JPH06212909A - Compound electric power plant - Google Patents

Compound electric power plant

Info

Publication number
JPH06212909A
JPH06212909A JP5026127A JP2612793A JPH06212909A JP H06212909 A JPH06212909 A JP H06212909A JP 5026127 A JP5026127 A JP 5026127A JP 2612793 A JP2612793 A JP 2612793A JP H06212909 A JPH06212909 A JP H06212909A
Authority
JP
Japan
Prior art keywords
boiler
heat
gas
gas turbine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5026127A
Other languages
Japanese (ja)
Inventor
Yasushi Nakajima
靖史 中嶋
Hikari Kitamura
光 北村
Toshihiro Kamata
敏弘 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5026127A priority Critical patent/JPH06212909A/en
Publication of JPH06212909A publication Critical patent/JPH06212909A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE:To reduce the charge of fuel required to obtain a specified electric energy, namely specified gas turbine output or boiler output. CONSTITUTION:In a compound electric power plant in which the exhaust gas 2 from a gas turbine 1 is fed into a boiler 3 as a combustion gas, a heat exchanger 31 for heating at least either one of the air 8 and the fuel 6 fed into a combustor 5 located at the entrance of the gas turbine, by using the heat of the boiler exhaust gas 14, is provided. Otherwise, a heat exchanger for heating at least either one of the fuel 10 and the gas turbine exhaust gas 2 fed into the boiler 3, by using the heat of the boiler exhaust gas 14 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンの排気を
燃焼用空気としてボイラへ投入する複合発電プラントに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power plant for introducing exhaust gas from a gas turbine into a boiler as combustion air.

【0002】[0002]

【従来の技術】ガスタービンの排気を燃焼用空気として
ボイラへ投入する複合発電プラントは、既存のボイラ・
タービンによる蒸気発電プラントの出力増加と高効率化
を狙って行われることが多い。この場合、複合発電プラ
ントにあっては、図5に示すように、ガスタービン1の
排気2を燃焼用空気の全部又は図示するようにその一部
としてボイラ3へ投入することにより、ボイラ3を通過
するガスが増大しボイラ出口排ガスの温度が上昇するた
め、ボイラ3の後流側にスタックガスクーラ4を設置
し、排熱の回収を図っている。
2. Description of the Related Art A combined cycle power plant that puts gas turbine exhaust into a boiler as combustion air is an existing boiler
This is often done with the aim of increasing the output and increasing the efficiency of steam power plants using turbines. In this case, in the combined cycle power plant, as shown in FIG. 5, the exhaust gas 2 of the gas turbine 1 is fed into the boiler 3 as the whole or a part of the combustion air, as shown in FIG. Since the amount of passing gas increases and the temperature of the exhaust gas from the boiler rises, a stack gas cooler 4 is installed on the downstream side of the boiler 3 to recover exhaust heat.

【0003】なお、その他の構成について説明すると、
ガスタービン1には、燃焼器5で燃料6を圧縮機7から
の空気8によって燃焼させることにより発生したガスが
供給され、発電機9が駆動される。また、ボイラ3には
燃料10が投入され、前述したガスタービン排気2に加
え、押込ファン11及び空気予熱器12を経てボイラ3
へ投入された空気13によって燃焼させられる。そし
て、その燃焼排ガス14は過熱器15、再熱器16及び
節炭器17を通過した後、その一部は前述したスタック
ガスクーラ4に供給され、また残りは前述した空気予熱
器12に供給され、その後両者は合流して煙突18から
大気中へ排出される。
The other components will be described below.
The gas turbine 1 is supplied with gas generated by burning the fuel 6 in the combustor 5 with the air 8 from the compressor 7, and the generator 9 is driven. Further, the fuel 10 is injected into the boiler 3, and in addition to the gas turbine exhaust 2 described above, the boiler 3 is passed through the pushing fan 11 and the air preheater 12.
It is burned by the air 13 introduced into. Then, after the combustion exhaust gas 14 passes through the superheater 15, the reheater 16 and the economizer 17, a part thereof is supplied to the stack gas cooler 4 described above, and the rest is supplied to the air preheater 12 described above. After that, the two merge and are discharged from the chimney 18 into the atmosphere.

