JPS6365807B2 - - Google Patents

Info

Publication number
JPS6365807B2
JPS6365807B2 JP24928783A JP24928783A JPS6365807B2 JP S6365807 B2 JPS6365807 B2 JP S6365807B2 JP 24928783 A JP24928783 A JP 24928783A JP 24928783 A JP24928783 A JP 24928783A JP S6365807 B2 JPS6365807 B2 JP S6365807B2
Authority
JP
Japan
Prior art keywords
pressure
steam
waste heat
low
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24928783A
Other languages
Japanese (ja)
Other versions
JPS60138213A (en
Inventor
Takeshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP24928783A priority Critical patent/JPS60138213A/en
Publication of JPS60138213A publication Critical patent/JPS60138213A/en
Publication of JPS6365807B2 publication Critical patent/JPS6365807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/185Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using waste heat from outside the plant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は複合サイクル廃熱回収方式の発電プラ
ントに係り、特にクリーンな排ガスを排出するガ
スタービンの廃熱を回収して発電を行う発電プラ
ントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a combined cycle waste heat recovery type power plant, and more particularly to a power plant that generates electricity by recovering waste heat from a gas turbine that discharges clean exhaust gas.

〔発明の背景〕[Background of the invention]

第1図に廃熱回収方式のガスタービン複合サイ
クル発電プラントの一般的な例を示す。第1図に
おいて、燃焼用空気1がコンプレツサ2に与えら
れ、圧縮された空気は燃焼器3に供給され、燃料
4の燃焼に供される。次いで、燃焼ガスはガスタ
ービン5に与えられて仕事をし、排ガス6として
廃熱回収ボイラ7を介して煙突(図示せず)から
排出される。29は発電機を示している。
Figure 1 shows a typical example of a gas turbine combined cycle power plant using the waste heat recovery method. In FIG. 1, combustion air 1 is supplied to a compressor 2, and the compressed air is supplied to a combustor 3, where it is used to burn fuel 4. Next, the combustion gas is given to a gas turbine 5 to do work, and is discharged as exhaust gas 6 from a chimney (not shown) via a waste heat recovery boiler 7. 29 indicates a generator.

廃熱回収ボイラ7にはガスタービン5からの排
ガス6の保有する廃熱を利用する発電システムが
設けられている。この廃熱回収方式として良く知
られているものに多段圧力式ランキンサイクルが
ある。これは廃熱回収ボイラ7において入口側か
ら出口側に向かつて排ガス温度が徐々に降下する
に応じた圧力で蒸気を発生させ、その発生蒸気を
その圧力に応じたタービンの段階に投入してター
ビンを効率よく駆動させるものである。一般にガ
スタービンの場合には高低の2段圧力式が経済的
にも限度とされている。第1図に示す例において
も高圧側と低圧側の2段で設けられている。
The waste heat recovery boiler 7 is provided with a power generation system that utilizes waste heat contained in the exhaust gas 6 from the gas turbine 5. A well-known waste heat recovery system is the multi-stage pressure Rankine cycle. This is done by generating steam at a pressure corresponding to the temperature of the exhaust gas gradually decreasing from the inlet side to the outlet side in the waste heat recovery boiler 7, and injecting the generated steam into a turbine stage corresponding to the pressure. This is to drive the motor efficiently. In general, in the case of gas turbines, a two-stage high and low pressure type is considered to be the economical limit. In the example shown in FIG. 1, there are also two stages, one on the high pressure side and one on the low pressure side.

すなわち、システムとしては廃熱回収ボイラ7
内の高温度域の廃熱を利用する発電システム(以
下、高温側システム)8と、低温度域の廃熱を利
用する発電システム(以下、低温側システム)9
とより構成されている。つまり、高温度域ではエ
クセルギー(機械的有効仕事と定義される。)が
高く、低温度域のエクセルギーが低いのでそれぞ
れに応じて有効なエネルギーに変換するようにな
つている。
In other words, as a system, the waste heat recovery boiler 7
A power generation system that uses waste heat in the high temperature range (hereinafter referred to as the high temperature side system) 8 and a power generation system that uses waste heat in the low temperature range (hereinafter referred to as the low temperature side system) 9
It is composed of. In other words, the exergy (defined as mechanical effective work) is high in the high temperature range, and the exergy is low in the low temperature range, so they are converted into useful energy accordingly.

