JPS6365069A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS6365069A
JPS6365069A JP20951686A JP20951686A JPS6365069A JP S6365069 A JPS6365069 A JP S6365069A JP 20951686 A JP20951686 A JP 20951686A JP 20951686 A JP20951686 A JP 20951686A JP S6365069 A JPS6365069 A JP S6365069A
Authority
JP
Japan
Prior art keywords
substrate
substrates
target
magnetic material
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20951686A
Other languages
Japanese (ja)
Inventor
Yoichi Oshita
陽一 大下
Yukio Nakagawa
中川 由岐夫
Hidetsugu Setoyama
英嗣 瀬戸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20951686A priority Critical patent/JPS6365069A/en
Publication of JPS6365069A publication Critical patent/JPS6365069A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form magnetic material films having a uniform film thickness distribution by impressing parallel magnetic fields to substrates and rotating and revolving the substrates relative to a target at the time of forming the magnetic material film on the substrate in the vacuum vessel. CONSTITUTION:The plural substrates 14 are disposed to face the target to a substrate holder 24 is the vacuum vessel 1 an a gaseous Ar atmosphere of a low pressure is maintained in the vessel 1. Glow discharge is generated between the target electrode and the substrate electrodes to form the magnetic material films consisting of the target material on the surfaces of the substrates 14. The magnetron magnetic fields are generated on the front faces of the target by permanent magnets so that the target particles sputtered by high- density plasma form the thin films on the substrates 14. The parallel magnetic fields are impressed to the substrates 14 by the permanent magnets 15 and the substrate holder revolves 29 around the axis; in addition, the plural substrates 14 rotate 30 respectively around their axes; therefore, the magnetic material films having uniform thickness are easily formed on the substrates 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスパッタ装置に係り、特に、膜厚分布の均一な
磁性体膜を成膜できる構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sputtering apparatus, and particularly to a configuration capable of forming a magnetic film with a uniform thickness distribution.

〔従来の技術〕[Conventional technology]

磁気記録方式の高密度化を目的とし、磁気ヘッドの小型
化を図るため、薄膜プロセスを用いて作成した薄膜磁気
ヘッドがある。この中で、コア材料である磁性体膜では
膜の磁気特性を満たすため、−軸異方性をつける必要が
あり、成膜には特別の工夫を要する。1[の材料はパー
マロイ(鉄、ニッケルの合金)をはじめ、合金材料、成
分比等で種々のものが用いられるが、いずれも基本的な
考え方は以下に述べるものと同じである。薄膜の製法に
ついても、スパッタ法、メッキ法等が一般的に用いられ
るが、ここではスパッタ法について述べる。
For the purpose of increasing the density of magnetic recording systems and miniaturizing magnetic heads, there are thin-film magnetic heads manufactured using a thin-film process. Among these, the magnetic film that is the core material needs to have -axis anisotropy in order to satisfy the magnetic properties of the film, and special measures are required to form the film. Various materials are used for the material 1, including permalloy (an alloy of iron and nickel), alloy materials, component ratios, etc., but the basic idea is the same as described below. Sputtering methods, plating methods, and the like are generally used for manufacturing thin films, and the sputtering method will be described here.

磁性体膜を成膜する際に求められる特性は、先に述べた
一軸異方性を付与することにより得られる磁気特性と、
基板面内での膜厚分布の均一性。
The properties required when forming a magnetic film are the magnetic properties obtained by imparting uniaxial anisotropy as described above, and
Uniformity of film thickness distribution within the substrate plane.

及び段差部での膜厚を確保する点にある。and securing the film thickness at the step portion.

