JPS6367328B2 - - Google Patents

Info

Publication number
JPS6367328B2
JPS6367328B2 JP55108195A JP10819580A JPS6367328B2 JP S6367328 B2 JPS6367328 B2 JP S6367328B2 JP 55108195 A JP55108195 A JP 55108195A JP 10819580 A JP10819580 A JP 10819580A JP S6367328 B2 JPS6367328 B2 JP S6367328B2
Authority
JP
Japan
Prior art keywords
target
substrate
film
bias voltage
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55108195A
Other languages
Japanese (ja)
Other versions
JPS5734324A (en
Inventor
Takashi Tomie
Sadao Kadokura
Kazuhiko Pponjo
Shigenobu Sobajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP10819580A priority Critical patent/JPS5734324A/en
Publication of JPS5734324A publication Critical patent/JPS5734324A/en
Publication of JPS6367328B2 publication Critical patent/JPS6367328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は垂直磁気記録媒体に用いられる少なく
ともコバルト(Co)とクロム(Cr)とからなる
垂直磁化膜の製造方法に関するものであり、特に
速い析出速度においても結晶性をよく制御し得る
製造方法を提供するものである。 従来の長手(面内)磁化を用いる磁気記録方式
にかわり、近年高密度記録の可能な方式として垂
直磁化を用いる磁気記録方式が提案されている。
(「日経エレクトロニクス」1978年8月7日号、No.
192参照)そしてこの垂直磁化方式の磁性膜とし
ては、スパツタで作製されるhcp構造でc軸が面
の法線に配向した厚さ0.2〜2.0μのCo―Cr合金薄
膜が用いられ、特にCr含有量が5〜25重量%の
Co―Cr合金膜が優れていることが知られている。
(電子通信学会磁気記録研究会資料MR78―4、
及び昭和51年度電気関係学会東北支部連合大会講
演集1A6及び1980年度Intermag.Conference
Dlgest、Session34―1参照) ところで、従来から提案されているRFスパツ
タ法は実験室的な膜作製方法として所定の特性を
有するCo―Cr合金膜が得られる点で優れた方法
であるが工業的規模の大量生産に適用するには以
下の点で問題を有している。すなわちその1は
100Å/分程度までの低析出速度においては所望
の特性の膜が得られるが100Å/分を越えた高析
出速度では、投入する高周波スパツタ電力の増大
に伴なう基板温度の上昇等から得られる膜の特性
が低下し実用に供し得ない点であり、その2は真
空槽内の不純物ガス量を小さくするため2×
10-7Torr程度の真空度にする必要があるが、大
規模生産装置においてこの真空度を達成するには
技術面及びコスト面で難しい点である。 本発明は、かかる問題点を解決するためになさ
れたものであり、スパツタにより所定の特性の垂
直磁気記録用磁性膜を高速度で製造できる製造方
法を提供するものである。 すなわち、本発明は、基板上に少なくともコバ
ルトとクロムとからなる垂直磁化膜をスパツタリ
ングにより作製するに際し、ターゲツトに平行な
磁界によりターゲツト近傍にプラズマを捕促し、
ターゲツト近傍のプラズマ密度を高めると共に、
該プラズマ中の正電荷粒子を前記基板の方へ誘導
加速する電界を印加しながら作製することを特徴
とする垂直磁気記録用の垂直磁化膜の製造方法で
ある。 ところで、本発明におけるスパツタ方式とはタ
ーゲツトの近傍空間にターゲツトに平行な磁界を
形成して該磁界によりターゲツト近傍のプラズマ
密度を高め、膜形成速度を速くしたスパツタ方式
を云い、例えば公知のRFマグネトロンスパツタ
方式、DCマグネトロンスパツタ方式、対向した
ターゲツトと基板との間の空間にターゲツトと平
行な磁界を形成したスパツタ方式、等の各方式が
ある。なお前記方式のうちマグネトロンスパツタ
方式は、ターゲツトに強磁性体を用いる磁性膜作
成の場合は、通常の磁場強度では磁束がターゲツ
トの内部に閉じ込められるため高速の膜作成がで
きなくなるので、磁場強度を強くする、薄いター
ゲツトを使用する、透磁率の小さいCo―Cr合金
ターゲツトを使用する、あるいはCoとCrの磁極
に対する配置を工夫した複合ターゲツトを使用す
る等の手段によりマグネトロンスパツタの機能を
保持するようにする必要がある。 以下本発明に到つた実験例を図面を用いて説明
する。 第1図は本発明の実施に用いた公知のマグネト
ロンスパツタ装置の要部側断面図である。図にお
いて、1はターゲツトであり、Co―Cr合金ター
ゲツトあるいは2mm厚のCoターゲツト上にCr小
片を置いた複合ターゲツトを用いる。ターゲツト
1の背面に設けた磁界発生手段2はサマリウム
(Sm)―コバルト(Co)からなる永久磁石を用
い磁界強度を強くしてターゲツト1が前述のCo
―Cr合金ターゲツトの場合もマグネトロンスパ
ツタとして作用するようにしてある。なお、磁石
背面にはヨーク13が取付けられ、これらの磁石
とヨークは水冷ボツクス内に納められる。(水冷
ボツクスは図示せず)。また、12はプラズマが
ターゲツト前面にのみ発生するように取付けられ
るシールド板である。 一方基板3は、ターゲツト1に対向配置された
基板ホルダー4に密着するように、一端をフツク
5で、他端は先端にフツク6を取付けたスプリン
グ7を介して取着される。又、基板ホルダー4
は、ホルダー本体4aとホルダー本体4aに取着
したヒーター8を内蔵したかまぼこ型の銅ブロツ
ク4bとからなり、基板3の温度を任意に設定で
きるようにしてある。なお、9はヒーター8の電
源、10は基板温度検出のための温度検出端であ
る。そして、以上の構成は云うまでもなく電源9
以外は真空容器(図示せず)内に設けられてい
る。 ところで、11はシールド板12前方にターゲ
ツト1外周にそつてリング状に取付けられる陽極
で、スパツタ電源E1は、この陽極11とターゲ
ツト1間に印加される。一方E2は本発明による
バイアス電源で、ターゲツト1前面近傍に磁界発
生手段2により捕促されるプラズマ中の正電荷粒
子を基板3方向へ加速する加速電界を発生させる
ためのもので、図示の如く陽極11と基板ホルダ
ー本体4aとの間に印加されている。 以上のように構成されているので、磁界による
捕促によりターゲツト1前面近傍のプラズマ密度
が上昇し膜形成速度が大となると同時に、バイア
ス電源E2による加速電界の作用により粒子が効
果的に基板3方向に誘導されると共に適当なイオ
ン衝撃を基板3に与え垂直性の良い膜形成従つて
垂直磁気記録に適した垂直特性に優れた磁性膜が
得られる。 次に以上の装置を用いた実施例を説明する。 ところで、得られた磁性膜の評価は、X線回折
による結晶性及び配向性の評価と磁気B―H曲線
測定による磁気特性の評価の両面から行なつた。
その具体的評価項目は以下の通りである。すなわ
ち、X線回折においてはC面のピークの比強度
(「C―Peak」と以下略す。)とロツキングカーブ
の半値巾(△θ50)を求め結晶性とhcp結晶の軸
の膜面法線よりの配向性を評価した。また膜面に
垂直方向(v)と水平方向(h)のB―H曲線を
測定し、それぞれの方向の保磁力(Hc(v)と
Hc(h))及び残留磁化(Mr(v)とMr(h))を
