JPS6365450B2 - - Google Patents

Info

Publication number
JPS6365450B2
JPS6365450B2 JP59259643A JP25964384A JPS6365450B2 JP S6365450 B2 JPS6365450 B2 JP S6365450B2 JP 59259643 A JP59259643 A JP 59259643A JP 25964384 A JP25964384 A JP 25964384A JP S6365450 B2 JPS6365450 B2 JP S6365450B2
Authority
JP
Japan
Prior art keywords
cutter
seat
flank
center
circular seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59259643A
Other languages
Japanese (ja)
Other versions
JPS60146611A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP25964384A priority Critical patent/JPS60146611A/en
Publication of JPS60146611A publication Critical patent/JPS60146611A/en
Publication of JPS6365450B2 publication Critical patent/JPS6365450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/28Grooving workpieces
    • B23C3/34Milling grooves of other forms, e.g. circumferential

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Description

【発明の詳細な説明】 本発明は機械のケーシングの軸受座の外周の逃
げ面、ポンプケーシングの羽根車の嵌入する部分
の外周溝等の加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for machining a flank surface on the outer circumference of a bearing seat of a machine casing, an outer circumferential groove in a portion of a pump casing into which an impeller is fitted, and the like.

第1図は孔端面の軸心を含む断面図である。円
孔1の端面には円形に座2が形成され、その外側
は退いて逃げ面3となつている。通常逃げ面3は
小物は旋削によりワークを回転して加工するが、
ワークの大きいものあるいはワーク形状によつて
はワークを固定して加工されており、一般に一枚
刃でもつて刃物を回転し乍ら半径方向に送つて加
工するが極めて長い加工時間を要する。例えば従
来ポンプの渦巻室、側面段差は横中ぐり盤の面板
に取りつけたテングバーのフエーシング送りで切
削を行つているが、ボーリングバーのオーバハン
グ量が大きく、強力切削ができない。半径方向に
フエーシング量が長くなると、ボーリングバーの
外径がワークの穴にあたつて突出量が不足し、バ
イトをセツトし直す必要があることが欠点であつ
た。中ぐり盤によつては半径送りの出来ないもの
もあり機械が限られる。エンドミルを円形に送つ
て逃げ面3を加工するものは能率悪く又カツタヘ
ツド、エンドミルが動く範囲にワークがあつては
ならず、切削できる範囲は限定される。あるいは
又逃げ面3又は逃げ面3と座2に適合する補完形
の総形カツタを軸方向に切込み突当て加工が行わ
れ加工時間が極めて早い特長がある。処が突当て
加工をするには全くその形状の専用カツタが必要
であり、座2と逃げ面3間の各種寸法のワークあ
るいは座2と逃げ面3間に段のような形状のある
ワーク等一般に寸法、形状共多種類であり、専用
のカツタを揃えるとあまり使わない工具が多くな
り工具費用が多大となる。又突当加工ではカツタ
に配した多刃が一度にワークに接し切削にあづか
るため大きな切削抵抗が加わりびびりが生じ易く
工具のチツプ破損、ワークの面粗度の不良等を起
し易く、小径の座の回りの切削に限られ大径の座
の回りの切削は不可能となつている。更に又アル
ミ鋳物、普通鉄鋳鉄の場合はまだしもステンレス
鋳物においては逃げ面加工は困難な問題であつて
その解決が要望せられている処である。
FIG. 1 is a sectional view including the axis of the hole end surface. A circular seat 2 is formed on the end face of the circular hole 1, and the outside of the seat 2 is receded to form a flank 3. Normally, the flank surface 3 is machined by rotating the workpiece by turning small items.
Depending on the size of the workpiece or the shape of the workpiece, the workpiece is fixed and machined.Generally, the workpiece is machined using a single blade, which is rotated and fed in the radial direction, but this requires an extremely long machining time. For example, in the past, the swirl chamber and side steps of pumps were cut by facing feed from a proboscis bar attached to the face plate of a horizontal boring machine, but the overhang of the boring bar was large, making it impossible to perform powerful cutting. When the amount of facing increases in the radial direction, the outer diameter of the boring bar hits the hole in the workpiece, resulting in insufficient protrusion and the need to reset the cutting tool, which is a drawback. Some boring machines are not capable of radial feed, so the machines available are limited. Machining the flank surface 3 by feeding the end mill in a circular manner is inefficient, and the workpiece must not be within the range in which the cutter head and end mill move, so the range that can be cut is limited. Alternatively, a complementary full-form cutter that fits the flank 3 or the flank 3 and the seat 2 is cut in the axial direction and abutted machining is performed, which has the advantage of extremely short machining time. In order to perform butt processing, a special cutter with the same shape is required, and it can be used for workpieces with various dimensions between the seat 2 and flank face 3, or workpieces with a step-like shape between the seat 2 and flank face 3, etc. Generally, there are many types of cutters in terms of size and shape, and if you have a dedicated cutter, you will have to use a lot of tools that are rarely used, which will increase the tool cost. In addition, in butting machining, the multiple blades attached to the cutter come into contact with the workpiece at once and cut, which creates a large cutting resistance and tends to cause chatter, which can easily cause tool tip breakage, poor surface roughness of the workpiece, etc. Cutting is limited to cutting around the seat, and cutting around a large diameter seat is impossible. Furthermore, flank machining is a difficult problem in aluminum castings and stainless steel castings, and there is a need for a solution to this problem.