廃熱回収ボイラ7内には入口側から出口側に向
かつて(排ガス6の高温度域から低温度域に向か
つて)高圧蒸気加熱管10、高圧ボイラ水加熱管
11、高圧給水予熱管12、低圧蒸気加熱管1
3、低圧ボイラ水加熱管14、低圧給水予熱管1
5が順次配列されている。なお、低圧給水予熱管
15は後述する低圧給水加熱器16と同等の役目
を果たすもので、低圧給水加熱器16を使用する
場合には不要であり、その場合には低圧給水加熱
器16の出口を低圧蒸気タービン17に配管すれ
ばよい。
Inside the waste heat recovery boiler 7, from the inlet side to the outlet side (from the high temperature range to the low temperature range of the exhaust gas 6), there are a high pressure steam heating pipe 10, a high pressure boiler water heating pipe 11, a high pressure feed water preheating pipe 12, Low pressure steam heating tube 1
3. Low pressure boiler water heating pipe 14, low pressure water supply preheating pipe 1
5 are arranged in sequence. Note that the low-pressure feedwater preheating pipe 15 plays the same role as the low-pressure feedwater heater 16 described later, and is not necessary when the low-pressure feedwater heater 16 is used. In that case, the outlet of the low-pressure feedwater heater 16 may be piped to the low pressure steam turbine 17.

さて、蒸気タービン18から排出された排気は
復水器19により復水され、復水ポンプ20を介
して脱気器21に送られる。脱気器21において
蒸気タービン18の中段からの抽気により加熱さ
れて脱気された復水は、低圧給水ポンプ22を介
して低圧給水加熱器16に送られる。ここで、上
述の通り低圧給水加熱器16により予熱される
か、あるいは低圧給水予熱管15により予熱され
たのち低圧蒸気ドラム17に給水される。低圧蒸
気ドラム17内のボイラ水は缶水循環ポンプ23
を介して低圧ボイラ水加熱管14により強制循環
加熱される。
Now, the exhaust gas discharged from the steam turbine 18 is condensed by a condenser 19 and sent to a deaerator 21 via a condensate pump 20. Condensate heated and degassed in the deaerator 21 by air extracted from the middle stage of the steam turbine 18 is sent to the low pressure feed water heater 16 via the low pressure feed water pump 22 . Here, water is supplied to the low pressure steam drum 17 after being preheated by the low pressure feed water heater 16 or by the low pressure feed water preheating pipe 15 as described above. The boiler water in the low pressure steam drum 17 is fed to the can water circulation pump 23.
The water is forcedly circulated and heated by the low-pressure boiler water heating pipe 14 through the water.

低圧蒸気ドラム17で発生された低圧発生蒸気
は、低圧蒸気加熱管13により加熱されたのち配
管24を通じて蒸気タービン18の中段に投入さ
れる。一方、低圧蒸気ドラム17のボイラ水は高
圧給水ポンプ25を介して高圧給水予熱管12に
送られて加熱され、高圧蒸気ドラム26に給水さ
れる。高圧蒸気ドラム26のボイラ水は缶水循環
ポンプ27により、高圧ボイラ水加熱管11に送
られて強制循環加熱される。
The low-pressure steam generated in the low-pressure steam drum 17 is heated by the low-pressure steam heating pipe 13 and then introduced into the middle stage of the steam turbine 18 through the pipe 24. On the other hand, the boiler water in the low-pressure steam drum 17 is sent to the high-pressure water preheating pipe 12 via the high-pressure water pump 25, heated, and then supplied to the high-pressure steam drum 26. Boiler water in the high-pressure steam drum 26 is sent to the high-pressure boiler water heating pipe 11 by a canned water circulation pump 27 and is forcedly circulated and heated.