求め、Hc(v)、Hc(v)/Hc(h)の比、及び
Mr(v)/Mr(h)の比の値で垂直磁化容易性を
評価した。なおB―H曲線の反磁界補正は行つて
いない。そして評価基準として、C―Peak
100、△θ508゜、Hc(v)800(エルステツド)、
Hc(v)/Hc(h)2.5、及びMr(v)/Mr
(h)1.0の5条件を同時に満足するものを合格
品とすることにした。 実施例 1 加速電界の効果を確認するため以下のようにバ
イアス電圧を変えて膜形成を行なつた。 A 装置条件 a スパツタ方式:DCマグネトロン方式 b ターゲツト材:Co―Cr合金(Cr量:17wt
%) c ターゲツト形状:円形80mmφ d 基板:75μ厚のポリイミドフイルム e 基板―ターゲツト間距離:85mm B 操作手順 以下の手順で膜形成を行なつた。 a 真空槽を排気した後に、基板ホルダー温度
を260℃に1.5時間保持する。 b 所定の基板ホルダー温度に設定し、到達真
空度を2×10-6Torr以下に排気する。 c 高純度アルゴン(Ar)ガスを所定の圧力
まで導入し5〜15分間のプレスパツタの後に
目的とする後記のスパツタ条件下でバイアス
電圧を0〜―200Vと変化させて膜形成を行
なつた。 なおスパツタ条件は、スパツタAr圧が1
×10-2Torr、基板ホルダー温度が208℃、膜
形成速度が300Å/分とし、スパツタ時間は
形成される膜厚が1μmになるようにした。 C 結果 得られた結果は第1表の通りである。そし
て、この結果のうち、バイアス電圧とC―
Peak及び△θ50の関係を第2図に示す。 なお、得られたCo―Cr合金膜のCr含有量は
17wt%であり、飽和磁化は565emu/c.c.であ
る。
The present invention relates to a method for producing a perpendicularly magnetized film made of at least cobalt (Co) and chromium (Cr) for use in perpendicular magnetic recording media, and particularly to a method for producing a perpendicularly magnetized film that can control crystallinity well even at high deposition rates. This is what we provide. In place of the conventional magnetic recording method using longitudinal (in-plane) magnetization, a magnetic recording method using perpendicular magnetization has recently been proposed as a method capable of high-density recording.
(“Nikkei Electronics” August 7, 1978 issue, No.
192) As the magnetic film for this perpendicular magnetization method, a Co--Cr alloy thin film with a thickness of 0.2 to 2.0μ with an hcp structure fabricated by sputtering and whose c-axis is oriented in the normal line of the surface is used. The content is 5-25% by weight.
It is known that Co--Cr alloy films are superior.
(IEICE Magnetic Recording Study Group Material MR78-4,
and the 1975 Tohoku Branch Union Conference of Electrical Associations Proceedings 1A6 and the 1980 Intermag.Conference.
Dlgest, Session 34-1) By the way, the RF sputtering method that has been proposed so far is an excellent method for producing Co-Cr alloy films with predetermined characteristics as a laboratory film fabrication method, but it is not suitable for industrial use. There are problems in the following points when applying it to large-scale mass production. That is, part 1 is
At a low deposition rate of about 100 Å/min, a film with the desired characteristics can be obtained, but at a high deposition rate of over 100 Å/min, it is difficult to obtain a film with the desired characteristics due to an increase in substrate temperature due to an increase in the input high-frequency sputtering power. The second point is that the properties of the membrane deteriorate and it cannot be put to practical use.The second reason is that 2×
Although it is necessary to achieve a vacuum level of approximately 10 -7 Torr, achieving this level of vacuum in large-scale production equipment is difficult from a technical and cost perspective. The present invention has been made to solve these problems, and provides a manufacturing method capable of manufacturing a magnetic film for perpendicular magnetic recording with predetermined characteristics at high speed by sputtering. That is, the present invention, when producing a perpendicularly magnetized film made of at least cobalt and chromium on a substrate by sputtering, traps plasma in the vicinity of the target using a magnetic field parallel to the target.
In addition to increasing the plasma density near the target,