本発明は特に大径の座の回りの逃げ面又は座及
び逃げ面等中心部に円形突出座のあるケーシング
の加工を行う方法において、切削時間が早く、工
具に無理なく、或る寸法範囲については一つの工
具で加工が可能な加工方法を提供することを目的
とするものである。
The present invention is particularly useful for machining a casing with a circular protruding seat in the center, such as a flank around a large-diameter seat or a seat and flank, which can be cut in a short cutting time, without straining the tool, and in a certain size range. The purpose of this is to provide a machining method that allows machining with one tool.

本願第1発明は円形座外周に逃げ面を有するワ
ークの加工において、端面にその中心から円形の
突出座の半径に動径を加えた半径の円の外側に接
して逃げ面に作用する刃を有する回転工具の中心
を円形座中心よりずらせた位置において回転する
と共に回転工具中心を円形座中心を中心とする半
径を動径として回動することにより円形座逃げ面
と円形座外周を加工する突出座の逃げ面の加工方
法である。
In the processing of a workpiece having a flank on the outer periphery of a circular seat, the first invention of the present application includes a blade that acts on the flank by touching the outside of a circle with a radius from the center of the workpiece having a radius added to the radius of the circular protruding seat. A protrusion for machining the flank of the circular seat and the outer periphery of the circular seat by rotating the center of the rotary tool at a position shifted from the center of the circular seat and rotating the center of the rotating tool about a radius centered on the center of the circular seat. This is a method of machining the flank surface of the seat.

本願第2発明は円形座外周に逃げ面を有するワ
ークの加工において、端面にその中心から円形の
突出座の半径に動径を加えた半径の円の外側に接
して逃げ面に作用する刃を有すると共に該逃げ面
に作用する刃よりも内径側で円形座面に作用する
刃を前記逃げ面に作用する刃より軸方向に後退さ
せた位置に備えた回転工具中心を円形座中心より
ずらせた位置において回転すると共に回転工具中
心を円形座中心を中心とする半径を動径として回
動することにより円形座逃げ面と円形座外周及び
円形座面を加工する突出座の逃げ面の加工方法で
ある。
In the processing of a workpiece having a relief surface on the outer periphery of a circular seat, the second invention of the present application provides a blade that acts on the flank surface in contact with the outside of a circle whose radius is the sum of the radius of the circular protruding seat and the radius from the center of the end surface. The rotary tool has a blade that acts on the circular seating surface on the inner diameter side of the blade that acts on the flank surface, and is provided at a position that is retreated in the axial direction from the blade that acts on the flank surface, and the center of the rotary tool is offset from the center of the circular seat. Machining of the flank face of a protruding seat that processes the flank face of the circular seat, the outer periphery of the circular seat, and the circular seat surface by rotating the center of the rotary tool around the center of the circular seat and rotating the center of the rotary tool around a radius around the center of the circular seat. It's a method.

以下図面に従つてこの加工方法について説明す
る。第1図はワークは断面でカツタは側面で示す
断面図であり、第2図は第1図の正面図である。
第3図は第1図より直角な位置の断面図である。
第1図は切削が行われており、第3図は切削前後
の工具位置で示されている。カツタ4はカツタボ
デイ5の端面に外刃6、内刃7が固定されてい
る。第4図は第3図において外刃6、内刃7の部
分の拡大図である。外刃6は外径側の外切刃8と
端面切刃9を備えたチツプであり、内刃7は内径
側の内切刃11と端面切刃12を備えている。外
刃6の内径側、内刃7の外径側に切刃を附しても
よいが、刃先角切刃角が適度にとり難く切削能
力、切屑の逃げ、チツプ強度等より得策でない。
外刃6、内刃7を共用できることになるがすくい
角を共に正にとることが困難であつて被削材質が
限定される。例示されているワークはボリユート
ポンプのケーシングであつて羽根車の嵌入する渦
巻室両側の羽根車軸心附近両側に対向する側面段
差加工であつてケーシングは軸心を含む二つ割り
であつて合せて組立てるようになつており、円孔
1は羽根車を回転駆動する軸の軸承あるいは軸封
装置が設けられる。
This processing method will be explained below with reference to the drawings. FIG. 1 is a cross-sectional view of the workpiece and a side view of the cutter, and FIG. 2 is a front view of FIG. 1.
FIG. 3 is a sectional view taken at a right angle from FIG. 1.
Fig. 1 shows cutting being performed, and Fig. 3 shows the tool position before and after cutting. The cutter 4 has an outer cutter 6 and an inner cutter 7 fixed to the end face of a cutter body 5. FIG. 4 is an enlarged view of the outer cutter 6 and inner cutter 7 in FIG. 3. The outer cutter 6 is a chip having an outer cutting edge 8 on the outer diameter side and an end cutting edge 9, and the inner cutter 7 has an inner cutting edge 11 and an end cutting edge 12 on the inner diameter side. Although cutting edges may be attached to the inner diameter side of the outer cutter 6 and the outer diameter side of the inner cutter 7, it is difficult to obtain a suitable cutting edge angle, and this is not a good idea in terms of cutting ability, chip escape, chip strength, etc.
Although the outer cutter 6 and the inner cutter 7 can be used in common, it is difficult to obtain a positive rake angle for both, and the material to be cut is limited. The illustrated workpiece is the casing of a volute pump, and the volute chamber in which the impeller fits is machined on both sides of the impeller shaft center. The circular hole 1 is provided with a shaft bearing or a shaft sealing device for rotating the impeller.