高圧蒸気ドラム26で発生した高圧蒸気は高圧
蒸気加熱管10により加熱されたのち蒸気タービ
ン18の高圧段に投入され、所定の仕事をする。
その仕事が発電機28により電力に変換されて出
力されることとなる。
The high-pressure steam generated in the high-pressure steam drum 26 is heated by the high-pressure steam heating pipe 10 and then introduced into the high-pressure stage of the steam turbine 18 to perform predetermined work.
The work is converted into electric power by the generator 28 and output.

以上のようなガスタービンの廃熱回収方式の発
電プラントにおいて、クリーンガス(天然ガス
等)な排ガスの顕熱回収の際、ダーテイガス(重
油等)に比べ廃熱回収ボイラ7内のガス出口温度
の制限がない。このことは廃熱回収の点では有利
であるものの、上記従来のように低圧給水加熱器
16あるいは低圧給水予熱管15を設けてボイラ
給水温度を上げても回収熱量は増大せず、また設
けなければサイクル効率は上らない。このような
ことから、クリーンガスであつても必ずしも回収
熱量を増大(すなわち、廃熱回収ボイラ7の出口
ガス温度を下げる)しても発電出力の増大に結び
つかないことがあつた。
In a power generation plant using the gas turbine waste heat recovery method as described above, when recovering sensible heat from clean exhaust gas (natural gas, etc.), the gas outlet temperature in the waste heat recovery boiler 7 is lower than that of dirty gas (heavy oil, etc.). There are no restrictions. Although this is advantageous in terms of waste heat recovery, even if the boiler feed water temperature is increased by installing the low pressure feed water heater 16 or the low pressure feed water preheating pipe 15 as in the conventional method, the amount of recovered heat does not increase, and it is necessary to install the low pressure feed water heater 16 or the low pressure feed water preheating pipe 15. Otherwise, cycle efficiency will not increase. For this reason, even if the gas is clean, increasing the amount of recovered heat (that is, lowering the outlet gas temperature of the waste heat recovery boiler 7) does not necessarily lead to an increase in the power generation output.

〔発明の目的〕[Purpose of the invention]

そこで、本発明はクリーンガスを使用するガス
タービンの排ガスからの廃熱回収量を増大して発
電出力を増大しうる発電プラントを提供すること
を目的とする。
Therefore, an object of the present invention is to provide a power generation plant that can increase the amount of waste heat recovered from the exhaust gas of a gas turbine using clean gas and increase the power generation output.

〔発明の概要〕[Summary of the invention]

廃熱回収発電プラントは、火力発電等のように
燃料を燃やして蒸気を得るボイラとは違い、所定
の顕熱を有したガスタービンからの排ガスを熱源
として廃熱回収ボイラに導き、その排ガスを流路
に沿つた温度降下に応じたサイクルで構成され
る。そのために、廃熱の保有する熱エネルギーを
機械的仕事に変換する場合のエクセルギー(機械
的有効仕事)の考え方を導入し、温度が高い所は
低い所に比べてエクセルギーが高い点に着目して
高、低の2段階のランキンサイクルで構成される
廃熱回収発電プラントの高温(高圧)側のシステ
ムでの発生蒸気量を増大させればよいことがわか
る。
Unlike a boiler that burns fuel to produce steam, such as in thermal power generation, a waste heat recovery power generation plant uses exhaust gas from a gas turbine with a predetermined sensible heat as a heat source and guides it to a waste heat recovery boiler. It consists of cycles depending on the temperature drop along the flow path. To this end, we introduced the concept of exergy (mechanical effective work) when converting thermal energy possessed by waste heat into mechanical work, and focused on the fact that exergy is higher in areas with higher temperatures than in areas with lower temperatures. It can be seen that the amount of steam generated in the system on the high temperature (high pressure) side of the waste heat recovery power generation plant, which is configured with a two-stage Rankine cycle of high and low levels, can be increased.