This is a method for producing a perpendicularly magnetized film for perpendicular magnetic recording, characterized in that the production is performed while applying an electric field that induces and accelerates positively charged particles in the plasma toward the substrate. Incidentally, the sputtering method in the present invention refers to a sputtering method in which a magnetic field parallel to the target is formed in a space near the target, and the plasma density near the target is increased by the magnetic field, thereby increasing the film formation speed. There are various methods such as a sputter method, a DC magnetron sputter method, and a sputter method in which a magnetic field parallel to the target is formed in the space between the opposing target and the substrate. Of the above methods, the magnetron sputter method is used because when creating a magnetic film using a ferromagnetic material as a target, the magnetic flux is confined inside the target with normal magnetic field strength, making it impossible to create a film at high speed. The functionality of the magnetron sputter can be maintained by increasing the strength of the target, using a thin target, using a Co-Cr alloy target with low magnetic permeability, or using a composite target with a clever arrangement of Co and Cr relative to the magnetic poles. It is necessary to do so. Experimental examples that led to the present invention will be described below with reference to the drawings. FIG. 1 is a sectional side view of a main part of a known magnetron sputtering device used in carrying out the present invention. In the figure, reference numeral 1 indicates a target, and a Co--Cr alloy target or a composite target in which a small piece of Cr is placed on a 2 mm thick Co target is used. The magnetic field generating means 2 provided on the back side of the target 1 uses a permanent magnet made of samarium (Sm) and cobalt (Co) to strengthen the magnetic field strength so that the target 1 becomes the above-mentioned Co.
-It is also designed to act as a magnetron sputter in the case of a Cr alloy target. A yoke 13 is attached to the back of the magnet, and the magnet and yoke are housed in a water-cooled box. (Water cooling box not shown). Further, 12 is a shield plate attached so that plasma is generated only in front of the target. On the other hand, the substrate 3 is attached to a substrate holder 4 disposed opposite to the target 1 through a hook 5 at one end and a spring 7 having a hook 6 attached to the other end so as to be in close contact with the substrate holder 4 disposed opposite the target 1. Also, the board holder 4
The holder body 4a is made up of a holder body 4a and a semicylindrical copper block 4b with a built-in heater 8 attached to the holder body 4a, so that the temperature of the substrate 3 can be set arbitrarily. Note that 9 is a power source for the heater 8, and 10 is a temperature detection terminal for detecting the substrate temperature. Needless to say, the above configuration requires power supply 9.