Cwはワーク100(以下本欄においては符号
を省略して表示する)の円孔1、座2、逃げ面3
の外径等の中心であり、Ctはカツタ4の中心であ
る。カツタ4の中心は第3図に示す位置までカツ
タ軸に直角方向に移動して下されその中心は第2
図に示すCtに位置する。こゝでカツタ4は駆動さ
れる。外刃6、内刃7は円13,16を画く。カ
ツタ4は軸方向に送つてワークに切込まれ、次に
カツタ4に切削送りが与えられる。切削送りは中
心Cwを中心としてw t=δの動径でカツタ4を
回転し乍らカツタ軸中心を回動して行われる。外
刃6に関して回転方向はカツタ4が時計方向に回
転する場合、カツタ軸を反時計方向に回動するダ
ウンカツト、あるいはカツタ4が時計方向に回転
する場合カツタ軸を時計方向に回動するアツプカ
ツトの何れかによる。カツタ4の回転方向が反時
計方向の場合、カツタ軸はダウンカツトにおいて
時計方向、アツプカツトにおいて反時計方向に回
転する。この関係は内刃7に関しては逆となる。
カツタ軸の送りのための回動は例えば数値制御工
作機械の主軸頭を円運動させて行われる。
C w is the circular hole 1, the seat 2, and the flank 3 of the workpiece 100 (hereinafter, the symbols are omitted in this column).
, and C t is the center of the cutter 4 . The center of the cutter 4 is moved down in a direction perpendicular to the cutter axis to the position shown in Figure 3, and the center is located at the second
Located at C t as shown in the figure. The cutter 4 is now driven. The outer cutter 6 and the inner cutter 7 draw circles 13 and 16. The cutter 4 is fed in the axial direction to cut into the workpiece, and then a cutting feed is applied to the cutter 4. Cutting feed is carried out by rotating the cutter 4 around the center C w with a radius of w t =δ, and at the same time rotating around the cutter axis. Regarding the outer cutter 6, the direction of rotation is a down cut, in which the cutter shaft is rotated counterclockwise when the cutter 4 rotates clockwise, or an up cut, in which the cutter shaft is rotated clockwise when the cutter 4 rotates clockwise. Depends on which one. When the direction of rotation of the cutter 4 is counterclockwise, the cutter shaft rotates clockwise when cutting down and counterclockwise when cutting up. This relationship is reversed for the inner cutter 7.
The rotation of the cutter shaft for feeding is performed, for example, by circularly moving the spindle head of a numerically controlled machine tool.

第2図に示すように外刃6の画く一定点におけ
る軌跡は円13であり、カツタ4が360度送られ
るとカツタ4の中心Ctは中心Cwを中心に回動す
るからカツタ4の半径D/2と動径δとの和D/
2+δを半径とする包絡線により外周円17(外
径d2)を形成する。内刃7の画く一定点における
軌跡は円16であり外刃6と同じくカツタ4の中
心Ctは中心Cwを中心に回動するから内刃7のカ
ツタ4の中心からの半径D1/2と動径δとの差
D1/2−δを半径とする包絡線により内周円1
8(外径d1+2β)を形成する。従つて少くともワ
ークの逃げ面3の外径d2と座2と逃げ面3の境界
部分の座2の根本の外径d1+2βの二つの円が形成
せられる。
As shown in Fig. 2, the locus at a fixed point drawn by the outer cutter 6 is a circle 13, and when the cutter 4 is fed 360 degrees, the center Ct of the cutter 4 rotates around the center Cw . Sum D/ of radius D/2 and vector radius δ
An outer circumferential circle 17 (outer diameter d 2 ) is formed by an envelope having a radius of 2+δ. The locus at a fixed point drawn by the inner cutter 7 is a circle 16, and like the outer cutter 6, the center Ct of the cutter 4 rotates around the center Cw , so the radius of the inner cutter 7 from the center of the cutter 4 is D 1 / 2 and the radius vector δ
The inner circumference 1 is determined by the envelope whose radius is D 1 /2 - δ.
8 (outer diameter d 1 +2β). Therefore, at least two circles are formed, the outer diameter d 2 of the flank 3 of the workpiece and the outer diameter d 1 +2β of the base of the seat 2 at the boundary between the seat 2 and the flank 3.