そこで、本発明は蒸気タービンの高圧段におけ
る所定の抽気点から高温高圧蒸気を抽気し、この
タービン抽気を加熱源とする高圧給水加熱器によ
り低圧蒸気ドラムから高圧蒸気ドラムへの給水を
加熱するように成し、前記高圧給水加熱器内に生
じたドレンを廃熱回収ボイラ内の所定温度域に設
けられた加熱管に送つて気化させ、その過熱蒸気
を前記抽気点よりも高圧のタービンの段落に投入
するように配管した点に特徴を有する。
Therefore, the present invention extracts high-temperature, high-pressure steam from a predetermined extraction point in the high-pressure stage of a steam turbine, and heats the feed water from the low-pressure steam drum to the high-pressure steam drum using a high-pressure feed water heater that uses this turbine extracted air as a heat source. The condensate generated in the high-pressure feed water heater is sent to a heating pipe installed in a predetermined temperature range in the waste heat recovery boiler to vaporize it, and the superheated steam is transferred to the turbine stage at a higher pressure than the extraction point. It is distinctive in that it is piped so that it can be fed into the system.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による発電プラントの実施例につ
いて図面に基づき説明する。
Embodiments of the power plant according to the present invention will be described below with reference to the drawings.

第2図に本発明による実施例を示す。第2図に
おいて第1図と重複する部分には同一の符号を附
し説明を省略する。第2図において、高圧給水ポ
ンプ25から高圧蒸気ドラム26への配管100
の途中には高圧給水加熱器101が設けられてい
る。この高圧給水加熱器101は蒸気タービン1
8の高圧段における所定の抽気点Aから抽気した
タービン蒸気の保有する熱を熱源として高圧蒸気
ドラム26への給水を加熱するものである。高圧
給水加熱器101内に生じたドレン102はドレ
ン移送ポンプ103を介して加熱器104に送ら
れて気化され、気液分離器105に送られる。こ
こに気液分離器105を設けたのは蒸気タービン
18内に水分を含んだ蒸気が混入するのを防止す
るためである。気液分離器105を出た蒸気は先
の抽気点Aよりも高圧側の抽気点Bに配管108
を通じて投入される。一方、気液分離器105に
生じたドレン106は配管107を通じて高圧給
水加熱器101からのドレン102と合流され、
ドレン移送ポンプ103により循環される。
FIG. 2 shows an embodiment according to the present invention. In FIG. 2, parts that overlap with those in FIG. 1 are designated by the same reference numerals, and explanations thereof will be omitted. In FIG. 2, a pipe 100 from the high pressure water supply pump 25 to the high pressure steam drum 26 is shown.
A high-pressure feed water heater 101 is provided in the middle. This high pressure feed water heater 101 is connected to the steam turbine 1
The water supplied to the high-pressure steam drum 26 is heated using the heat possessed by the turbine steam extracted from a predetermined extraction point A in the high-pressure stage No. 8 as a heat source. Drain 102 generated in the high-pressure feed water heater 101 is sent to a heater 104 via a drain transfer pump 103, vaporized, and sent to a gas-liquid separator 105. The reason why the gas-liquid separator 105 is provided here is to prevent moisture-containing steam from entering the steam turbine 18. The steam exiting the gas-liquid separator 105 is transferred to a pipe 108 to a bleed point B, which is on the higher pressure side than the bleed point A.
It is invested through. On the other hand, the drain 106 generated in the gas-liquid separator 105 is merged with the drain 102 from the high-pressure feed water heater 101 through a pipe 107.
It is circulated by the drain transfer pump 103.

このように、高圧蒸気ドラム26への給水を高
圧給水加熱器101においてタービン抽気の保有
熱により加熱する。一方では、高圧給水加熱器1
01のドレン102を廃熱回収ボイラ7内の加熱
管104により気化して高温高圧蒸気を作り、気
液分離したのち(通常は過熱蒸気が通過する)高
圧段の抽気点Bに投入することにより、高圧側シ
ステム9での蒸気発生量を増大することができ、
したがつて廃熱回収ボイラ7内の高温度域のエネ
ルギーを有効に機械的エネルギーに変換すること
が可能となる。
In this way, the water supplied to the high-pressure steam drum 26 is heated in the high-pressure feed water heater 101 using the heat retained in the turbine bleed air. On the one hand, high pressure feed water heater 1
By vaporizing the drain 102 of 01 with the heating pipe 104 in the waste heat recovery boiler 7 to create high-temperature, high-pressure steam, and after separating the gas and liquid (usually through which superheated steam passes), the drain 102 is introduced into the extraction point B of the high-pressure stage. , the amount of steam generated in the high pressure side system 9 can be increased,
Therefore, it becomes possible to effectively convert the energy in the high temperature range within the waste heat recovery boiler 7 into mechanical energy.

