JPS63686B2 - - Google Patents

Info

Publication number
JPS63686B2
JPS63686B2 JP55032652A JP3265280A JPS63686B2 JP S63686 B2 JPS63686 B2 JP S63686B2 JP 55032652 A JP55032652 A JP 55032652A JP 3265280 A JP3265280 A JP 3265280A JP S63686 B2 JPS63686 B2 JP S63686B2
Authority
JP
Japan
Prior art keywords
condensate
flow rate
pump
valve
recirculation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55032652A
Other languages
Japanese (ja)
Other versions
JPS56130508A (en
Inventor
Mizuo Tateishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3265280A priority Critical patent/JPS56130508A/en
Publication of JPS56130508A publication Critical patent/JPS56130508A/en
Publication of JPS63686B2 publication Critical patent/JPS63686B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明は沸騰水型原子力発電所の復水ポンプの
最小流量を確保するために設けられた復水再循環
系統において、復水ポンプ吐出流量信号と給水ポ
ンプ吐出流量信号を入力して、2要素により復水
再循環系制御弁を適切な位置に保持する復水再循
環系制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a condensate recirculation system provided to ensure a minimum flow rate of a condensate pump in a boiling water nuclear power plant, in which a condensate pump discharge flow rate signal and a feed water pump discharge flow rate signal are used. The present invention relates to a condensate recirculation system control device that maintains a condensate recirculation system control valve in an appropriate position using two elements.

従来の沸騰水型原子力発電所の復水再循環系制
御弁(以下制御弁と略す。)の開閉制御は復水流
量の信号のみによつて行なわれていた。第4図に
示すように横軸の弁駆動機構入力値としての復水
流量が零の場合、弁開度は全開(第4図a点)と
なり、復水流量増加に伴ない、弁は閉鎖し、復水
流量がある値b点に達すると、弁は全閉し、b点
以上の復水流量では弁は全閉の状態にある。復水
流量が第4図b点より減少した場合、即ち復水の
再循環を必要とする時に万一制御弁が開動作しな
いと所要冷却水流量が得られないため、タービン
グランド部より放射能をおびた蒸気の漏洩、復水
器の真空度の低下、復水ポンプの異常温度上昇時
の影響が出る恐れがある。このため復水再循環系
の制御系統はフエイルオープン特性となつてお
り、冷却水量を確保するようになつている。
The opening and closing of condensate recirculation system control valves (hereinafter abbreviated as control valves) in conventional boiling water nuclear power plants has been controlled only by condensate flow rate signals. As shown in Figure 4, when the condensate flow rate as the input value of the valve drive mechanism on the horizontal axis is zero, the valve opening is fully open (point a in Figure 4), and as the condensate flow rate increases, the valve closes. However, when the condensate flow rate reaches a certain value point b, the valve is fully closed, and when the condensate flow rate is above point b, the valve is fully closed. If the condensate flow rate decreases from point b in Figure 4, that is, if the control valve does not open when condensate recirculation is required, the required cooling water flow rate will not be obtained, and radioactivity will be released from the turbine gland. There is a risk of leakage of steam with high temperature, a decrease in the vacuum level of the condenser, and an abnormal rise in temperature of the condensate pump. For this reason, the control system for the condensate recirculation system has fail-open characteristics to ensure the amount of cooling water.

一方、復水再循環制御弁が全閉であるべき高負
荷時、即ち第4図b点より多い復水流量状態時、
何らかの原因で復水再循環制御装置が故障した場
合、例えば復水再循環制御器16の単一故障で、
制御器出力16aが零になると、上記弁は全開と
なる。この結果、復水再循環ラインへ復水が流
れ、復水ポンプ出口流量の大巾な増加となり、復
水ポンプの出口圧力の低下を生じ、給水ポンプ9
がトリツプし原子炉への給水が全喪失し、原子炉
の水位が低下し、原子炉は緊急停止に至る。更に
原子炉水位は低下し緊急炉心冷却系起動に至る。
On the other hand, when the condensate recirculation control valve should be fully closed under high load, that is, when the condensate flow rate is higher than point b in Figure 4,
If the condensate recirculation control device malfunctions for some reason, for example, a single failure of the condensate recirculation controller 16,
When the controller output 16a becomes zero, the valve is fully opened. As a result, condensate flows into the condensate recirculation line, resulting in a large increase in the condensate pump outlet flow rate, causing a decrease in the condensate pump outlet pressure, and causing a decrease in the condensate pump outlet pressure.
trip, the water supply to the reactor is completely lost, the water level in the reactor drops, and the reactor undergoes an emergency shutdown. Furthermore, the reactor water level drops, leading to the activation of the emergency core cooling system.