外径d2と座2の外径d1+2β間についてのべる。
第5図乃至第7図は夫々正面図である。第5図は
第2図に示すカツタ4の中心Ctが図示矢線で表示
する軌跡14を画いて90゜回動したときの逃げ面
3の切削箇所を示し、第6図は中心Ctが更に回動
して軌跡15を画いて180゜となつたときの逃げ面
3の切削箇所を示し、第7図はカツタ4の中心Ct
が360度回動したときの逃げ面3の切削箇所を示
している。第5図乃至第7図において外刃6にて
切削された箇所を右上りのハツチング、内刃7に
て切削された箇所を右下りのハツチングで示して
ある。両刃が共に通過した部分は両ハツチングは
交叉して示されている。従つて逃げ面3の外径d2
の部分と座2の根本の外径d1+2β間は端面切刃
9,12がカツタ4の軸に直交する平面上にある
ならば平面に切削される。端面切刃9,12に段
差を附しておくと、外刃6、内刃7の切刃の内逃
げ面3に一層深く入る側によるより深い円形溝を
形成することもできる。座2の半径方向の幅がβ
の部分は切刃11により円錘形に切削される。
This is about the distance between the outer diameter d 2 and the outer diameter d 1 +2β of seat 2.
5 to 7 are front views, respectively. FIG. 5 shows the cutting location on the flank 3 when the center C t of the cutter 4 shown in FIG . Fig. 7 shows the cutting location of the flank face 3 when the cutter further rotates and traces a locus 15 at an angle of 180° .
It shows the cutting location of flank face 3 when rotated 360 degrees. In FIGS. 5 to 7, the portions cut by the outer cutter 6 are shown by hatching on the upper right, and the portions cut by the inner cutter 7 are shown by hatching on the lower right. In the area where both blades passed together, both hatchings are shown intersecting. Therefore, the outer diameter d 2 of the flank surface 3
If the end face cutting edges 9 and 12 are on a plane perpendicular to the axis of the cutter 4, the area between the portion and the outer diameter d 1 +2β of the base of the seat 2 is cut flat. When the end face cutting blades 9 and 12 are provided with a step, it is also possible to form a deeper circular groove on the side that enters deeper into the inner flank face 3 of the cutting blades of the outer cutter 6 and the inner cutter 7. The radial width of seat 2 is β
The portion is cut into a conical shape by the cutting blade 11.

尚、第5図乃至第7図において上半円は完全円
形座の場合である。
In addition, in FIGS. 5 to 7, the upper semicircle is a completely circular seat.