【0004】一方、ボイラ3内の過熱器15で過熱され
た蒸気19は高圧タービン20に供給されて仕事をした
後再熱器16に供給され、再び過熱された後中圧(又は
低圧)タービン21に供給されて仕事をし、発電機22
を駆動する。そして、このタービン21で仕事を終えた
蒸気19は復水器23で冷却されて水24となる。この
水24の一部は低圧給水加熱器25で中圧(又は低圧)
タービン21からの抽気26によって、また残りが前述
したスタックガスクーラ4でボイラ排ガス14によって
それぞれ加熱された後合流し、脱気器27で脱気され
る。この脱気された水24の一部は高圧給水加熱器28
で高圧タービン20からの抽気26によって、また残り
が前述したスタックガスクーラ4でボイラ排ガス14に
よってそれぞれ加熱された後合流し、節炭器17に供給
されて加熱される。
On the other hand, the steam 19 superheated by the superheater 15 in the boiler 3 is supplied to the high-pressure turbine 20 for work, and then supplied to the reheater 16 and then reheated and then the intermediate-pressure (or low-pressure) turbine. Powered by 21 to work, generator 22
To drive. Then, the steam 19 that has finished its work in the turbine 21 is cooled by the condenser 23 to become water 24. Part of this water 24 is medium pressure (or low pressure) in the low-pressure feed water heater 25.
After being heated by the bleed air 26 from the turbine 21 and the rest being heated by the boiler exhaust gas 14 in the stack gas cooler 4 described above, they merge and are deaerated by the deaerator 27. A part of the degassed water 24 is a high pressure feed water heater 28.
Is heated by the extraction air 26 from the high-pressure turbine 20 and the rest is heated by the boiler exhaust gas 14 in the stack gas cooler 4 described above, and then combined and supplied to the economizer 17 to be heated.

【0005】[0005]

【発明が解決しようとする課題】以上述べた従来の複合
発電プラントにあっては、所定のガスタービン出力を得
るために、ガスタービン1入口の燃焼器5へ投入する燃
料6の量が増大し、ガスタービン排気2がボイラ3に持
込む熱量も増加する。したがって、ボイラ出口排ガス1
4が持つ熱量も増大するので、これをスタックガスクー
ラ4により回収するようにしているが、この場合、所定
のボイラ入口給水温度を得るために、蒸気タービン抽気
26は減少するか又は全く抽気を行わなくなる。そし
て、この抽気量の減少とともに、蒸気タービン20,2
1の飲み込み蒸気量は減少し、その分蒸気タービン出力
が減少する。また、蒸気タービン入口蒸気量の減少に伴
ない、復水器23へ投入される蒸気19の量が相対的に
増大し、復水器損失(復水器で捨てられる熱量)の割合
が増大する。
In the above-described conventional combined cycle power plant, the amount of fuel 6 injected into the combustor 5 at the inlet of the gas turbine 1 is increased in order to obtain a predetermined gas turbine output. The amount of heat that the gas turbine exhaust 2 brings into the boiler 3 also increases. Therefore, boiler exhaust gas 1
Since the heat quantity of No. 4 also increases, it is designed to be recovered by the stack gas cooler 4. In this case, in order to obtain a predetermined boiler inlet feed water temperature, the steam turbine extraction air 26 is reduced or no extraction is performed. Disappear. Then, along with the decrease in the extraction amount, the steam turbines 20, 2
The amount of swallowed steam of 1 decreases, and the steam turbine output decreases accordingly. In addition, as the steam amount at the steam turbine inlet decreases, the amount of steam 19 injected into the condenser 23 relatively increases, and the ratio of condenser loss (heat amount discarded in the condenser) increases. .

【0006】本発明は、このような従来技術の課題を解
決するためになされたもので、所定の発電量、すなわち
所定のガスタービン出力又はボイラ出力を得るために必
要な燃料投入量を低減でき、またスタックガスクーラで
の給水加熱量を減少させ、蒸気タービンよりの抽気量を
増大させて蒸気タービン出力を増大でき、更に復水器の
損失を減少できる複合発電プラントを提供することを目
的とする。
The present invention has been made in order to solve the problems of the prior art, and can reduce the amount of fuel input required to obtain a predetermined amount of power generation, that is, a predetermined gas turbine output or boiler output. Another object of the present invention is to provide a combined power generation plant that can reduce the feed water heating amount in the stack gas cooler, increase the extraction amount from the steam turbine to increase the steam turbine output, and further reduce the condenser loss. .