The rest are provided in a vacuum container (not shown). Incidentally, reference numeral 11 denotes an anode attached in a ring shape along the outer periphery of the target 1 in front of the shield plate 12, and a sputter power source E1 is applied between this anode 11 and the target 1. On the other hand, E 2 is a bias power supply according to the present invention, which is used to generate an accelerating electric field that accelerates positively charged particles in the plasma captured by the magnetic field generating means 2 near the front surface of the target 1 toward the substrate 3, as shown in the figure. A voltage is applied between the anode 11 and the substrate holder main body 4a. With the structure described above, the plasma density near the front surface of the target 1 increases due to trapping by the magnetic field, increasing the film formation rate, and at the same time, the accelerating electric field from the bias power supply E 2 causes particles to be effectively transferred to the substrate. The ions are guided in three directions and appropriate ion bombardment is applied to the substrate 3 to form a film with good perpendicularity, thereby obtaining a magnetic film with excellent perpendicular characteristics suitable for perpendicular magnetic recording. Next, an example using the above device will be described. By the way, the obtained magnetic film was evaluated from both the evaluation of crystallinity and orientation by X-ray diffraction and the evaluation of magnetic properties by magnetic BH curve measurement.
The specific evaluation items are as follows. In other words, in X-ray diffraction, the specific intensity of the C-plane peak (hereinafter abbreviated as "C-Peak") and the half-width of the rocking curve (△θ50) are calculated to determine the crystallinity and the film surface normal of the axis of the HCP crystal. The orientation of the particles was evaluated. We also measured the B-H curves in the vertical direction (v) and horizontal direction (h) to the film surface, and determined the coercive force (Hc (v)) in each direction.
Hc(h)) and residual magnetization (Mr(v) and Mr(h)) are determined, and Hc(v), the ratio of Hc(v)/Hc(h), and
Perpendicular magnetization ease was evaluated based on the ratio of Mr(v)/Mr(h). Note that demagnetizing field correction for the BH curve was not performed. And as an evaluation standard, C-Peak
100, △θ508゜, Hc (v) 800 (Oersted),
Hc(v)/Hc(h)2.5 and Mr(v)/Mr
(h) It was decided that a product that satisfies the five conditions of 1.0 at the same time would be a passed product. Example 1 In order to confirm the effect of the accelerating electric field, film formation was carried out by changing the bias voltage as follows. A Equipment conditions a Sputtering method: DC magnetron method b Target material: Co-Cr alloy (Cr content: 17wt
%) c Target shape: circular 80 mmφ d Substrate: 75 μm thick polyimide film e Substrate-target distance: 85 mm B Operating procedure The film was formed using the following procedure. a After evacuating the vacuum chamber, maintain the substrate holder temperature at 260°C for 1.5 hours. b Set the substrate holder temperature to the specified temperature and evacuate the ultimate vacuum to 2×10 -6 Torr or less. c High-purity argon (Ar) gas was introduced to a predetermined pressure, and after press sputtering for 5 to 15 minutes, film formation was carried out under the intended sputtering conditions described below while changing the bias voltage from 0 to -200V. The sputtering conditions are such that the sputtering Ar pressure is 1.
×10 -2 Torr, the substrate holder temperature was 208°C, the film formation rate was 300 Å/min, and the sputtering time was such that the formed film thickness was 1 μm. C. Results The results obtained are shown in Table 1. Of these results, bias voltage and C-
The relationship between Peak and Δθ50 is shown in FIG. The Cr content of the obtained Co-Cr alloy film is
The content is 17wt%, and the saturation magnetization is 565emu/cc.