第3図に従来の場合X(破線)と本発明Y(実
線)の廃熱回収ボイラ内の熱流線図を示す。ここ
に、Tiは廃熱回収ボイラの入口排ガス温度、To
は従来の場合の出口排ガス温度、To′は本発明の
場合の出口排ガス温度、Tnは高圧蒸気ドラムの
入口蒸気温度、TLは低圧蒸気ドラムの出口蒸気
温度、Trは加熱管104による再熱蒸気温度を
それぞれ示している。この第3図からわかるよう
に、本発明の場合の温度降下線Xの勾配が急であ
り、したがつて出口温度To′とToの相対比較で
も本発明の方が廃熱回収率がよい。また、直線
X,Yは加熱側としての廃熱回収ボイラの温度降
下を示すものであるのに対し、直線Zは被加熱側
としての蒸気ドラム等の温度降下線を示すもので
ある。この直線Z中のZ1の部分は従来の場合(破
線)が急勾配で低下するのに対し、本発明によれ
ば(実線)低下しないことを示しており、したが
つて回収エクセルギー量が多いことを示してい
る。
FIG. 3 shows heat flow diagrams in the waste heat recovery boiler of the conventional case X (broken line) and the present invention Y (solid line). Here, Ti is the exhaust gas temperature at the inlet of the waste heat recovery boiler, To
is the outlet exhaust gas temperature in the conventional case, To' is the outlet exhaust gas temperature in the present invention, Tn is the inlet steam temperature of the high-pressure steam drum, T L is the outlet steam temperature of the low-pressure steam drum, and Tr is the reheat by the heating pipe 104. The steam temperature is shown respectively. As can be seen from FIG. 3, the slope of the temperature drop line X in the case of the present invention is steep, and therefore, even in the relative comparison of the outlet temperatures To' and To, the waste heat recovery rate of the present invention is better. Furthermore, straight lines X and Y indicate the temperature drop of the waste heat recovery boiler as the heating side, whereas straight line Z indicates the temperature drop line of the steam drum or the like as the heated side. The part Z1 in this straight line Z decreases at a steep slope in the conventional case (dashed line), but according to the present invention (solid line) it does not decrease, so the amount of recovered exergy is It shows that there are many.

