JPS6365641A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS6365641A
JPS6365641A JP21016186A JP21016186A JPS6365641A JP S6365641 A JPS6365641 A JP S6365641A JP 21016186 A JP21016186 A JP 21016186A JP 21016186 A JP21016186 A JP 21016186A JP S6365641 A JPS6365641 A JP S6365641A
Authority
JP
Japan
Prior art keywords
region
film
molybdenum
circuit block
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21016186A
Other languages
Japanese (ja)
Inventor
Yoshiharu Nishimura
西村 吉晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21016186A priority Critical patent/JPS6365641A/en
Publication of JPS6365641A publication Critical patent/JPS6365641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To contrive to electrically isolate and insulate a circuit block consisting of one element or a plurality of elements of an integrated circuit from other element or circuit block over such a very broad frequency range as DC-several G Hz by a method wherein the above circuit block is surrounded with a thin insulating layer region and a metal region earthed to have potential 0. CONSTITUTION:Insular regions 2-1,... consisting of a P-type Si single crystal are pro vided on a semiconductor substrate 1 consisiting of a P-type Si single crystal being covered their bottom surfaces respectively with a three-layer structure consisting of an Si nitride film 3-2, a molybdenum film 6 and an Si nitride film 3-1 and being covered their side surfaces respectively with a three-layer structure consisiting of an Si oxide film 4a, a molybdenum film 6a and an Si oxide film 4b and an N-channel MOS field-effect transistor is formed at the insular region 2-1. As the molybdenum films 6 and 6a are earthed to have potential 0, this transistor comes to being shielded and comes to not making an unnecessary coupling with other circuit constituent elements even in a direct current way and even in a high-frequency manner. Thereby, this insular region 2-1 is electrically insulated isolatingly ranging from a direct current to several giga-hertzs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路に関し、特に高周波帯領域ある
いは高速での動作が要求される半導体集積回路における
各素子間又は各回路ブロック間の分*構造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to semiconductor integrated circuits, and in particular, to semiconductor integrated circuits that require high-frequency operation or high-speed operation. Regarding structure.

〔従来の技術〕[Conventional technology]

従来の半導体集積回路のうち、例えばnチャネル型のM
O3集積回路においては、その構成要素たるMOS電界
効果トランジスタ同士の分離を行なうに際して、p型の
基板と、それぞれのMO3電界効果トランジスタを形成
するn型である所のソース領域あるいはトレイン領域と
が形成するPN接合を利用するのが普通である。
Among conventional semiconductor integrated circuits, for example, n-channel type M
In an O3 integrated circuit, when separating the MOS field effect transistors that are its constituent elements, a p-type substrate and an n-type source or train region forming each MO3 field effect transistor are formed. Usually, a PN junction is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の構造では、各素子間の分離がPN接合に
よっているため、直流的には分離され得ても、交流的に
はPN接合の容量を介して結合が起こることとなり、こ
のことは特に数百MH2帯〜数G Hz帯と云った高周
波領域で使用されるアナログ集積回路や、超高速性が要
求されるディジタル集積回路においては、回路の不安定
性、特性劣化、あるいは回路の誤動作を招くこととなる
In the conventional structure described above, each element is separated by a PN junction, so even if they can be separated in direct current terms, coupling occurs in alternating current terms through the capacitance of the PN junction. In analog integrated circuits used in high frequency ranges from several hundred MHz to several GHz, and in digital integrated circuits that require ultra-high speed, this can lead to circuit instability, characteristic deterioration, or circuit malfunction. It happens.