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1記載の本発明は、ガスタービンの排気を
燃焼用空気としてボイラへ投入する複合発電プラントに
おいて、前記ボイラの排ガス熱を用いて、ガスタービン
入口の燃焼器へ投入される空気及び燃料の少なくとも一
方を加熱する熱交換器を設けたものである。
In order to achieve the above-mentioned object, the present invention according to claim 1 is a combined cycle power plant in which exhaust gas of a gas turbine is injected into a boiler as combustion air. Is used to provide a heat exchanger for heating at least one of air and fuel introduced into the combustor at the inlet of the gas turbine.

【0008】また、同じく上記の目的を達成するため
に、請求項2記載の本発明は、ガスタービンの排気を燃
焼用空気としてボイラへ投入する複合発電プラントにお
いて、前記ボイラの排ガス熱を用いて、ボイラへ投入さ
れる燃料及びガスタービン排気の少なくとも一方を加熱
する熱交換器を設けたものである。
Further, in order to achieve the above-mentioned object, the present invention according to claim 2 uses the exhaust gas heat of the boiler in a combined cycle power plant in which the exhaust gas of a gas turbine is introduced into a boiler as combustion air. A heat exchanger for heating at least one of fuel injected into the boiler and gas turbine exhaust is provided.

【0009】[0009]

【作用】請求項1記載の本発明によれば、ガスタービン
の燃焼用空気及び/又は燃料をボイラ排ガスが保有する
熱を用いて加熱(予熱)してから、ガスタービン入口の
燃焼器へ投入することにより、所定のガスタービン入口
ガス温度、すなわち所定のガスタービン出力を得るため
に必要な燃料投入量を低減することができ、ガスタービ
ンサイクルの効率を上昇させることができる。
According to the first aspect of the present invention, the combustion air and / or fuel of the gas turbine is heated (preheated) by using the heat held in the boiler exhaust gas, and then is introduced into the combustor at the gas turbine inlet. By doing so, it is possible to reduce the amount of fuel input required to obtain a predetermined gas turbine inlet gas temperature, that is, a predetermined gas turbine output, and it is possible to increase the efficiency of the gas turbine cycle.

【0010】また、請求項2記載の本発明によれば、ボ
イラの燃料及び/又は燃焼用空気となるガスタービン排
気をボイラ排ガスが保有する熱を用いて加熱(予熱)し
てからボイラへ投入することにより、所定のボイラ出
力、すなわちボイラで蒸気等が得るべき必要熱量を与え
るためのボイラ燃料投入量を減少させることができ、蒸
気タービンサイクルの効率を上昇させることができる。
According to the second aspect of the present invention, the gas turbine exhaust serving as the fuel and / or the combustion air of the boiler is heated (preheated) by using the heat held in the boiler exhaust gas, and then is introduced into the boiler. By doing so, it is possible to reduce the boiler fuel input amount for giving a predetermined boiler output, that is, the required amount of heat that steam or the like should obtain in the boiler, and it is possible to increase the efficiency of the steam turbine cycle.