【表】 実施例 2 実施例1の条件のうち、バイアス電圧を−
100Vに固定し、他の条件は同条件とし、膜形成
速度を100Å/分〜500Å/分に変化させて膜形成
を行なつた。 得られた結果は次記の第2表の通りであり、そ
のうち、膜形成速度とC―Peak、△θ50及びHc
(v)との関係を第3図に示した。なお、得られ
た膜のCr含有量と飽和磁化は実施例1と同様で
ある。
[Table] Example 2 Among the conditions of Example 1, the bias voltage is -
Film formation was carried out by fixing the voltage to 100 V, keeping the other conditions the same, and changing the film formation rate from 100 Å/min to 500 Å/min. The obtained results are shown in Table 2 below, and among them, film formation rate, C-Peak, △θ50 and Hc
The relationship with (v) is shown in Figure 3. Note that the Cr content and saturation magnetization of the obtained film are the same as in Example 1.

【表】 以上の実施例1からバイアス電圧が形成される
膜の結晶性に大きな影響を与えることは明らかで
あり、従つて、バイアス電圧を適当な値にするこ
とにより、垂直磁気記録に要望される特性の膜を
形成することができる。その上、実施例2から明
らかのように、適当なバイアス電圧の印加により
従来の5倍の膜形成速度である500Å/分におい
ても垂直磁気記録に適合した特性の磁性膜が形成
できる。 ところで、実施例2では膜形成速度が小さい
100Å/分の場合、良好な特性の膜が得られず、
200Å/分以上の速い膜形成の場合に良好な特性
の膜が得られているが、これは真空槽内の不純ガ
スの影響が膜形成速度の小さい場合には大きく、
膜形成速度の大きい場合には小さいためと考えら
れる。してみると、膜形成速度の大きくできる本
発明方法では、真空槽内を前述の従来方式のよう
に高真空にする必要がなく、この点から本発明方
法は大量生産に適していると云えよう。 ところで、本発明方法は、前述の実施例1、2
に限定されるものでなく、前述した磁界によりタ
ーゲツト近傍のプラズマ密度を高くした各種のス
パツタ方式にも適用できるものである。その例と
して、RFマグネトロンスパツタ方式に適用した
例を次に示す。 実施例 3 通常のマグネトロンスパツタ装置を用い、バイ
アス電圧の効果確認のため下記の通り膜作成を行
なつた。 A 装置条件 a スパツタ方式:RFマグネトロンスパツタ
方式 b ターゲツト:2mm厚のCoターゲツト上に
Cr小片を置いた複合ターゲツトでCr含有量
が約17wt%になるようにしたもの c ターゲツト寸法:円形150mmφ d 基板:75μm厚のポリイミドフイルム e 基板ホルダー:第1図に代えて第4図の基
板ホルダー使用(図中の番号は第1図と同じ
ものを使用) この場合、銅ブロツクは使わず、基板はホ
ルダー4aよりの輻射熱により加熱される。 f 基板―ターゲツト間距離:80mm B 操作手順 実施例1と同じ。但しスパツタ条件は、スパ
ツタAr圧1×10-2Torr、膜形成速度200Å/
分、スパツタ時間50分、基板温度(温度検出端
10の温度)170℃とし、バイアス電圧E2を0〜
―300ボルトに変化させて膜形成を行なつた。 C 結果 得られた結果は次の第3表の通りであり、そ
のうちバイアス電圧とC―Peak及び△θ50との
関係を第5図に示す。
[Table] From Example 1 above, it is clear that the bias voltage has a great effect on the crystallinity of the film formed, and therefore, by setting the bias voltage to an appropriate value, it is possible to It is possible to form a film with certain characteristics. Furthermore, as is clear from Example 2, by applying an appropriate bias voltage, a magnetic film with characteristics suitable for perpendicular magnetic recording can be formed even at a film formation rate of 500 Å/min, which is five times the conventional film formation rate. By the way, in Example 2, the film formation rate was low.
At 100 Å/min, a film with good properties cannot be obtained;
Films with good properties have been obtained when the film formation rate is faster than 200 Å/min, but this is because the influence of impurity gas in the vacuum chamber is large when the film formation rate is low.
This is thought to be due to the fact that it is small when the film formation rate is high. As a result, the method of the present invention, which can increase the film formation rate, does not require high vacuum in the vacuum chamber as in the conventional method described above, and from this point of view it can be said that the method of the present invention is suitable for mass production. Good morning. By the way, the method of the present invention is similar to the above-mentioned Examples 1 and 2.
The present invention is not limited to this, but can also be applied to various sputtering methods in which the plasma density near the target is increased by the aforementioned magnetic field. As an example, the following is an example of application to the RF magnetron sputtering method. Example 3 Using an ordinary magnetron sputtering device, a film was formed as follows to confirm the effect of bias voltage. A Equipment conditions a Sputtering method: RF magnetron sputtering method b Target: On a 2 mm thick Co target
Composite target with small pieces of Cr placed so that the Cr content is approximately 17wt% c Target dimensions: circular 150mmφ d Substrate: 75 μm thick polyimide film e Substrate holder: Substrate shown in Figure 4 instead of Figure 1 Using a holder (the numbers in the figure are the same as in Figure 1) In this case, the copper block is not used and the substrate is heated by radiant heat from the holder 4a. f Substrate-target distance: 80mm B Operating procedure Same as Example 1. However, the sputtering conditions are: sputtering Ar pressure 1×10 -2 Torr, film formation rate 200Å/
minutes, sputtering time 50 minutes, substrate temperature (temperature detection end
10 temperature) 170℃, bias voltage E2 is 0~
- Film formation was performed by changing the voltage to 300 volts. C Results The results obtained are shown in Table 3 below, and the relationships between bias voltage, C-Peak and Δθ50 are shown in FIG.