またバイポーラ系集積回路で近年盛んに用いられる様に
なった、素子周辺をPN接合でなく酸化シリコン膜を用
いて分離する手法く例えばLOCOS法)においても、
集積度が上がるにつれて、分離帯の物理的寸法が極めて
小さくなりつつあり、やはりその酸化膜を介しての容量
による結合も無視し得なくなりつつある。
In addition, in the method (for example, LOCOS method) that uses silicon oxide film instead of PN junction to isolate the periphery of the element, which has become popular in recent years in bipolar integrated circuits,
As the degree of integration increases, the physical dimensions of the isolation zone are becoming extremely small, and the coupling due to capacitance through the oxide film is also becoming impossible to ignore.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体集積回路は、半導体基板上に、前記半導
体基板結晶とエピタキシーを示す半導体からなる島状領
域が、その底面及び側面を絶縁層−導体層−絶縁層の3
層構造体で覆って設置され、前記島状領域に半導体素子
が形成されていることを要旨としている。
In the semiconductor integrated circuit of the present invention, an island-like region made of a semiconductor exhibiting epitaxy with the semiconductor substrate crystal is formed on a semiconductor substrate, and its bottom and side surfaces are formed by three layers: an insulating layer, a conductor layer, and an insulating layer.
The main feature is that the island-like region is covered with a layered structure and a semiconductor element is formed in the island-like region.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の主要部を示す半導体チップ
の断面図である。
FIG. 1 is a sectional view of a semiconductor chip showing the main parts of an embodiment of the present invention.

この実施例は、p型シリコン単結晶からなる半導体基板
1上に、p型シリコン単結晶からなる島状領域2−1.
・・・・がその底面を窒化シリコン膜3−2−モリブデ
ン膜6−窒化シリコン膜3−1゜からなる3層構造体で
覆い、側面を酸化シリコン膜4a−モリブデン膜6a−
酸化シリコン膜4bからなる3M構造体で覆って設置さ
れ、島状領域2−1にnチャネルMOS電界効果トラン
ジスタが形成されているものである。
In this embodiment, on a semiconductor substrate 1 made of p-type silicon single crystal, island-like regions 2-1. made of p-type silicon single crystal.
... is covered with a three-layer structure consisting of a silicon nitride film 3-2 - a molybdenum film 6 - a silicon nitride film 3-1°, and its side faces are covered with a silicon oxide film 4a - a molybdenum film 6a -.
It is covered with a 3M structure made of a silicon oxide film 4b, and an n-channel MOS field effect transistor is formed in the island region 2-1.

n型ソース領域10.n型ドレイン領域11−1、モリ
ブデンゲート電極7−1、アルミニウムからなるソース
電極8及びドレイン電極9−1、バックゲートコンタク
ト領域12とでnチャネルMO3電界効果1〜ランジス
タが構成されていて、モリブデン膜6,6aは接地され
てゼロ電位となっているので、このトランジスタはシー
ルドされていることとなり、直流的にも、又高周波的に
も他の回路構成要素とは不必要な結合をしていないこと
となるので、直流から数ギガヘルツの周波数にわたって
電気的に分離絶縁される。なお、このnチャネルMOS
電界効果トランジスタの他の要素への接続用配線と、6
,6aとの交差部は通常の多層配線技術による。
n-type source region 10. An n-channel MO3 field effect 1 to transistor is constituted by an n-type drain region 11-1, a molybdenum gate electrode 7-1, a source electrode 8 and a drain electrode 9-1 made of aluminum, and a back gate contact region 12. Since the membranes 6 and 6a are grounded and have zero potential, this transistor is shielded, and there is no unnecessary coupling with other circuit components in terms of direct current or high frequency. Therefore, it is electrically isolated from direct current to frequencies of several gigahertz. Note that this n-channel MOS
wiring for connecting the field effect transistor to other elements, and 6
, 6a are formed using normal multilayer wiring technology.

次に、この実施例の製造方法について説明する。Next, the manufacturing method of this example will be explained.

第2図〜第3図はこの実施例の製造方法を説明するため
の半導体チップの図であって、図(a)は平面図、図(
b)は図(a)のX−χ′線断面図である。
FIGS. 2 and 3 are diagrams of a semiconductor chip for explaining the manufacturing method of this embodiment, and FIG.
b) is a cross-sectional view taken along the line X-χ' in FIG.