【0011】更に、請求項1及び2記載のいずれの本発
明によっても、ガスタービンの燃焼用空気及び/又は燃
料或いはボイラの燃料及び/又は燃焼用空気となるガス
タービン排気を加熱するための熱量をボイラ排ガスより
取ることにより、ボイラ排ガス温度が低下し、これによ
りスタックガスクーラで回収すべき熱量が減少する。し
たがって、スタックガスクーラで給水が加熱される量が
減少するため、蒸気タービンよりの抽気量を増大させて
これを補う必要がある。これにより、結果的に蒸気ター
ビン抽気量が増大するため、タービンへ投入できる蒸気
量が増大し、蒸気タービン出力すなわち発電機出力が増
大する。更に、蒸気タービン抽気量の増大に伴い、ター
ビン入口蒸気量に対するタービン出口蒸気量が減少する
ため、復水器の損失が減少する。また、蒸気タービン入
口蒸気量の増大により、ボイラで蒸気が吸収する熱量が
増大するため、ボイラより排出される熱量が低下しボイ
ラ効率も上昇する。以上より、プラント効率を高くする
ことができる。
Further, according to the present invention as defined in any one of claims 1 and 2, the heat quantity for heating the gas turbine exhaust serving as combustion air and / or fuel for the gas turbine or fuel and / or combustion air for the boiler. Is taken from the boiler exhaust gas, the temperature of the boiler exhaust gas is lowered, which reduces the amount of heat to be recovered by the stack gas cooler. Therefore, the amount of feed water heated by the stack gas cooler decreases, and it is necessary to increase the amount of bleed air from the steam turbine to compensate for this. As a result, the amount of steam extracted from the steam turbine is increased, so that the amount of steam that can be injected into the turbine is increased and the output of the steam turbine, that is, the output of the generator is increased. Furthermore, as the steam turbine extraction amount increases, the turbine outlet steam amount with respect to the turbine inlet steam amount decreases, so the loss of the condenser decreases. Further, since the amount of heat absorbed by the steam in the boiler increases due to the increase in the steam amount at the steam turbine inlet, the amount of heat discharged from the boiler decreases and the boiler efficiency also increases. From the above, the plant efficiency can be increased.

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例につい
て詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0013】図1及び図2は請求項1記載の本発明につ
いての2つの異なる実施例を示し、図5に示したものと
同一の部分には同一の符号を付して、重複する説明は省
略する。
FIG. 1 and FIG. 2 show two different embodiments of the present invention according to claim 1, and the same parts as those shown in FIG. Omit it.

【0014】まず図1に示す実施例は、ガスタービン1
の排気2を燃焼用空気としてボイラ3へ投入する複合発
電プラントにおいて、ボイラ排ガス14の熱を用いて、
ガスタービン1入口の燃焼器5へ投入される空気8を加
熱する熱交換器31を設けたものである。
First, the embodiment shown in FIG. 1 is a gas turbine 1
In a combined cycle power plant in which the exhaust gas 2 of the above is input to the boiler 3 as combustion air, the heat of the boiler exhaust gas 14 is used,
A heat exchanger 31 is provided for heating the air 8 introduced into the combustor 5 at the inlet of the gas turbine 1.

【0015】なお、この熱交換器31は本実施例ではヒ
ートパイプ式熱交換器とされ、ヒートパイプを用いてボ
イラ排ガス14より抽出した熱により圧縮機7出口の空
気、すなわちガスタービン1入口の燃焼器5へ投入され
る空気8が加熱されるようになっているが、ボイラ排ガ
ス14により該空気8を直接加熱する鋼管式等の他の型
式の熱交換器とすることもできる。また、この熱交換器
31のボイラ排ガス14側伝熱面は本実施例ではボイラ
3とスタックガスクーラ4とを結ぶダクトに設けられて
いるが、ボイラ3中に設けることもできる。
In this embodiment, the heat exchanger 31 is a heat pipe type heat exchanger, and the heat extracted from the boiler exhaust gas 14 using the heat pipe causes air at the outlet of the compressor 7, that is, at the inlet of the gas turbine 1. Although the air 8 fed into the combustor 5 is heated, the heat exchanger of another type such as a steel pipe type in which the air 8 is directly heated by the boiler exhaust gas 14 can be used. Further, the heat transfer surface of the heat exchanger 31 on the boiler exhaust gas 14 side is provided in the duct connecting the boiler 3 and the stack gas cooler 4 in the present embodiment, but may be provided in the boiler 3.

【0016】このような熱交換器31を設けてガスター
ビン1入口の燃焼器5へ投入される空気8を加熱するこ
とにより、燃焼用空気8の温度が上昇するため所定のガ
スタービン入口ガス温度、すなわち所定のガスタービン
出力を得るために必要な燃料6の投入量を減少すること
ができる。
By providing such a heat exchanger 31 to heat the air 8 introduced into the combustor 5 at the inlet of the gas turbine 1, the temperature of the combustion air 8 rises, so that the gas temperature at the predetermined gas turbine inlet is increased. That is, it is possible to reduce the input amount of the fuel 6 required to obtain a predetermined gas turbine output.