本発明は以上の事情に鑑みてなされたもので、
その目的とするところは、原子炉高負荷運転時、
復水再循環制御装置内構成機器の単一故障によ
り、原子炉への給水が全喪失し、原子炉が緊急停
止、更に緊急炉心冷却系起動に至るのを防止する
ことのできる復水再循環系制御装置を得ることに
ある。
The present invention was made in view of the above circumstances, and
The purpose of this is to
Condensate recirculation that can prevent a single failure of a component in the condensate recirculation control system from causing a complete loss of water supply to the reactor, leading to an emergency shutdown of the reactor and further activation of the emergency core cooling system. The objective is to obtain a system control device.

以下図面を参照して本発明の一実施例を説明す
る。第1図において、原子炉圧力容器1で発生し
た蒸気は主蒸気管2を通して、タービン3へ送ら
れる。タービン3を駆動した後の蒸気は復水器4
で凝縮されて、復水ポンプ6、復水脱塩装置7、
給水加熱器8、原子炉給水ポンプ9を介して原子
炉1へ戻される。又、復水ポンプ7の出口側に復
水ポンプの最小流量を確保するための復水バイパ
スライン11が設置されており、復水再循環系制
御弁10を介して復水器4に接続されている。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, steam generated in a reactor pressure vessel 1 is sent to a turbine 3 through a main steam pipe 2. The steam after driving the turbine 3 is sent to the condenser 4
condensate pump 6, condensate desalination device 7,
It is returned to the reactor 1 via the feed water heater 8 and the reactor feed water pump 9. Further, a condensate bypass line 11 is installed on the outlet side of the condensate pump 7 to ensure the minimum flow rate of the condensate pump, and is connected to the condenser 4 via a condensate recirculation system control valve 10. ing.

復水ポンプ出口側の給水管5に取り付けられた
流量測定器12からの復水流量信号12aと、給
水ポンプ9出口側の給水管5に取り付けられた流
量測定器13からの給水流量信号13aの2信号
が復水再循環制御装置18に入力されている。
The condensate flow rate signal 12a from the flow rate measuring device 12 attached to the water supply pipe 5 on the outlet side of the condensate pump, and the feed water flow rate signal 13a from the flow rate measuring device 13 attached to the water supply pipe 5 on the outlet side of the water supply pump 9. Two signals are input to the condensate recirculation control device 18.

この復水再循環制御装置18の出力信号15a
は復水バイパスライン11に設置された復水再循
環系制御弁10の開度を調整する。
Output signal 15a of this condensate recirculation control device 18
adjusts the opening degree of the condensate recirculation system control valve 10 installed in the condensate bypass line 11.

復水再循環制御装置18の内部はまず、前記復
水流量信号12aが復水流量制御器16を介し
て、復水流量制御信号16aとなり、復水流量演
算回路17内の第2図に示す高値優先回路19に
入力される。又、前記給水流量信号13aが接点
C23を介して、前記高値優先回路19への第2
入力となる。この復水流量演算回路17の出力信
号17aが弁駆動機構15を介して復水再循環系
制御弁10の開度を調整する。さて、復水流量演
算回路17は第2図に示す通りである。復水流量
制御信号16aと接点C23を介した給水流量信
号13aの2入力が高値優先回路19に入力され
る。高値優先回路19の出力信号19aは第1に
接点D24を介して加算器20に入力され、第2
は比較器21に入力される。一方給水流量信号1
3aのもう一方は接点C23及び接点E22を介
して、加算器20に入力されている。
Inside the condensate recirculation control device 18, first, the condensate flow rate signal 12a passes through the condensate flow rate controller 16 and becomes a condensate flow rate control signal 16a, as shown in FIG. 2 in the condensate flow rate calculation circuit 17. It is input to the high price priority circuit 19. Further, the water supply flow rate signal 13a is sent to the second high value priority circuit 19 via the contact C23.
It becomes input. The output signal 17a of the condensate flow rate calculation circuit 17 adjusts the opening degree of the condensate recirculation system control valve 10 via the valve drive mechanism 15. Now, the condensate flow rate calculation circuit 17 is as shown in FIG. Two inputs, the condensate flow rate control signal 16a and the water supply flow rate signal 13a via contact C23, are input to the high value priority circuit 19. The output signal 19a of the high value priority circuit 19 is first input to the adder 20 via the contact D24, and the second
is input to the comparator 21. On the other hand, water supply flow rate signal 1
The other signal 3a is input to the adder 20 via the contact C23 and the contact E22.