【表】 以上の実施例3から、RFマグネトロンスパツ
タ方式においても、バイアス電圧の印加の効果は
明らかである。すなわち、バイアス電圧−150〜
−250ボルトにおいて膜形成速度200Å/分という
従来方式の2倍の形成速度が達成されている。 ところで、バイアス電圧による加速電界の作用
としては、前述の得られる膜の結晶性の制御の
他、基板のクリーニング、基板温度への影響、等
考えられる。そして、バイアス電圧があまり低い
とその印加効果はなく、逆にバイアス電圧が高過
ぎると、粒子の運動エネルギーが過大となり基板
温度上昇等の悪影響がでる。本発明者等の実験の
範囲では、このバイアス電圧はプラズマの電位、
実施例では陽極11の電位を基準に基板の電位が
−50〜−250ボルトになる電圧でおおむね良好な
結果が得られた。 以上のように、本発明では、磁界によりターゲ
ツト近傍のプラズマ密度を高めて、高速の膜形成
を可能とすると共に、前記プラズマ中の正電荷粒
子を基板方向へ誘導加速する電界を印加して、基
板上に形成される膜の結晶性を垂直磁気記録に適
したものにするようにしたので、従来方式に比べ
非常に高速で垂直磁気記録用磁性膜の形成が可能
となつた。その上、本発明によれば、必要な真空
度も低くて良く、装置構成上非常に有利である。 このように本発明は、垂直磁気記録用磁性膜の
工業的生産に適した製造方法を提供するもので、
産業上極めて有用なものである。
[Table] From the above Example 3, the effect of applying a bias voltage is clear even in the RF magnetron sputtering method. That is, bias voltage −150~
At -250 volts, a film formation rate of 200 Å/min, which is twice that of the conventional method, has been achieved. By the way, the effects of the accelerating electric field caused by the bias voltage include, in addition to the above-mentioned control of the crystallinity of the obtained film, cleaning of the substrate and influence on the substrate temperature. If the bias voltage is too low, there will be no effect, and if the bias voltage is too high, the kinetic energy of the particles will be excessive, resulting in adverse effects such as an increase in substrate temperature. In the scope of experiments conducted by the inventors, this bias voltage is the plasma potential,
In the examples, generally good results were obtained at a voltage where the potential of the substrate was -50 to -250 volts based on the potential of the anode 11. As described above, in the present invention, the plasma density near the target is increased by a magnetic field to enable high-speed film formation, and an electric field is applied to induce and accelerate positively charged particles in the plasma toward the substrate. Since the crystallinity of the film formed on the substrate is made suitable for perpendicular magnetic recording, it has become possible to form a magnetic film for perpendicular magnetic recording much faster than in conventional methods. Moreover, according to the present invention, only a low degree of vacuum is required, which is very advantageous in terms of device configuration. As described above, the present invention provides a manufacturing method suitable for industrial production of magnetic films for perpendicular magnetic recording.
It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に係わる装置の要部説明図、第
2図は実施例1の結果を示すグラフ、第3図は実
施例2の結果を示すグラフ、第4図は実施例3の
基板ホルダーの側断面図、第5図は実施例3の結
果を示すグラフである。 1はターゲツト、2は磁界発生手段、3は基
板、4は基板ホルダー、E1はスパツタ電源、E2
はバイアス電源。
Fig. 1 is an explanatory diagram of the main parts of the device related to the example, Fig. 2 is a graph showing the results of Example 1, Fig. 3 is a graph showing the results of Example 2, and Fig. 4 is the substrate of Example 3. FIG. 5, a side sectional view of the holder, is a graph showing the results of Example 3. 1 is a target, 2 is a magnetic field generating means, 3 is a substrate, 4 is a substrate holder, E 1 is a sputter power source, E 2
is the bias power supply.