【0017】また、ボイラ出口排ガス14が持つ多大な
熱量を熱交換器31により回収するため、スタックガス
クーラ4で回収すべき熱量が減少する。したがって、所
定のボイラ入口給水温度を得るための給水24の加熱は
高圧タービン20および中圧タービン21の抽気26を
用いて高圧給水加熱器28及び低圧給水加熱器25によ
り行うこととなる。よって、図5に示した従来例の場合
に比べ蒸気タービン20,21よりの抽気26が増大
し、その分タービンが飲み込み可能な蒸気量が増大し、
蒸気タービン出力が上昇する。また、蒸気タービン入口
蒸気量及びタービン抽気量の増大に伴ない、復水器23
へ投入される蒸気19の量が相対的に低下し、復水器損
失の割合が低下する。更に、蒸気タービン入口蒸気量の
増大により、ボイラ3で蒸気19が吸収する熱量が増大
するため、ボイラより排出される熱量が低下しボイラ効
率も上昇する。
Further, since a large amount of heat of the boiler outlet exhaust gas 14 is recovered by the heat exchanger 31, the amount of heat to be recovered by the stack gas cooler 4 is reduced. Therefore, the heating of the feed water 24 to obtain the predetermined boiler inlet feed water temperature is performed by the high pressure feed water heater 28 and the low pressure feed water heater 25 using the extraction air 26 of the high pressure turbine 20 and the intermediate pressure turbine 21. Therefore, as compared with the case of the conventional example shown in FIG. 5, the extraction air 26 from the steam turbines 20 and 21 is increased, and the amount of steam that can be swallowed by the turbine is increased accordingly.
Steam turbine output increases. Further, as the steam turbine inlet steam amount and the turbine extraction amount increase, the condenser 23
The amount of steam 19 injected into the device relatively decreases, and the rate of condenser loss decreases. Furthermore, since the amount of heat absorbed by the steam 19 in the boiler 3 increases due to the increase in the amount of steam at the steam turbine inlet, the amount of heat discharged from the boiler decreases and the boiler efficiency also increases.

【0018】次に、図2に示す実施例は、ガスタービン
1の排気2を燃焼用空気としてボイラ3へ投入する複合
発電プラントにおいて、ボイラ排ガス14の熱を用い
て、ガスタービン1入口の燃焼器5へ投入される燃料6
を加熱する熱交換器、本実施例ではヒートパイプ式の熱
交換器32を設け、これによりガスタービン用燃料6を
加熱するようにしたものである。したがって、本実施例
によっても、図1に示した実施例と同様な作用効果が得
られる。
Next, in the embodiment shown in FIG. 2, in the combined power generation plant in which the exhaust gas 2 of the gas turbine 1 is injected into the boiler 3 as combustion air, the heat of the boiler exhaust gas 14 is used to perform combustion at the inlet of the gas turbine 1. Fuel 6 thrown into vessel 5
A heat exchanger that heats the gas turbine, in this embodiment, a heat pipe type heat exchanger 32 is provided to heat the gas turbine fuel 6. Therefore, according to this embodiment, the same operational effect as that of the embodiment shown in FIG. 1 can be obtained.

【0019】また、図示はしないが、図1、図2に示し
た2つの実施例を組合せ、ガスタービン1入口の燃焼器
5へ投入される空気8及び燃料3の両方を熱交換器で加
熱するようにしても、前述したと同様な作用効果が得ら
れるものである。
Although not shown, the two embodiments shown in FIGS. 1 and 2 are combined to heat both the air 8 and the fuel 3 introduced into the combustor 5 at the inlet of the gas turbine 1 with a heat exchanger. Even if it does so, the same effect as described above can be obtained.

【0020】次に、図3及び図4は請求項2記載の本発
明についての2つの異なる実施例を示し、図5に示した
ものと同一の部分には同一の符号を付して、重複する説
明は省略する。
Next, FIGS. 3 and 4 show two different embodiments of the present invention according to claim 2, and the same parts as those shown in FIG. The description will be omitted.

【0021】まず図3に示す実施例は、ガスタービン1
の排気2を燃焼用空気としてボイラ3へ投入する複合発
電プラントにおいて、ボイラ排ガス14の熱を用いて、
ボイラ3へ投入される燃料10を加熱する熱交換器、本
実施例ではヒートパイプ式の熱交換器33を設けたもの
である。
First, the embodiment shown in FIG. 3 is a gas turbine 1.
In a combined cycle power plant in which the exhaust gas 2 of the above is input to the boiler 3 as combustion air, the heat of the boiler exhaust gas 14 is used,
A heat exchanger for heating the fuel 10 charged into the boiler 3, that is, a heat pipe type heat exchanger 33 in this embodiment is provided.