この加算器20の出力信号17aは弁駆動機構
15に入力され、復水再循環系制御弁10の開度
を調整する。
The output signal 17a of the adder 20 is input to the valve drive mechanism 15 to adjust the opening degree of the condensate recirculation system control valve 10.

接点C23は給水流量がある値以上になると第
3図の接点25が「ON」し、リレーA26が励
磁し「ON」状態となる。
When the water supply flow rate exceeds a certain value, contact C23 turns "ON" as shown in FIG. 3, and relay A26 is energized and becomes "ON".

一方、接点D24および22は高値優先回路1
9の出力信号19aが比較器21により、ある値
と比較され、通常高負荷運転時は出力信号19a
が大きい為、第3図の接点27が「ON」してお
り、リレーB28が励磁しており、この結果リレ
ーBの接点D24が「ON」,接点E22が
「OFF」状態となつている。
On the other hand, contacts D24 and 22 are connected to the high value priority circuit 1.
9 is compared with a certain value by a comparator 21, and during normal high load operation, the output signal 19a is
Since this is large, contact 27 in FIG. 3 is "ON" and relay B28 is energized, resulting in contact D24 of relay B being "ON" and contact E22 being "OFF".

従つて通常高負荷運転状態では高値優先回路1
9には復水流量制御信号16aと給水流量信号1
3aの2信号が入力されており、高値優先回路1
9の出力信号19aだけが、加算器20を介し
て、出力信号17aとなり、復水再循環系制御弁
10を制御する。
Therefore, under normal high load operating conditions, high value priority circuit 1
9 is a condensate flow rate control signal 16a and a water supply flow rate signal 1.
Two signals of 3a are input, and the high value priority circuit 1
Only the output signal 19a of 9 becomes the output signal 17a through the adder 20, and controls the condensate recirculation system control valve 10.

次に本発明の作用を説明する。通常高負荷運転
時には復水演算回路17の接点C23、接D24
は「ON」で、接点E22は「OFF」の状態にあ
るため、復水流量制御信号16aと給水流量信号
13aの2信号が高値優先回路19に入力されて
いる。高負荷運転状態では復水流量制御信号16
aは復水流量信号12aより大きい為、最大要求
信号を出しているので、高値優先回路出力信号1
9aになつている。更にこの出力信号19aが加
算器20に入力されて、接点E22が「OFF」
の為、出力信号17aと一致している。
Next, the operation of the present invention will be explained. Normally during high load operation, contact C23 and contact D24 of condensate calculation circuit 17
is “ON” and the contact E22 is “OFF”, so two signals, the condensate flow rate control signal 16a and the water supply flow rate signal 13a, are input to the high value priority circuit 19. Condensate flow control signal 16 in high load operating condition
Since a is larger than the condensate flow rate signal 12a, the maximum request signal is output, so the high value priority circuit output signal 1
It's becoming 9a. Furthermore, this output signal 19a is input to the adder 20, and the contact E22 is turned "OFF".
Therefore, it matches the output signal 17a.

従つて、弁駆動機構15への入力は復水流量制
御信号16aと一致しており、弁駆動機構15は
第4図に示す特性になつている為、復水再循環系
制御弁10開度は全閉状態にある。
Therefore, the input to the valve drive mechanism 15 matches the condensate flow rate control signal 16a, and since the valve drive mechanism 15 has the characteristics shown in FIG. 4, the opening degree of the condensate recirculation system control valve 10 is fully closed.