Claims (1)

【特許請求の範囲】 1 基板上に少なくともコバルトとクロムとから
なる垂直磁化膜をスパツタリングにより作製する
に際し、ターゲツトに平行な磁界によりターゲツ
ト近傍にプラズマを捕捉し、ターゲツト近傍のプ
ラズマ密度を高めると共に、該プラズマ中の正電
荷粒子を前記基板の方へ誘導加速する電界を印加
しながら作製することを特徴とする垂直磁気記録
用の垂直磁化膜の製造方法。 2 前記電界を前記の基板のホルダー若しくはそ
の近傍に設けた電極にバイアス電圧を印加して発
生せしめる特許請求の範囲第1項記載の垂直磁化
膜の製造方法。 3 前記バイアス電圧を前記プラズマの電位に対
し−50〜−250Vとした特許請求の範囲第2項記
載の垂直磁化膜の製造方法。
[Claims] 1. When producing a perpendicularly magnetized film made of at least cobalt and chromium on a substrate by sputtering, plasma is captured near the target by a magnetic field parallel to the target, and the plasma density near the target is increased. A method for producing a perpendicularly magnetized film for perpendicular magnetic recording, the method comprising producing the perpendicularly magnetized film while applying an electric field that induces and accelerates positively charged particles in the plasma toward the substrate. 2. The method of manufacturing a perpendicularly magnetized film according to claim 1, wherein the electric field is generated by applying a bias voltage to an electrode provided on or near the holder of the substrate. 3. The method of manufacturing a perpendicularly magnetized film according to claim 2, wherein the bias voltage is -50 to -250V with respect to the potential of the plasma.
JP10819580A 1980-08-08 1980-08-08 Manufacture of vertically magnetized film Granted JPS5734324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10819580A JPS5734324A (en) 1980-08-08 1980-08-08 Manufacture of vertically magnetized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10819580A JPS5734324A (en) 1980-08-08 1980-08-08 Manufacture of vertically magnetized film