以上の実施例ではガスタービンの排ガスの廃熱
回収発電プラントの場合について説明したが、一
般の火力発電プラント等における再生再熱サイク
ル等に適用することが可能であることはいうまで
もない。
In the above embodiments, the case of a power generation plant that recovers waste heat from gas turbine exhaust gas has been described, but it goes without saying that it is also possible to apply the present invention to a regeneration reheat cycle in a general thermal power plant or the like.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、蒸気タービンの
高圧段における所定の抽気点から高温高圧蒸気を
抽気し、このタービン抽気を加熱源として高圧給
水加熱器により低圧蒸気ドラムから高圧蒸気ドラ
ムへの給水を加熱し、一方では、高圧給水加熱器
内に生じたドレンを廃熱回収ボイラ内に設けられ
た加熱器により気化して過熱高圧蒸気を作り前記
抽気点よりも高圧のタービンの段落に投入するよ
うにしたことにより、高温側の発電システムの発
生蒸気量を増すことができ、それによつて発電出
力の増大を図ることができる。
As described above, according to the present invention, high-temperature and high-pressure steam is extracted from a predetermined extraction point in the high-pressure stage of a steam turbine, and the high-pressure feed water heater uses this turbine extracted air as a heating source to supply water from the low-pressure steam drum to the high-pressure steam drum. On the other hand, condensate generated in the high-pressure feedwater heater is vaporized by a heater installed in the waste heat recovery boiler to produce superheated high-pressure steam and injected into the turbine stage whose pressure is higher than the extraction point. By doing so, it is possible to increase the amount of steam generated in the power generation system on the high temperature side, thereby increasing the power generation output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガスタービン複合サイクル廃熱
回収プラントの系統図、第2図は本発明による発
電プラントの実施例を示す系統図、第3図は本発
明と従来の場合の廃熱回収状態を示す熱流線図で
ある。 1……燃焼用空気、2……コンプレツサ、3…
…燃焼器、4……燃料、5……ガスタービン、6
……排ガス、7……廃熱回収ボイラ、8……高温
側システム、9……低温側システム、10……高
圧蒸気加熱管、17……低圧蒸気ドラム、18…
…蒸気タービン、19……復水器、25……高圧
給水ポンプ、26……高圧蒸気ドラム、28……
発電機、101……高圧給水加熱器、102……
ドレン、104……加熱管、108……配管、A
……抽気点、B……高圧側抽気点、To……廃熱
回収ボイラの出口排ガス温度(従来)、To′……
廃熱回収ボイラの出口排ガス温度(本発明)。
Fig. 1 is a system diagram of a conventional gas turbine combined cycle waste heat recovery plant, Fig. 2 is a system diagram showing an embodiment of a power generation plant according to the present invention, and Fig. 3 is a state of waste heat recovery in the case of the present invention and the conventional case. FIG. 1... Combustion air, 2... Compressor, 3...
...Combustor, 4...Fuel, 5...Gas turbine, 6
...Exhaust gas, 7...Waste heat recovery boiler, 8...High temperature side system, 9...Low temperature side system, 10...High pressure steam heating pipe, 17...Low pressure steam drum, 18...
...Steam turbine, 19...Condenser, 25...High pressure water pump, 26...High pressure steam drum, 28...
Generator, 101... High pressure feed water heater, 102...
Drain, 104...Heating pipe, 108...Piping, A
...Bleed point, B...High pressure side bleed point, To...Temperature of exhaust gas at outlet of waste heat recovery boiler (conventional), To'...
Exhaust gas temperature at the outlet of the waste heat recovery boiler (invention).

Claims (1)

【特許請求の範囲】 1 高圧蒸気ドラムからの高圧発生蒸気を廃熱回
収ボイラ内の高温域を経由して加熱した後蒸気タ
ービンの高圧段に供給するようにした高温側廃熱
回収発電システムと、 前記蒸気タービンの排気を復水し、その復水か
ら前記高圧発生蒸気より相対的に低圧の発生蒸気
を低圧蒸気ドラムから発生させ、その低圧発生蒸
気を前記廃熱回収ボイラ内の低温域を経由して加
熱した後蒸気タービンの低圧段に供給するととも
に、低圧蒸気ドラム内のボイラ水を前記高圧蒸気
ドラムに供給するようにした低温側廃熱回収発電
システムと、を備えた複合サイクル廃熱回収発電
プラントにおいて、 前記蒸気タービンの高圧段における所定の抽気
点から抽気した高圧蒸気を加熱源として前記低圧
蒸気ドラムから高圧蒸気ドラムへの給水を加熱す
る高圧給水加熱器と、前記高圧給水加熱器内に生
じたドレンを加熱して気化するために前記廃熱回
収ボイラ内の所定温度域に設けられた加熱管と、
前記気化蒸気を前記蒸気タービンの抽気点よりも
高圧の段落に供給する配管系と、を備えたことを
特徴とする複合サイクル廃熱回収発電プラント。
[Claims] 1. A high-temperature side waste heat recovery power generation system in which high-pressure generated steam from a high-pressure steam drum is heated through a high-temperature region in a waste heat recovery boiler and then supplied to a high-pressure stage of a steam turbine. , condensing the exhaust gas of the steam turbine, generating generated steam from the condensed water at a relatively lower pressure than the high-pressure generated steam from a low-pressure steam drum, and passing the low-pressure generated steam through the low-temperature region in the waste heat recovery boiler. a low-temperature-side waste heat recovery power generation system that supplies boiler water in the low-pressure steam drum to the high-pressure steam drum after being heated through the low-pressure steam drum. In the recovery power generation plant, a high-pressure feedwater heater that heats feedwater from the low-pressure steam drum to the high-pressure steam drum using high-pressure steam extracted from a predetermined bleed point in the high-pressure stage of the steam turbine as a heat source; and the high-pressure feedwater heater. a heating pipe installed in a predetermined temperature range within the waste heat recovery boiler to heat and vaporize condensate generated within the waste heat recovery boiler;
A combined cycle waste heat recovery power generation plant comprising: a piping system that supplies the vaporized steam to a stage at a higher pressure than the extraction point of the steam turbine.
JP24928783A 1983-12-26 1983-12-26 Composite cycle waste heat recovery power generating plant Granted JPS60138213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24928783A JPS60138213A (en) 1983-12-26 1983-12-26 Composite cycle waste heat recovery power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24928783A JPS60138213A (en) 1983-12-26 1983-12-26 Composite cycle waste heat recovery power generating plant