この発明の切削方法におけるワークの寸法とカ
ツタ4の寸法の関係についてのべる。第8図はカ
ツタ4とワークの関係を示すワークを断面で示す
側面図である。カツタ4の外刃6の位置の外径を
D、内刃7の位置の直径をD1、とすると δ=1/2(d2−D) ……(1) 外刃6と内刃7の半径方向の距離Lは L=D−1/2{(d1+2β)+d2} ……(2) D1=d1+2β+d2−D ……(3) が成立つ。カツタ4がワークの逃げ面3の最大径
直径部と、座2と逃げ面3の境の座2の外径部を
切削し得て、且つ逃げ面3をくまなく切削して切
残さない条件を求めると 1/2{d2+(d1+2β)}≦D ≦1/4{3d2+(d1+2β)} ……(4) となる。式(4)の左辺は内刃7が座2の外径を確保
して切込まないため、あるいは逃げ面3の最大径
d2まで切削されるために必要な直径であり、式(4)
の右辺は外刃6、内刃7の端面側が画く第5図乃
至第7図に示した包絡面が切刃6の画く包絡面の
内径と切刃7の画く包絡面の外径が一致する位置
である。内刃7の部分の直径D1は式(3)より示め
ることができる。逆に式(3),(4)よりD,D1を規
定寸法であるとして即ち一定寸法の工具であると
して切削し得る逃げ面3の最大径d2、座2の外径
d1の範囲を求めることができる。即ち、一つの工
具により或る範囲の逃げ面3の加工が可能であ
る。カツタ4の動径δは式(1)により与えられこれ
は工作機械の主軸頭工具径路となる。
The relationship between the dimensions of the workpiece and the dimensions of the cutter 4 in the cutting method of this invention will be described. FIG. 8 is a side view showing a cross section of the workpiece, showing the relationship between the cutter 4 and the workpiece. Assuming that the outer diameter at the position of the outer cutter 6 of the cutter 4 is D and the diameter at the position of the inner cutter 7 is D 1 , δ = 1/2 (d 2 - D) ... (1) Outer cutter 6 and inner cutter 7 The distance L in the radial direction is L=D-1/2{( d1 +2β)+ d2 }...(2) D1 = d1 +2β+ d2 -D...(3). Conditions in which the cutter 4 can cut the maximum diameter part of the flank face 3 of the workpiece and the outer diameter part of the seat 2 at the boundary between the seat 2 and the flank face 3, and also cut the flank face 3 all over without leaving any uncut parts. 1/2 {d 2 + (d 1 + 2β)} ≦D ≦ 1/4 {3d 2 + (d 1 + 2β)} ...(4). The left side of equation (4) is because the inner blade 7 secures the outer diameter of the seat 2 and does not cut, or because the maximum diameter of the flank surface 3
d is the diameter required to be cut to 2 , and is expressed by formula (4)
The right side is defined by the end faces of the outer cutter 6 and the inner cutter 7. The inner diameter of the envelope defined by the cutting edge 6 and the outer diameter of the envelope defined by the cutting edge 7 match the envelope surfaces shown in FIGS. It's the location. The diameter D 1 of the inner cutter 7 can be expressed by equation (3). Conversely, from equations (3) and (4), assuming that D and D 1 are specified dimensions, that is, a tool of fixed dimensions, the maximum diameter d 2 of the flank 3 that can be cut, and the outer diameter of the seat 2.
The range of d 1 can be found. That is, it is possible to process a certain range of flank surface 3 with one tool. The radius vector δ of the cutter 4 is given by equation (1), and this becomes the tool path of the spindle head of the machine tool.

以上のとおり本願発明の方法によれば突出座の
逃げ面の加工において、剛性のないボーリングバ
ーによる一本バイト加工、或は突当加工の無理が
なく、カツタに送りを与え乍らフライス切削を行
うので切削が円滑で従来突当カツタによる切削不
可能な大径の座面外の逃げ面を切削することが可
能となり、切削時間も短くなり、びびりの発生も
なく面粗度ならびに面の形状精度のよい加工がで
きるようになると共に一本バイトによる面切削に
比較して加工時間は段取時間も加えても約5分の
1となつた。突当加工と異なり、一つのカツタで
種々のワークを加工することができるので工具を
夫々のワークに応じて準備する必要がなく少ない
工具で多種類のワークが加工可能となつた。
As described above, according to the method of the present invention, when machining the flank face of a protruding seat, there is no need to perform single-bite machining using a non-rigid boring bar or butt machining, and milling can be performed while feeding the cutter. This makes cutting smooth and enables cutting of large-diameter flank surfaces outside the bearing surface that cannot be cut with conventional butt cutters.Cutting time is also shortened, and there is no vibration, resulting in improved surface roughness and surface shape. It has become possible to perform highly accurate machining, and the machining time, including setup time, has been reduced to about one-fifth compared to surface cutting using a single cutting tool. Unlike butt machining, various workpieces can be machined with one cutter, so there is no need to prepare tools for each workpiece, and many types of workpieces can be machined with a small number of tools.

本発明の更に他の方法は外刃6と内刃7を一体
としたものであつて式(4)に示す左辺の等号附近の
カツタ4の外径Dの場合においてこの場合内刃7
はなく外刃6は外切刃8、端面切刃9の他に更に
第4図において符号10で示す部分に内切刃を附
す。もつともかくすることは供給チツプが限定さ
れ、チツプ寿命が短く、切削屑がカールしないで
のびるような材質の場合は適当でないが切削条件
によつては切削可能な場合も比較的あり工具が簡
単でよい。もつとも外刃6と内刃7を交互に円周
上に配して一体化によらなくても本発明の加工が
実施可能である。
Still another method of the present invention is to integrate the outer cutter 6 and the inner cutter 7, and in the case where the outer diameter D of the cutter 4 is around the equal sign on the left side of equation (4), in this case, the inner cutter 7
In addition to the outer cutting edge 8 and the end face cutting edge 9, the outer cutter 6 has an inner cutting edge at a portion indicated by the reference numeral 10 in FIG. In any case, the supply of chips is limited, the chip life is short, and it is not suitable for materials that allow cutting chips to spread without curling, but it may be possible to cut depending on the cutting conditions, and the tool is relatively simple. good. Of course, the processing of the present invention can be carried out even if the outer cutters 6 and the inner cutters 7 are not integrated by arranging them alternately on the circumference.