−軸異方性の付与は成膜時に基板に平行磁界を印加する
ことによりなされる6通常は外部に空芯コイルを置き、
これに通電することにより磁界を発生している。このと
き基板と磁界の向きを相対的に固定して成膜することが
重要である。すなわち、例えば、基板を回転させるとき
、印加磁界も同一の角速度で同一方向に回転させなけれ
ばならない、従って、以下に述べる自転、もしくは自公
転運動、もしくは、基板傾斜等の基板の運動を考えると
きの大きな障害となっていた。
-Axis anisotropy is imparted by applying a parallel magnetic field to the substrate during film formation.6 Usually, an air-core coil is placed externally.
By energizing this, a magnetic field is generated. At this time, it is important to form a film while fixing the direction of the magnetic field relative to the substrate. That is, for example, when the substrate is rotated, the applied magnetic field must also be rotated in the same direction at the same angular velocity.Therefore, when considering the movement of the substrate such as rotation, rotational movement, or substrate tilt as described below. This was a major obstacle.

一方、膜厚分布の均一化の問題では、一枚の基板内での
膜厚不均一を改善するため自転運動が、又、同時に処理
される複数枚の基板変動を少なくするために公転運動が
なされる。特開昭58−1745577号公報の様に、
両者を同時に実現した自公転運動を可能にするものもあ
る。
On the other hand, in the problem of uniformity of film thickness distribution, rotational motion is used to improve the unevenness of film thickness within a single substrate, and orbital motion is used to reduce fluctuations in multiple substrates that are processed at the same time. It will be done. As in Japanese Patent Application Laid-open No. 58-1745577,
There are some that achieve both at the same time and enable rotation and revolution.

次に、基板面内に作成された段差部で膜厚確保の問題が
ある。これに対しては、例えば、特開昭56−1567
65号公報に述べられている様に、基板設置台をターゲ
ットに対し傾斜させるのが良い。
Next, there is the problem of ensuring film thickness at the stepped portion created within the plane of the substrate. In contrast, for example, JP-A-56-1567
As described in Japanese Patent No. 65, it is preferable to tilt the substrate mounting table with respect to the target.

このように、膜厚分布の均−化及び段差部での膜厚確保
の観点から、基板の自公転運動及び基板傾斜保持が有効
であるが、基板に磁界を印加する方式では印加磁界を基
板と共に自公転及び傾斜させることが必要となり、不可
能か、又は、出来ても装置が非常に大がかりになる。
In this way, from the perspective of equalizing the film thickness distribution and ensuring film thickness at stepped portions, it is effective to rotate the substrate and maintain the substrate tilt.However, in the method of applying a magnetic field to the substrate, the applied magnetic field is At the same time, it is necessary to rotate and tilt the device, which is either impossible or would require a very large-scale device.

[発明が解決しようとする問題点〕 このように従来技術では、磁性体膜に一軸異方性を付与
するため、成膜時基板に平行磁界を印加する方法がとら
れていたが、これによると膜厚の均一性を確保するため
の基板の運動について配慮されておらず、非常に大がか
りになる問題があった。
[Problems to be solved by the invention] As described above, in the conventional technology, in order to impart uniaxial anisotropy to a magnetic film, a method was used in which a parallel magnetic field was applied to the substrate during film formation. The problem was that no consideration was given to the movement of the substrate to ensure uniformity of film thickness, resulting in a very large-scale problem.

を得ることにある。It's about getting.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要点は、基板毎に永久磁石で磁界を印加するこ
とにより、磁界印加系と基板を組にして独立した系とし
、この系を単位として自公転運動、又、基板を傾斜させ
るようにしたことである。
The main point of the present invention is that by applying a magnetic field to each substrate using a permanent magnet, the magnetic field application system and the substrate are combined into an independent system, and this system can be used as a unit to perform rotation-revolution motion or to tilt the substrate. That's what I did.

〔作用〕[Effect]

その結果、基板の回転・傾斜等の動作に伴って一体に構
成された永久磁石も同時に回転・傾斜するため、基板に
印加される平行磁界も基板との相対位置関係を失なうこ
となく追従動作する。さらに基板毎に永久磁石を設ける
ことができ、この結果、多数の基板を同時に処理する場
合でも、基板間の規制がなく、全く独立した運動が可能
である。
As a result, as the board rotates and tilts, the integrated permanent magnet also rotates and tilts at the same time, so the parallel magnetic field applied to the board also follows without losing its relative positional relationship with the board. Operate. Furthermore, a permanent magnet can be provided for each substrate, and as a result, even when a large number of substrates are processed at the same time, there is no regulation between the substrates and completely independent movements are possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する0図で
は、真空容器1内にターゲット電極2及び基板側電極3
が配置されている。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. 1. In FIG.
is located.