ここで、復水再循環系制御装置18内に単一故
障が発生した場合、即ち例えば、復水流量制御器
16が故障して零出力を発生した場合、高値優先
回路19により、弁駆動機構入力は給水流量信号
13aとなり、弁駆動機構特性(第4図)により
弁は全開することはない。又復水流量信号13a
の故障も上記高値優先回路により弁は全開するこ
とはない。
Here, if a single failure occurs in the condensate recirculation system control device 18, that is, for example, if the condensate flow rate controller 16 fails and generates zero output, the high value priority circuit 19 causes the valve drive mechanism to The input is the water supply flow rate signal 13a, and the valve is never fully opened due to the characteristics of the valve drive mechanism (FIG. 4). Also, condensate flow rate signal 13a
Even in the event of a failure, the valve will not fully open due to the above-mentioned high value priority circuit.

高値優先回路19が故障し、出力信号19aが
零になつた場合は、比較器21により、リレーB
28が無励磁となり、接点D24は「OFF」接
点E22が「ON」状態となり、弁駆動機構45
への入力信号は給水流量信号13aになり、同様
第4図により弁は全開することはない。
If the high value priority circuit 19 fails and the output signal 19a becomes zero, the comparator 21 causes the relay B to
28 becomes de-energized, the contact D24 becomes "OFF" and the contact E22 becomes "ON", and the valve drive mechanism 45
The input signal to the valve becomes the water supply flow rate signal 13a, and similarly, as shown in FIG. 4, the valve is never fully opened.

一方低負荷時は接点23が「OFF」しており、
第4図の特性で弁10は開している。復水再循環
を必要とするので、弁開状態にあればよいので、
復水再循環制御装置18内の単一故障が発生して
零出力信号を発生しても問題はない。
On the other hand, when the load is low, contact 23 is "OFF",
The valve 10 is open with the characteristics shown in FIG. Since condensate recirculation is required, the valve only needs to be open.
It is acceptable for a single failure within the condensate recirculation controller 18 to occur and produce a zero output signal.