更に又他の方法は外刃6に上記内切刃10を設
けると共に内刃7を外刃6より軸方向に後退させ
ておくときは座2の端面、逃げ面3を同時に切削
することができる。
Furthermore, in another method, when the inner cutting edge 10 is provided on the outer cutter 6 and the inner cutter 7 is set back in the axial direction from the outer cutter 6, the end face and flank face 3 of the seat 2 can be cut at the same time. .

座2の端面を同時に加工する別の方法としては
外刃6、内刃7より内径側に軸方向に後退させた
第3の刃をおくことにより行うこともできる。
Another method for simultaneously machining the end face of the seat 2 is to place a third blade that is axially retreated from the outer cutter 6 and the inner cutter 7 on the inner diameter side.

次に本発明の方法の実施に用いるカツタについ
てのべる。第9図は本発明のカツタ4の軸心を含
む断面図である。第10図は第9図の正面図であ
る。円板形のカツタボデイ5の中心孔17はめね
じ18により主軸頭直接取付、又はフライスアー
バが嵌入可能となつており、主軸頭もしくはカツ
タアーバに固定した駒と回転に剛に係合する溝1
9を備えている。外径側には円周に切込み21が
与えられ外刃6が植込まれる。この植込みは図示
のロー付け溶接或は図示されないがスローアウエ
イ方式により固定される。その切刃部分は外切刃
8と端面切刃9が附され、図に表われている紙面
内側部分がすくい面となる。外刃6の位置の半径
より小な位置の半径の部分に内刃7が設けられ
る。内刃7は外刃6と円周方向において異なる位
置、あるいは充分離れている場合は同位置に設け
ることができる。内刃7はカツタボデイ5に刻設
した溝22に嵌入する工具柄23に図示ロー付け
或は図示されないがスローアウエイ方式により固
定されており、工具柄23に刻設せられためねじ
にカツタボデイ5の軸方向に穿設したリーマボル
ト孔を挿通してねじ込まれたリーマボルト24に
より工具柄23は固定されている。内刃7は内切
刃11と端面切刃12が附されている。
Next, the cutters used in carrying out the method of the present invention will be described. FIG. 9 is a sectional view including the axis of the cutter 4 of the present invention. FIG. 10 is a front view of FIG. 9. The center hole 17 of the disc-shaped cutter body 5 has a female screw 18 to which the spindle head can be directly attached or a milling arbor can be inserted therein, and there is a groove 1 that rigidly engages with a piece fixed to the spindle head or the cutter arbor in rotation.
It has 9. A notch 21 is provided on the circumference on the outer diameter side, and an outer cutter 6 is implanted therein. This implant is fixed by brazing welding as shown or by a throw-away method (not shown). The cutting edge portion has an outer cutting edge 8 and an end cutting edge 9, and the inner side of the paper surface shown in the figure becomes the rake surface. The inner cutter 7 is provided at a radius smaller than the radius of the outer cutter 6. The inner cutter 7 can be provided at a different position from the outer cutter 6 in the circumferential direction, or at the same position if they are sufficiently separated. The inner cutter 7 is fixed to a tool handle 23 that fits into a groove 22 cut in the cutter body 5, either by brazing as shown or by a throw-away method (not shown). The tool handle 23 is fixed by a reamer bolt 24 inserted through a reamer bolt hole drilled in the axial direction and screwed into the reamer bolt hole. The inner cutter 7 is provided with an inner cutting edge 11 and an end face cutting edge 12.

工具柄23は第10図に二点鎖線で示すように
幅を広くしてめねじを刻設すると共に、溝22,
をその幅に一致するように設けて工具柄23を滑
入し、調節ボルト25を該めねじにねじ込みカツ
タボデイ5のリーマボルト24のボルト孔を半径
方向の長孔にしておくと、調節ボルト25により
内刃7の半径方向の位置を調節できる。即ちボル
ト24を弛めておいて調節ボルト25を回動する
とその頭は溝22′の側端部を圧して工具柄23
を前進させる。後退させるときは調節ボルト25
を逆に回転し、隙間26にてこを入れて工具柄2
3を後退させる。あるいは隙間26のある溝22
の一側26′にテーパを軸方向に附しておいて隙
間26に密に嵌入するテーパギブを挿入してテー
パギブの移動手段を備えて工具柄23を後退させ
同時に固定してもよい。
The tool handle 23 has a wide width as shown by the two-dot chain line in FIG.
If the bolt hole of the reamer bolt 24 of the cutter body 5 is made a long hole in the radial direction, the adjustment bolt 25 will be The radial position of the inner cutter 7 can be adjusted. That is, when the adjusting bolt 25 is rotated with the bolt 24 loosened, its head presses against the side end of the groove 22' and the tool handle 23 is rotated.
advance. When reversing, use adjustment bolt 25
Rotate in the opposite direction, insert a lever into the gap 26, and remove the tool handle 2.
Move 3 back. Or a groove 22 with a gap 26
One side 26' may be tapered in the axial direction, and a taper gib that tightly fits into the gap 26 may be inserted, and a means for moving the taper gib may be provided to move the tool handle 23 backward and fix it at the same time.