【0022】このような熱交換器33を設けてボイラ用
燃料10をボイラ排ガス14で加熱することにより、ボ
イラ3へ投入される燃料10の温度が上昇するため、所
定のボイラ出力、すなわち所定のボイラ入熱を得るため
に必要な燃料10の投入量が減少する。また、スタック
ガスクーラ4で回収すべき熱量も減少するため、図1に
示した実施例と同様な作用効果を得ることができる。
By heating the boiler fuel 10 with the boiler exhaust gas 14 by providing such a heat exchanger 33, the temperature of the fuel 10 charged into the boiler 3 rises, so that a predetermined boiler output, that is, a predetermined boiler output is obtained. The input amount of the fuel 10 required to obtain the heat input to the boiler is reduced. Further, since the amount of heat to be recovered by the stack gas cooler 4 is also reduced, it is possible to obtain the same effect as that of the embodiment shown in FIG.

【0023】次に、図4に示す実施例は、ガスタービン
1の排気2を燃焼用空気としてボイラ3へ投入する複合
発電プラントにおいて、ボイラ排ガス14の熱を用い
て、ボイラ3へ燃焼用空気として投入されるガスタービ
ン排気2を加熱する熱交換器、本実施例ではヒートパイ
プ式の熱交換器34を設けたものである。
Next, in the embodiment shown in FIG. 4, in a combined power plant in which the exhaust gas 2 of the gas turbine 1 is injected into the boiler 3 as combustion air, the heat of the boiler exhaust gas 14 is used to supply the combustion air to the boiler 3. A heat exchanger for heating the gas turbine exhaust 2 that is input as the heat exchanger, in this embodiment, a heat pipe type heat exchanger 34 is provided.

【0024】このような熱交換器34を設けてボイラ3
へ燃焼用空気として投入されるガスタービン排気2をボ
イラ排ガス14で加熱することにより、ボイラ3へ投入
される燃焼用空気の温度が上昇するため、図3に示した
実施例と同様に、所定のボイラ出力、すなわち所定のボ
イラ入熱を得るために必要な燃料10の投入量が減少す
る。また、スタックガスクーラ4で回収すべき熱量も減
少するため、図1に示した実施例と同様な作用効果を得
ることができる。
The boiler 3 is provided with such a heat exchanger 34.
By heating the gas turbine exhaust 2 that is input as combustion air to the boiler exhaust gas 14, the temperature of the combustion air that is input to the boiler 3 rises. Therefore, as in the embodiment shown in FIG. The boiler output, that is, the input amount of the fuel 10 required to obtain a predetermined boiler heat input is reduced. Further, since the amount of heat to be recovered by the stack gas cooler 4 is also reduced, it is possible to obtain the same effect as that of the embodiment shown in FIG.

【0025】[0025]

【発明の効果】以上述べたように、請求項1記載の本発
明によれば、ガスタービンの燃焼用空気及び/又は燃料
をボイラ排ガスが保有する熱を用いて加熱してから、ガ
スタービン入口の燃焼器へ投入することにより、所定の
ガスタービン入口ガス温度、すなわち所定のガスタービ
ン出力を得るために必要な燃料投入量を低減することが
でき、ガスタービンサイクルの効率を上昇させることが
できる。
As described above, according to the first aspect of the present invention, the combustion air and / or the fuel of the gas turbine is heated by using the heat of the boiler exhaust gas, and then the gas turbine inlet is used. By injecting the gas into the combustor, it is possible to reduce the fuel injection amount required to obtain a predetermined gas turbine inlet gas temperature, that is, a predetermined gas turbine output, and it is possible to increase the efficiency of the gas turbine cycle. .