まず、第2図に示すように、p型シリコン単結晶からな
る半導体基板1の一表面に厚さ1000人の窒化シリコ
ン膜3−1を被着し、その上に厚さ3000〜5000
人のモリブデン膜6を被着したのち半導体基板1に達す
る穴を設け、厚さ1000人の窒化シリコン膜3−2を
被着し、穴の底部の窒化シリコン膜を除去することによ
り一辺が5μmの正方形の開口20を設ける。この開口
の間隔は約100μmとする。次に、多結晶シリコン層
を被着したのち、露出した半導体基板面を核として厚さ
2〜3μmのp型シリコン単結晶層2′に変換する。
First, as shown in FIG. 2, a silicon nitride film 3-1 with a thickness of 1,000 thick is deposited on one surface of a semiconductor substrate 1 made of p-type silicon single crystal, and a silicon nitride film 3-1 with a thickness of 3,000 to 5,000
After depositing a silicon nitride film 6, a hole reaching the semiconductor substrate 1 is formed, a silicon nitride film 3-2 with a thickness of 1,000 grams is deposited, and the silicon nitride film at the bottom of the hole is removed to form a hole with a side of 5 μm. A square opening 20 is provided. The interval between the openings is approximately 100 μm. Next, after depositing a polycrystalline silicon layer, the exposed semiconductor substrate surface is converted into a p-type silicon single crystal layer 2' having a thickness of 2 to 3 μm.

次に、第3図に示すように、前述の開口20を避けて窒
化シリコン膜3−1に達する溝を掘り、厚さ1000〜
2000人の酸化シリコン膜4を熱酸化法により形成し
たのち溝の底部のシリコン膜3−2を除去することによ
り、溝21で囲まれた島状領域2−1.・・・を形成す
る。
Next, as shown in FIG. 3, a trench is dug to reach the silicon nitride film 3-1, avoiding the opening 20 described above, and to a thickness of 1000 to 1000.
After forming a silicon oxide film 4 of 2,000 layers by a thermal oxidation method, the silicon film 3-2 at the bottom of the trench is removed, thereby forming an island region 2-1 surrounded by the trench 21. ... to form.

次に満21を埋めるモリブデン膜を形成してパターニン
グを行ってから、島状領域にnチャネルMOS電界効果
トランジスタを形成すればよい。
Next, a molybdenum film is formed to fill the area 21 and patterned, and then an n-channel MOS field effect transistor is formed in the island region.

なお、不純物領域の形成は前述した溝の底部の窒化シリ
コン膜を除去する前に行ってもよい。
Note that the impurity region may be formed before removing the silicon nitride film at the bottom of the trench described above.

以上の説明において、モリブデンの代りにタングステン
等の高融点金属を用いてもよい。又、エピタキシャル成
長を行う場合、窒化シリコン膜3−1を設けず直接半導
体基板上にエピタキシャル層を形成する部分を設けてお
いて、そこにはそれほど高速動作を要求されない回路部
分を集積してもよい。更に島状領域は半導体基板にエピ
タキシャル成長させ得る物質であれば、必ずしも基板と
同一でなくてもよい。
In the above description, a high melting point metal such as tungsten may be used instead of molybdenum. Furthermore, when epitaxial growth is performed, a portion where the epitaxial layer is directly formed on the semiconductor substrate without providing the silicon nitride film 3-1 may be provided, and a circuit portion that does not require high-speed operation may be integrated there. . Furthermore, the island-shaped region does not necessarily have to be the same as the substrate, as long as it is made of a material that can be epitaxially grown on the semiconductor substrate.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明は集積回路の一要素あるいは
複数の要素からなる回路ブロックを、薄い絶縁層領域及
びO電位に接地された金属領域で収り囲むことにより、
他の要素あるいは回路ブロックから、DC〜数GH2と
云った極めて広い周波数範囲に渡って電気的に分離絶縁
することを可能とする効果がある。
As explained above, the present invention enables a circuit block consisting of one or more elements of an integrated circuit to be surrounded by a thin insulating layer region and a metal region grounded to O potential.
It has the effect of making it possible to electrically isolate it from other elements or circuit blocks over an extremely wide frequency range from DC to several GH2.