更に又内刃7の位置より半径の小な位置に内刃
7の軸方向の位置より後退させた第3の工具チツ
プを備えるときは座2も同時にフライス切削する
ことができる。この第3の工具チツプに半径方向
及び軸方向の移動調節手段を備えると利用範囲が
大きい。
Furthermore, when a third tool tip is provided at a position with a smaller radius than the position of the inner cutter 7 and set back from the position of the inner cutter 7 in the axial direction, the seat 2 can also be milled at the same time. If this third tool tip is provided with means for adjusting movement in the radial and axial directions, the range of use is wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は文発明の加工方法を示す一部断面で示
す側面図、第2図は第1図の正面図、第3図は第
1図の側面図、第4図は第3図の一部拡大図、第
5図乃至第7図は本発明の加工方法による加工状
態を示す正面図、第8図は本発明において用いら
れる工具寸法を示す側面図、第9図は本発明にお
いて用いられる切削工具例の断面図、第10図は
第9図の正面図である。 1…円孔、2…座、3…逃げ面、4…カツタ、
5…カツタボデイ、6…外刃、7…内刃、8…外
切刃、9,12…端面切刃、10,11…内切
刃、13,16…円、14,15…軌跡、100
…ワーク。
Figure 1 is a partially sectional side view showing the processing method of the invention, Figure 2 is a front view of Figure 1, Figure 3 is a side view of Figure 1, and Figure 4 is a view of Figure 3. 5 to 7 are front views showing machining conditions by the machining method of the present invention, FIG. 8 is a side view showing dimensions of the tool used in the present invention, and FIG. 9 is a side view showing the dimensions of the tool used in the present invention. A sectional view of an example cutting tool, FIG. 10 is a front view of FIG. 9. 1... circular hole, 2... seat, 3... flank, 4... cutlet,
5... cutter body, 6... outer cutter, 7... inner cutter, 8... outer cutting edge, 9, 12... end face cutting edge, 10, 11... inner cutting edge, 13, 16... circle, 14, 15... locus, 100
…work.

Claims (1)

【特許請求の範囲】 1 円形座外周に逃げ面を有するワークの加工に
おいて、端面にその中心から円形の突出座の半径
に動径を加えた半径の円の外側に接して逃げ面に
作用する刃を有する回転工具の中心を円形座中心
よりずらせた位置において回転すると共に回転工
具中心を円形座中心を中心とする半径を動径とし
て回動することにより円形座逃げ面と円形座外周
を加工する突出座の逃げ面の加工方法。 2 逃げ面に作用する刃として外刃、内刃を軸方
向同一平面上に形成し、外刃に外切刃、内刃に内
切刃、外刃、内刃各々に端面切刃を備えた回転工
具により円形座逃げ面と円形座外周を加工する特
許請求の範囲第1項記載の突出座の逃げ面の加工
方法。 3 円形座外周に逃げ面を有するワークの加工に
おいて、端面にその中心から円形の突出座の半径
に動径を加えた半径の円の外側に接して逃げ面に
作用する刃を有すると共に該逃げ面に作用する刃
よりも内径側で円形座面に作用する刃を前記逃げ
面に作用する刃より軸方向に後退させた位置に備
えた回転工具中心を円形座中心よりずらせた位置
において回転すると共に回転工具中心を円形座中
心を中心とする半径を動径として回動することに
より円形座逃げ面と円形座外周及び円形座面を加
工する突出座の逃げ面の加工方法。 4 逃げ面に作用する刃として、外刃、内刃を軸
方向同一平面上に形成し、外刃に外切刃、内刃に
内切刃、外刃、内刃各々に端面切刃を配すると共
に円形座面に作用する刃として前記外刃、内刃よ
り後退させた位置に半径方向の刃を備えた回転工
具により円形座逃げ面と円形座外周及び円形座面
を加工する特許請求の範囲第3項記載の突出座の
逃げ面の加工方法。
[Claims] 1. In machining a workpiece that has a flank on the outer periphery of a circular seat, an end face that is in contact with the outside of a circle whose radius is the sum of the radius of the circular protruding seat from its center and acts on the flank. The center of a rotary tool with a blade is rotated at a position offset from the center of the circular seat, and the center of the rotary tool is rotated using a radius around the center of the circular seat to process the flank face of the circular seat and the outer periphery of the circular seat. Machining method for flank surface of protruding seat. 2 The outer cutter and inner cutter are formed on the same plane in the axial direction as the blades that act on the flank, the outer cutter has an outer cutting edge, the inner cutter has an inner cutting edge, and each of the outer cutter and the inner cutter has an end face cutting edge. A method for machining a flank face of a protruding seat according to claim 1, wherein the flank face of the circular seat and the outer periphery of the circular seat are machined using a rotary tool. 3. When machining a workpiece that has a relief surface on the outer periphery of a circular seat, the edge surface has a blade that touches the outside of a circle whose radius is the sum of the radius of the circular protruding seat from its center and acts on the relief surface. The rotary tool is equipped with a blade that acts on the circular seat on the inner diameter side of the blade that acts on the surface and is set back in the axial direction from the blade that acts on the flank.The rotary tool rotates at a position where the center is offset from the center of the circular seat. A method for machining a flank face of a protruding seat in which a circular seat flank face, a circular seat outer periphery, and a circular seat face are machined by rotating the center of a rotary tool with a radius around the center of the circular seat as a radius vector. 4 As the blades that act on the flank, the outer cutter and the inner cutter are formed on the same plane in the axial direction, the outer cutter has an outer cutting edge, the inner cutter has an inner cutting edge, and each of the outer cutter and the inner cutter has an end face cutting edge. At the same time, the circular seat flank surface, the circular seat outer periphery, and the circular seat surface are processed by a rotary tool having a radial blade at a position set back from the outer cutter and the inner cutter as a blade that acts on the circular seat surface. A method for machining a flank surface of a protruding seat according to scope 3.
JP25964384A 1984-12-07 1984-12-07 Method of machining projecting seat Granted JPS60146611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25964384A JPS60146611A (en) 1984-12-07 1984-12-07 Method of machining projecting seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25964384A JPS60146611A (en) 1984-12-07 1984-12-07 Method of machining projecting seat