Publications (2)

Publication Number Publication Date
JPS5734324A JPS5734324A (en) 1982-02-24
JPS6367328B2 true JPS6367328B2 (en) 1988-12-26

Family

ID=14478413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10819580A Granted JPS5734324A (en) 1980-08-08 1980-08-08 Manufacture of vertically magnetized film

Country Status (1)

Country Link
JP (1) JPS5734324A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968825A (en) * 1982-10-14 1984-04-18 Teijin Ltd Manufacture of magnetic recording medium
JPS62266731A (en) * 1986-05-15 1987-11-19 Tohoku Metal Ind Ltd Manufacturing device for perpendicular magnetic recording medium
JPS6326827A (en) * 1986-07-21 1988-02-04 Hitachi Ltd Production of magnetic recording medium
JPH02289923A (en) * 1990-04-20 1990-11-29 Seiko Epson Corp Production of magnetic recording medium
JPH05274644A (en) * 1992-01-29 1993-10-22 Mitsubishi Kasei Corp Magnetic recording medium and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451804A (en) * 1977-09-30 1979-04-24 Shiyunichi Iwasaki Magnetic recording medium
JPS5512732A (en) * 1978-07-14 1980-01-29 Anelva Corp Sputtering apparatus for making thin magnetic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451804A (en) * 1977-09-30 1979-04-24 Shiyunichi Iwasaki Magnetic recording medium
JPS5512732A (en) * 1978-07-14 1980-01-29 Anelva Corp Sputtering apparatus for making thin magnetic film

Also Published As

Publication number Publication date
JPS5734324A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
Naoe et al. Facing targets type of sputtering method for deposition of magnetic metal films at low temperature and high rate
US3898952A (en) Apparatus for production of magnetic recording medium
JPS6256575B2 (en)
JPH0411625B2 (en)
US5403457A (en) Method for making soft magnetic film
JPS6274073A (en) Sputtering device
KR910007776B1 (en) Magnetic media producing method
US4399013A (en) Method of producing a magnetic recording medium
JPS6367328B2 (en)
JPS5812728B2 (en) Jikikirokubaitaino Seihou
JPH031810B2 (en)
JPS60106966A (en) Confronting target type sputtering apparatus
FUJIMORI et al. Magnetic Properties and Preparation of Bulk Amorphous Alloys by High Rate Sputter Deposition
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JPS6363969B2 (en)
JPS5813622B2 (en) Magnetron type sputtering equipment
Takahashi et al. Improvement of toroidal plasma (TP) type sputtering for depositing Co-Cr films on plasma-free substrates
Takahashi et al. Preparation and magnetic properties of Co-Cr films by toroidal plasma (TP) type sputtering
CA1184881A (en) Perpendicular magnetic recording medium, method for producing the same, and sputtering device
JPS62285253A (en) Manufacture of photomagnetic recording medium
JPS61270369A (en) Tripolar sputtering source
JPS6151814A (en) Permalloy thin film and vertical magnetic recording medium
JPS60125933A (en) Production of magnetic medium
JPS59193528A (en) Magnetic recording medium and its production
JPH07111791B2 (en) Method for manufacturing magneto-optical recording medium