraction grating

Publications (1)

Publication Number Publication Date
JPS6370478A true JPS6370478A (en) 1988-03-30

Family

ID=16645319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213804A Pending JPS6370478A (en) 1986-09-12 1986-09-12 Manufacture of precise diffraction grating

Country Status (1)

Country Link
JP (1) JPS6370478A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006025315A1 (en) * 2004-08-31 2008-05-08 東レ株式会社 Automotive bonnet
KR100925091B1 (en) * 2006-03-15 2009-11-05 가부시키가이샤 고베 세이코쇼 Automobile hood
US8053146B2 (en) * 2005-02-10 2011-11-08 Ovd Kinegram Ag Multi-layer body including a diffractive relief structure and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006025315A1 (en) * 2004-08-31 2008-05-08 東レ株式会社 Automotive bonnet
US8075048B2 (en) 2004-08-31 2011-12-13 Toray Industries, Inc. Bonnet for automobile having automobiles that protects the heads of pedestrians
JP4873309B2 (en) * 2004-08-31 2012-02-08 東レ株式会社 Automotive bonnet
US8053146B2 (en) * 2005-02-10 2011-11-08 Ovd Kinegram Ag Multi-layer body including a diffractive relief structure and method for producing the same
US8450029B2 (en) 2005-02-10 2013-05-28 Ovd Kinegram Ag Multi-layer body and process for the production of a multi-layer body
KR100925091B1 (en) * 2006-03-15 2009-11-05 가부시키가이샤 고베 세이코쇼 Automobile hood

Similar Documents

Publication Publication Date Title
JPS61156003A (en) Production of diffraction grating
JPH0553289A (en) Production of phase shift reticle
JPH02224386A (en) Manufacture of lambda/4 shift type diffraction grating
JPS61190368A (en) Formation of fine pattern
JPS6370478A (en) Manufacture of precise diffraction grating
JP2738623B2 (en) Method of forming diffraction grating
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
JPS60235426A (en) Manufacture of semiconductor integrated circuit device
JPS6370477A (en) Manufacture of phase shift type diffraction grating
JP2003075619A (en) Method for forming diffraction grating
EP0490320A2 (en) A method for producing a diffraction grating
JPH02213182A (en) Manufacture of diffraction grating
JPS6381885A (en) Manufacture of phase shift type deflection lattice
JPS62245204A (en) Production of diffraction grating
JPS61289688A (en) Manufacture of diffraction grating
JP3112153B2 (en) Grating fabrication method
JPS62165392A (en) Manufacture of diffraction grating
JP2739793B2 (en) Manufacturing method of three-phase type phase shift reticle
JPH0473650A (en) Mask for fine working
JPS6081829A (en) Etching process of semiconductor
JPS6370476A (en) Manufacture of phase shift type diffraction grating
JPS6370475A (en) Manufacture of phase shift type diffraction grating
JPH03284703A (en) Optical glass member for generating prescribed phase difference and production thereof
JPS63150984A (en) Forming method for diffraction grating
JP2786229B2 (en) Manufacturing method of diffraction grating