したがって本発明によるvI造を用いることにより、極
めて高い周波数領域あるいは高速領域においても、安定
でかつ高性能に動作する半導体集積回路が得られる効果
がある。
Therefore, by using the vI structure according to the present invention, it is possible to obtain a semiconductor integrated circuit that operates stably and with high performance even in an extremely high frequency region or high speed region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の主要部を示す半導体チップ
の断面図、第2図〜第3図は第1図の実施例の製造方法
を説明するための半導体チップの図であり図(a)は平
面図、図(b)は図(a)のx−x’線断面図である。 1・・・半導体基板、2−1.2−2・・・島状領域、
2′・・・シリコン単結晶層、B−1,3−2・・・窒
化シリコン膜、4.4−1.4−2.4a、4b−・・
シリコン酸化膜、5−1.5−2.5−3・・・リンガ
ラス層、6,6a・・・モリブデン膜、7−1゜7−2
・・・モリブデンゲート電極、8・・・ソース電極、9
−1.9−2・・・ドレイン電極、1o・・・n型ソー
ス領域、11−1.11−2・・・n型トレイン領域、
12・・・バックゲートコンタクト領域、13・・・裏
面金属電極、20・・・開口、21・・・溝。
FIG. 1 is a sectional view of a semiconductor chip showing the main parts of an embodiment of the present invention, and FIGS. 2 and 3 are diagrams of the semiconductor chip for explaining the manufacturing method of the embodiment of FIG. 1. (a) is a plan view, and figure (b) is a sectional view taken along line xx' in figure (a). 1... Semiconductor substrate, 2-1.2-2... Island region,
2'...Silicon single crystal layer, B-1, 3-2...Silicon nitride film, 4.4-1.4-2.4a, 4b-...
Silicon oxide film, 5-1.5-2.5-3... Phosphorus glass layer, 6,6a... Molybdenum film, 7-1°7-2
...Molybdenum gate electrode, 8...Source electrode, 9
-1.9-2...Drain electrode, 1o...N-type source region, 11-1.11-2...N-type train region,
12... Back gate contact region, 13... Back metal electrode, 20... Opening, 21... Groove.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、前記半導体基板結晶とエピタキシーを
示す半導体からなる島状領域が、その底面及び側面を絶
縁層−導体層−絶縁層の3層構造体で覆って設置され、
前記島状領域に半導体素子が形成されていることを特徴
とする半導体集積回路。
An island-like region made of a semiconductor exhibiting epitaxy with the semiconductor substrate crystal is placed on a semiconductor substrate with its bottom and side surfaces covered with a three-layer structure of an insulating layer, a conductor layer, and an insulating layer,
A semiconductor integrated circuit characterized in that a semiconductor element is formed in the island-like region.
JP21016186A 1986-09-05 1986-09-05 Semiconductor integrated circuit Pending JPS6365641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21016186A JPS6365641A (en) 1986-09-05 1986-09-05 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21016186A JPS6365641A (en) 1986-09-05 1986-09-05 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6365641A true JPS6365641A (en) 1988-03-24

Family

ID=16584774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21016186A Pending JPS6365641A (en) 1986-09-05 1986-09-05 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6365641A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017999A (en) * 1989-06-30 1991-05-21 Honeywell Inc. Method for forming variable width isolation structures
US5264720A (en) * 1989-09-22 1993-11-23 Nippondenso Co., Ltd. High withstanding voltage transistor
US5306942A (en) * 1989-10-11 1994-04-26 Nippondenso Co., Ltd. Semiconductor device having a shield which is maintained at a reference potential
US5310446A (en) * 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
US5449946A (en) * 1993-03-10 1995-09-12 Nippondenso Co., Ltd. Semiconductor device provided with isolation region
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
US5644157A (en) * 1992-12-25 1997-07-01 Nippondenso Co., Ltd. High withstand voltage type semiconductor device having an isolation region
US5789793A (en) * 1995-07-31 1998-08-04 Kurtz; Anthony D. Dielectrically isolated well structures
US5811868A (en) * 1996-12-20 1998-09-22 International Business Machines Corp. Integrated high-performance decoupling capacitor
US5939755A (en) * 1995-06-08 1999-08-17 Kabushiki Kaisha Toshiba Power IC having high-side and low-side switches in an SOI structure
US6104078A (en) * 1994-03-09 2000-08-15 Denso Corporation Design for a semiconductor device having elements isolated by insulating regions
US6242792B1 (en) 1996-07-02 2001-06-05 Denso Corporation Semiconductor device having oblique portion as reflection
US6411155B2 (en) 1994-12-30 2002-06-25 Sgs-Thomson Microelectronics S.A. Power integrated circuit
US6580142B1 (en) * 1994-12-30 2003-06-17 Sgs-Thomson Microelectronics S.A. Electrical control methods involving semiconductor components