Publications (2)

Publication Number Publication Date
JPS60138213A JPS60138213A (en) 1985-07-22
JPS6365807B2 true JPS6365807B2 (en) 1988-12-16

Family

ID=17190720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24928783A Granted JPS60138213A (en) 1983-12-26 1983-12-26 Composite cycle waste heat recovery power generating plant

Country Status (1)

Country Link
JP (1) JPS60138213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262730A1 (en) * 2019-06-26 2020-12-30 주식회사 포스코 Plated steel wire and manufacturing method for the same
KR20210127991A (en) * 2019-04-19 2021-10-25 닛폰세이테츠 가부시키가이샤 plated steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604867A (en) * 1985-02-26 1986-08-12 Kalina Alexander Ifaevich Method and apparatus for implementing a thermodynamic cycle with intercooling
ES2298807T3 (en) * 2004-01-20 2008-05-16 Siemens Aktiengesellschaft PROCEDURE AND DEVICE FOR THE TREATMENT OF IMPURIFIED WATER.
CN106050337A (en) * 2016-07-29 2016-10-26 南京电力设备质量性能检验中心 Method and device for increasing water feed temperature at medium loads and low loads of steam turbine set
CN106642053B (en) * 2016-11-29 2020-02-14 中冶南方都市环保工程技术股份有限公司 System for generating electricity by adopting low-calorific-value gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210127991A (en) * 2019-04-19 2021-10-25 닛폰세이테츠 가부시키가이샤 plated steel
WO2020262730A1 (en) * 2019-06-26 2020-12-30 주식회사 포스코 Plated steel wire and manufacturing method for the same

Also Published As

Publication number Publication date
JPS60138213A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
US6216436B1 (en) Integrated gasification combined cycle power plant with kalina bottoming cycle
KR101317222B1 (en) High efficiency feedwater heater
KR101422430B1 (en) Hybrid biomass process with reheat cycle
US20060174622A1 (en) Electrical generating system using solar energy and gas turbine
US6244033B1 (en) Process for generating electric power
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
CN1112985A (en) Cooling of hot unit of gas turbine
KR20130025907A (en) Energy recovery and steam supply for power augmentation in a combined cycle power generation system
CN108953083A (en) One kind being based on groove type solar gas Combined loop distribution formula electricity generation system and method
JP3925985B2 (en) Combined cycle power plant
CN110397481A (en) Promote the waste incineration and generating electricity device of main steam condition
CN114183742A (en) Reheating steam extraction and heat storage combined denitration load reduction system
RU2524588C2 (en) Power plant running on organic fuel with carbon dioxide separator and method of its operation
JPH11173111A (en) Thermal power plant
JP3905967B2 (en) Power generation / hot water system
US11313252B2 (en) Enhanced HRSG for repowering a coal-fired electrical generating plant
JPS6365807B2 (en)
JPH11173110A (en) Generating plant
KR20170084997A (en) Method for operating a steam power plant and steam power plant for conducting said method
US20180171827A1 (en) Method to integrate regenerative rankine cycle into combined cycle applications using an integrated heat recovery steam generator
JPH06212909A (en) Compound electric power plant
JP4509453B2 (en) Integrated gasification combined cycle power plant with carina bottoming cycle
JPH0440524B2 (en)
KR100567914B1 (en) Heat Recovery Steam Generator for Turbine Application