かくして、本発明による復水再循環制御装置を
組み込んだ沸騰水型原子力発電所においては、復
水ポンプの最小流量を確保するために設けられた
復水再循環制御弁が高負荷時、上記制御装置内の
単一故障が発生しても、全給水喪失から原子炉緊
急停止、更に緊急炉心冷却系動作の現象が発生す
ることなく原子炉は安全に給水流量を確保するこ
とが可能である。
Thus, in a boiling water nuclear power plant incorporating the condensate recirculation control device according to the present invention, the condensate recirculation control valve provided to ensure the minimum flow rate of the condensate pump performs the above control when the load is high. Even if a single failure occurs in the equipment, the reactor can safely secure the water supply flow rate without causing a loss of all water supply, an emergency shutdown of the reactor, or even an emergency core cooling system operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る復水再循環制御装置の一
実施例を示すブロツク図、第2図および第3図は
本発明の復水再循環制御装置内の復水流量演算回
路の一実施例を示すブロツク図、第4図は、弁駆
動機構の特性を示す図で、縦軸は復水再循環系制
御弁開度要求で横軸は弁駆動機構入力(復水流量
に相当)である。 1……原子炉圧力容器、3……蒸気タービン、
4……復水器、6……復水ポンプ、9……給水ポ
ンプ、10……復水再循環系制御弁。
FIG. 1 is a block diagram showing one embodiment of the condensate recirculation control device according to the present invention, and FIGS. 2 and 3 are one implementation of the condensate flow rate calculation circuit in the condensate recirculation control device of the present invention. Figure 4, a block diagram showing an example, is a diagram showing the characteristics of the valve drive mechanism, where the vertical axis is the condensate recirculation system control valve opening request and the horizontal axis is the valve drive mechanism input (corresponding to the condensate flow rate). be. 1... Nuclear reactor pressure vessel, 3... Steam turbine,
4... Condenser, 6... Condensate pump, 9... Water supply pump, 10... Condensate recirculation system control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 沸騰水型原子力発電所の原子炉圧力容器から
発生し蒸気タービンを駆動させた後、復水器によ
つて凝縮された復水を、復水ポンプおよび給水ポ
ンプによつて前記原子炉圧力容器内に導びく復水
系の前記復水ポンプの出口側に一端が接続され他
端が前記復水器に接続されたバイパスラインと、
このバイパスラインに接続された復水再循環系制
御弁から成る復水再循環系の流量を制御する復水
再循環系制御装置において、前記復水ポンプの吐
出流量信号と給水ポンプの吐出流量を入力しこの
復水ポンプの吐出流量信号と給水ポンプの吐出流
量信号の内の高出力値を選択して出力する高値優
先回路と、この高値優先回路の出力を入力しこの
高値優先回路の出力値が零の場合に前記給水ポン
プの吐出流量信号を直接入力する加算器と、この
加算器から出力される出力値を入力しこの出力値
が零の場合に前記復水再循環系制御弁を全開にさ
せ加算器からの前記出力値の増加に伴ない弁を閉
鎖させて成る弁駆動機構とから構成されて成るこ
とを特徴とする復水再循環系制御装置。
1. Condensate generated from the reactor pressure vessel of a boiling water nuclear power plant and driven by a steam turbine and then condensed by a condenser is transferred to the reactor pressure vessel by a condensate pump and a feed water pump. a bypass line that has one end connected to the outlet side of the condensate pump of the condensate system and the other end connected to the condenser;
In a condensate recirculation system control device that controls the flow rate of a condensate recirculation system consisting of a condensate recirculation system control valve connected to this bypass line, the discharge flow rate signal of the condensate pump and the discharge flow rate of the feed water pump are There is a high value priority circuit that selects and outputs the high output value of the discharge flow rate signal of the condensate pump and the discharge flow rate signal of the feed water pump, and the output value of this high value priority circuit that inputs the output of this high value priority circuit. an adder that directly inputs the discharge flow rate signal of the water supply pump when is zero, and an adder that inputs the output value output from this adder, and when this output value is zero, fully opens the condensate recirculation system control valve. and a valve drive mechanism that closes the valve as the output value from the adder increases.
JP3265280A 1980-03-17 1980-03-17 Condense recirculation system controller Granted JPS56130508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265280A JPS56130508A (en) 1980-03-17 1980-03-17 Condense recirculation system controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265280A JPS56130508A (en) 1980-03-17 1980-03-17 Condense recirculation system controller

Publications (2)

Publication Number Publication Date
JPS56130508A JPS56130508A (en) 1981-10-13
JPS63686B2 true JPS63686B2 (en) 1988-01-08

Family

ID=12364788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265280A Granted JPS56130508A (en) 1980-03-17 1980-03-17 Condense recirculation system controller

Country Status (1)

Country Link
JP (1) JPS56130508A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147908A (en) * 1983-02-15 1984-08-24 株式会社日立製作所 Device for inhibiting and controlling hammering of generating plant feed-pump minimum flow line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144802A (en) * 1974-05-15 1975-11-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144802A (en) * 1974-05-15 1975-11-20

Also Published As

Publication number Publication date
JPS56130508A (en) 1981-10-13

Similar Documents

Publication Publication Date Title
JPS63686B2 (en)
JPH0429921B2 (en)
JPH0222360B2 (en)
JP2539514B2 (en) Boiler water supply control device
JP2863581B2 (en) Turbine steam control valve controller
JP3095468B2 (en) Reactor scram suppression device
JPS6023699A (en) Hammering inhibiting controller for emergency drain discharge system
JPS6217121B2 (en)
JP2585204B2 (en) Feed water pump recirculation valve controller
JPS6011605A (en) Steam turbine control
JPS6383802A (en) Process controller
JPH05119189A (en) Nuclear reactor injection water flow automatic controller
JPS6050318B2 (en) Reactor control device
JPS61138806A (en) Steam turbine plant
JPS646716B2 (en)
JPH0241720B2 (en)
JPH0416601B2 (en)
JPS6015917B2 (en) Nuclear reactor water supply control device
JPH0122521B2 (en)
JPS5897697A (en) Feedwater recirculation flow rate cooperation control device
JPH0331962B2 (en)
JPS63277804A (en) Turbine control device for steam generating plant
JPS6017317A (en) Device for preventing detector from malfunction
JPS639082B2 (en)
JPS6390797A (en) Nuclear reactor protection system logic circuit