【0026】また、請求項2記載の本発明によれば、ボ
イラの燃料及び/又は燃焼用空気となるガスタービン排
気をボイラ排ガスが保有する熱を用いて加熱してからボ
イラへ投入することにより、所定のボイラ出力、すなわ
ちボイラで蒸気等が得るべき必要熱量を与えるためのボ
イラ燃料投入量を減少させることができ、蒸気タービン
サイクルの効率を上昇させることができる。
According to the second aspect of the present invention, by heating the gas turbine exhaust serving as the fuel and / or the combustion air of the boiler by using the heat held in the boiler exhaust gas, it is introduced into the boiler. It is possible to reduce the boiler fuel input amount for giving a predetermined boiler output, that is, the required amount of heat that steam or the like should obtain in the boiler, and it is possible to increase the efficiency of the steam turbine cycle.

【0027】更に、請求項1及び2記載のいずれの本発
明によっても、蒸気タービン抽気量の増大により蒸気タ
ービンに投入できる蒸気量が増大し、蒸気タービン出力
が増加するとともに、復水器損失の割合を減少させるこ
とができ、蒸気タービンサイクルの効率を上昇させるこ
とができる。
Further, according to the present invention as set forth in any one of claims 1 and 2, the amount of steam that can be injected into the steam turbine is increased due to an increase in the steam turbine extraction amount, the steam turbine output is increased, and the condenser loss is increased. The rate can be reduced and the efficiency of the steam turbine cycle can be increased.

【0028】以上より、本発明によれば、複合発電プラ
ントの効率の上昇、プラント出力の増加を図ることがで
き、所定の発電量を得るための燃料使用量を減少させる
ことができる。
As described above, according to the present invention, it is possible to increase the efficiency of the combined power generation plant and increase the plant output, and it is possible to reduce the amount of fuel used to obtain a predetermined amount of power generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の本発明に係る複合発電プラント
の一実施例を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a combined cycle power plant according to the present invention according to claim 1.

【図2】同じく請求項1記載の本発明に係る複合発電プ
ラントの他の実施例を示す系統図である。
FIG. 2 is a system diagram showing another embodiment of the combined cycle power plant according to the present invention as defined in claim 1;

【図3】請求項2記載の本発明に係る複合発電プラント
の一実施例を示す系統図である。
FIG. 3 is a system diagram showing an embodiment of a combined cycle power plant according to the present invention as set forth in claim 2.

【図4】同じく請求項2記載の本発明に係る複合発電プ
ラントの他の実施例を示す系統図である。
FIG. 4 is a system diagram showing another embodiment of the combined power generation plant according to the present invention as defined in claim 2;

【図5】従来の複合発電プラントを示す系統図である。FIG. 5 is a system diagram showing a conventional combined cycle power plant.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 排気 3 ボイラ 5 燃焼器 6 燃料 7 圧縮機 8 空気 10 燃料 14 排ガス 31 熱交換器 32 熱交換器 33 熱交換器 34 熱交換器 1 Gas Turbine 2 Exhaust 3 Boiler 5 Combustor 6 Fuel 7 Compressor 8 Air 10 Fuel 14 Exhaust Gas 31 Heat Exchanger 32 Heat Exchanger 33 Heat Exchanger 34 Heat Exchanger

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンの排気を燃焼用空気としてボ
イラへ投入する複合発電プラントにおいて、前記ボイラ
の排ガス熱を用いて、ガスタービン入口の燃焼器へ投入
される空気及び燃料の少なくとも一方を加熱する熱交換
器を設けたことを特徴とする複合発電プラント。
1. In a combined cycle power plant in which exhaust gas of a gas turbine is supplied to a boiler as combustion air, the exhaust gas heat of the boiler is used to heat at least one of air and fuel injected into a combustor at the gas turbine inlet. A combined cycle power plant having a heat exchanger that operates.
【請求項2】ガスタービンの排気を燃焼用空気としてボ
イラへ投入する複合発電プラントにおいて、前記ボイラ
の排ガス熱を用いて、ボイラへ投入される燃料及びガス
タービン排気の少なくとも一方を加熱する熱交換器を設
けたことを特徴とする複合発電プラント。
2. A heat exchange for heating at least one of fuel injected into a boiler and gas turbine exhaust by using exhaust gas heat of the boiler in a combined cycle power plant that inputs the exhaust of a gas turbine to a boiler as combustion air. Combined power plant characterized by having a power supply.
JP5026127A 1993-01-21 1993-01-21 Compound electric power plant Pending JPH06212909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026127A JPH06212909A (en) 1993-01-21 1993-01-21 Compound electric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026127A JPH06212909A (en) 1993-01-21 1993-01-21 Compound electric power plant