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565697A (en) * 1988-06-28 1996-10-15 Ricoh Company, Ltd. Semiconductor structure having island forming grooves
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
US5017999A (en) * 1989-06-30 1991-05-21 Honeywell Inc. Method for forming variable width isolation structures
US5264720A (en) * 1989-09-22 1993-11-23 Nippondenso Co., Ltd. High withstanding voltage transistor
US5403769A (en) * 1989-10-11 1995-04-04 Nippondenso Co., Ltd. Process for producing a semiconductor device
US5474952A (en) * 1989-10-11 1995-12-12 Nippondenso Co., Ltd. Process for producing a semiconductor device
US5306942A (en) * 1989-10-11 1994-04-26 Nippondenso Co., Ltd. Semiconductor device having a shield which is maintained at a reference potential
US5627399A (en) * 1989-10-11 1997-05-06 Nippondenso Co., Ltd. Semiconductor device
US5310446A (en) * 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
US5644157A (en) * 1992-12-25 1997-07-01 Nippondenso Co., Ltd. High withstand voltage type semiconductor device having an isolation region
US5449946A (en) * 1993-03-10 1995-09-12 Nippondenso Co., Ltd. Semiconductor device provided with isolation region
US6104078A (en) * 1994-03-09 2000-08-15 Denso Corporation Design for a semiconductor device having elements isolated by insulating regions
US6411155B2 (en) 1994-12-30 2002-06-25 Sgs-Thomson Microelectronics S.A. Power integrated circuit
US6580142B1 (en) * 1994-12-30 2003-06-17 Sgs-Thomson Microelectronics S.A. Electrical control methods involving semiconductor components
US5939755A (en) * 1995-06-08 1999-08-17 Kabushiki Kaisha Toshiba Power IC having high-side and low-side switches in an SOI structure
US5789793A (en) * 1995-07-31 1998-08-04 Kurtz; Anthony D. Dielectrically isolated well structures
US6242792B1 (en) 1996-07-02 2001-06-05 Denso Corporation Semiconductor device having oblique portion as reflection
US5811868A (en) * 1996-12-20 1998-09-22 International Business Machines Corp. Integrated high-performance decoupling capacitor

Similar Documents

Publication Publication Date Title
JPS6365641A (en) Semiconductor integrated circuit
JPH04106932A (en) Manufacture of bipolar transistor
US3942241A (en) Semiconductor devices and methods of manufacturing same
JPH09270515A (en) Semiconductor device
US4847672A (en) Integrated circuit die with resistive substrate isolation of multiple circuits
US11222944B2 (en) Integrated circuit device and method of manufacturing thereof
JPS59147467A (en) Static induction transistor
JPS60187055A (en) Semiconductor integrated circuit device
JPS61127157A (en) Semiconductor device
JPS6153756A (en) Semiconductor device
JPS6018931A (en) Semiconductor device and usage thereof
JPH03153069A (en) Semiconductor integrated circuit and manufacturing method
JP2917428B2 (en) Semiconductor integrated circuit device
JPS6367745A (en) Manufacture of semiconductor device
JPS5823484A (en) Semiconductor device
JPS63192249A (en) Semiconductor integrated circuit device
JPH04348078A (en) Mos semiconductor device
JPS63246842A (en) Semiconductor integrated circuit
JPH02308553A (en) Soi type semiconductor device
JPS5832508B2 (en) Transistor
JPS6240757A (en) Semiconductor device
JPH07221190A (en) Semiconductor integrated circuit device
JPS5914650A (en) Semiconductor integrated circuit device
JPH01260842A (en) Semiconductor integrated circuit
JPS62291045A (en) Monolithic integrated circuit