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16206279A Division JPS6049529B2 (en) 1979-12-13 1979-12-13 protruding seat cutting tool

Publications (2)

Publication Number Publication Date
JPS60146611A JPS60146611A (en) 1985-08-02
JPS6365450B2 true JPS6365450B2 (en) 1988-12-15

Family

ID=17336906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25964384A Granted JPS60146611A (en) 1984-12-07 1984-12-07 Method of machining projecting seat

Country Status (1)

Country Link
JP (1) JPS60146611A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE274027T1 (en) * 1987-01-05 1989-01-26 Gte Valenite Corp., Troy, Mich. MULTI-EDGE THREAD MILLING DEVICE.
DE102011082053A1 (en) * 2011-09-02 2013-03-07 Siemens Aktiengesellschaft Method and device for producing an axial annular groove in a workpiece
US11247280B2 (en) * 2014-11-28 2022-02-15 Sandvik Intellectual Property Ab Rotatable tool for forming by metal cutting a circular groove
EP3025812B1 (en) * 2014-11-28 2019-07-31 Sandvik Intellectual Property AB Method for forming by metal cutting a circular groove

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264086A (en) * 1975-11-21 1977-05-27 Yuzuru Kusama Step hole working circular cutter which makes planetary motion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817685Y2 (en) * 1977-01-31 1983-04-11 三菱重工業株式会社 Back counterbore processing equipment for large diameter deep holes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264086A (en) * 1975-11-21 1977-05-27 Yuzuru Kusama Step hole working circular cutter which makes planetary motion

Also Published As

Publication number Publication date
JPS60146611A (en) 1985-08-02

Similar Documents

Publication Publication Date Title
US4265574A (en) Combined boring and milling tool
KR100480521B1 (en) How to Form Workpiece Removal Tool and Undercut Groove
US5704736A (en) Dove-tail end mill having replaceable cutter inserts
KR100371594B1 (en) Milling tools and methods for machining circular openings with a defined range of diameters inside solid materials
JPH08206908A (en) Plunge milling machine and insert
US5984592A (en) Rotary cutting tools
JPH11254218A (en) Composite cutter tool mainly for hole machining, and machining method
CZ2004754A3 (en) Cutting tool and a holder for chip removing machining
JP2006281433A (en) Insert and cutting tool
US6540446B2 (en) Cylindrical cutting blade and cutter head assembly which carries the cutting blade
JPS6365450B2 (en)
CN216575732U (en) Milling cutter tool
JPH09192930A (en) Thread cutter
JP2008100316A (en) Cutting tool, and finishing blade insert
JPH031138Y2 (en)
JPH07204920A (en) End mill
US3561170A (en) Method of making indexable pre-spun cutting inserts
JP3903717B2 (en) Tapered hole machining method and tapered hole machining tool
JP2606415Y2 (en) Side cutter for grooving
JPH08294809A (en) Square hole working tool
US4991986A (en) Milling cutter having face and peripheral cutting edges
JPS6049529B2 (en) protruding seat cutting tool
JPH07178611A (en) Face cutter and method of cutting workpiece
JPH1133815A (en) Thrust machining tool
JPH11347803A (en) Throwaway tip and ram machining cutter