Publications (1)

Publication Number Publication Date
JPH06212909A true JPH06212909A (en) 1994-08-02

Family

ID=12184905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026127A Pending JPH06212909A (en) 1993-01-21 1993-01-21 Compound electric power plant

Country Status (1)

Country Link
JP (1) JPH06212909A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673634A (en) * 1992-11-17 1997-10-07 Apparatebau Rothemuhle Brandt & Kritzler Gmbh Incineration plant with heat exchanger
JP2010254544A (en) * 2009-03-30 2010-11-11 Tokyo Gas Co Ltd Hydrogen separation type hydrogen production system having carbon dioxide separation recovery device attached thereto
JP2011116604A (en) * 2009-12-04 2011-06-16 Tokyo Gas Co Ltd Hydrogen separation type hydrogen production system including carbon dioxide separation and recovery apparatus
JP2011132103A (en) * 2009-12-25 2011-07-07 Tokyo Gas Co Ltd Hybrid hydrogen production system
US11274575B2 (en) 2016-03-29 2022-03-15 Mitsubishi Power, Ltd. Gas turbine plant and operation method therefor
KR20220058348A (en) * 2020-12-02 2022-05-09 두산에너빌리티 주식회사 Hybrid power generation equipment and control method thereof
US11702964B2 (en) 2020-10-30 2023-07-18 Doosan Enerbility Co., Ltd. Hybrid power generation equipment and control method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673634A (en) * 1992-11-17 1997-10-07 Apparatebau Rothemuhle Brandt & Kritzler Gmbh Incineration plant with heat exchanger
JP2010254544A (en) * 2009-03-30 2010-11-11 Tokyo Gas Co Ltd Hydrogen separation type hydrogen production system having carbon dioxide separation recovery device attached thereto
JP2011116604A (en) * 2009-12-04 2011-06-16 Tokyo Gas Co Ltd Hydrogen separation type hydrogen production system including carbon dioxide separation and recovery apparatus
JP2011132103A (en) * 2009-12-25 2011-07-07 Tokyo Gas Co Ltd Hybrid hydrogen production system
US11274575B2 (en) 2016-03-29 2022-03-15 Mitsubishi Power, Ltd. Gas turbine plant and operation method therefor
US11702964B2 (en) 2020-10-30 2023-07-18 Doosan Enerbility Co., Ltd. Hybrid power generation equipment and control method thereof
KR20220058348A (en) * 2020-12-02 2022-05-09 두산에너빌리티 주식회사 Hybrid power generation equipment and control method thereof

Similar Documents

Publication Publication Date Title
AU668781B2 (en) Combined combustion and steam turbine power plant
JP2540646B2 (en) Operating method of combined cycle power plant and combined cycle power plant
US5412937A (en) Steam cycle for combined cycle with steam cooled gas turbine
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
EP0676532B1 (en) Steam injected gas turbine system with topping steam turbine
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
JP3652962B2 (en) Gas turbine combined cycle
US20070017207A1 (en) Combined Cycle Power Plant
US20130074508A1 (en) Fuel Heating in Combined Cycle Turbomachinery
CN109653875B (en) Fuel preheating system for combustion turbine engine
US4702081A (en) Combined steam and gas turbine plant
AU2014323409B2 (en) Flue gas heat recovery integration
JPH0445643B2 (en)
SU1521284A3 (en) Power plant
EP2132415A2 (en) Arrangement with a steam turbine and a condenser for feedwater preheating
US20100031660A1 (en) System and assemblies for pre-heating fuel in a combined cycle power plant
JP2757290B2 (en) Gas / steam turbine combined facility with coal gasification facility
JPH06212909A (en) Compound electric power plant
RU2409746C2 (en) Steam-gas plant with steam turbine drive of compressor and regenerative gas turbine
JP7033838B2 (en) Power cycle system and method
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JPH06212910A (en) Electric power generating plant
JPS60138213A (en) Composite cycle waste heat recovery power generating plant
JP2001214758A (en) Gas turbine combined power generation plant facility
JPH04124411A (en) Steam turbine combine generator equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010306