真空容器1内は排気口5より図示しない排気装置により
、通常10−’TorrTorr台真空に排気した後、
給気口4より図示しないガス供給系により所望の、例え
ば、アルゴンガスを流量制御しながら供給し、真空容器
1の中を、例えば、10−2〜l O−’ Torr台
の一定の雰囲気ガス圧に保つ。
After the inside of the vacuum container 1 is evacuated to a vacuum level of usually 10-'Torr by an exhaust device (not shown) through the exhaust port 5,
A desired amount of, for example, argon gas is supplied from the air supply port 4 through a gas supply system (not shown) while controlling the flow rate, and the inside of the vacuum container 1 is kept at a constant atmospheric gas of, for example, 10-2 to 1 O-' Torr. Keep it under pressure.

ターゲット電極2は、絶縁物6により真空容器1により
絶縁保持されたターゲット7、永久磁石8、永久磁石8
から出る磁束の帰路を与える鉄心9、及び、それらを収
納する容1610と、真空容器1と同電位のアースシー
ルド11からなる。
The target electrode 2 includes a target 7 , a permanent magnet 8 , and a permanent magnet 8 that are insulated and held in the vacuum container 1 by an insulator 6 .
It consists of an iron core 9 that provides a return path for the magnetic flux emitted from the core, a container 1610 that houses them, and an earth shield 11 that has the same potential as the vacuum container 1.

基板電極3は絶縁物12により真空容器1から絶縁保持
さた基板ホルダ13と、基板ホルダ13に保持された基
板14と、基板14に平行磁場を印加する永久磁石15
からなる。
The substrate electrode 3 includes a substrate holder 13 that is insulated from the vacuum container 1 by an insulator 12, a substrate 14 held by the substrate holder 13, and a permanent magnet 15 that applies a parallel magnetic field to the substrate 14.
Consisting of

電気的には、真空容器1は通常接地電位とし、ターゲッ
トにはグロー放電を維持する負の電源を接続する。目的
によっては主に13.56MHzの高周波電源も多用さ
れる。基板電極3はここでは接地電位としているが、バ
イアススパッタの目ターゲット電極2と基板電極3の間
にグロー放電が生じ、プラズマが形成される。このとき
、ターゲット7の前面には、ここで永久磁石8によりマ
グネトロン磁場が発生しており、局部的に高密度のプラ
ズマが生じる。これによりスパッタされた粒子は基板1
4上に付着して薄膜を形成する。ここで、基板14には
永久磁石15により平行磁場が印加されており、基板1
4上に生成された膜には永久磁石15で印加された磁界
の向きに磁化容易軸をもつ一軸異方性が付与される。
Electrically, the vacuum vessel 1 is normally at ground potential, and the target is connected to a negative power source that maintains glow discharge. Depending on the purpose, a high frequency power source of 13.56 MHz is often used. Although the substrate electrode 3 is at ground potential here, glow discharge occurs between the target electrode 2 and the substrate electrode 3 during bias sputtering, and plasma is formed. At this time, a magnetron magnetic field is generated by the permanent magnet 8 in front of the target 7, and high-density plasma is generated locally. As a result, the sputtered particles are transferred to the substrate 1.
4 to form a thin film. Here, a parallel magnetic field is applied to the substrate 14 by a permanent magnet 15, and the substrate 14 is
The film formed on the film is given uniaxial anisotropy with an axis of easy magnetization in the direction of the magnetic field applied by the permanent magnet 15.

さられ、基板側電極3は回転駆動機構17に接続され、
基板14は自身の中心を回転軸とする、いわゆる、自転
運動18が可能となっているこれにより、成膜中、自転
運動を続ける結果、基板14面上に生成された膜の膜厚
分布を均一化することができる。ここで、基板14は永
久磁石15と一体に回転駆動されるため、印加される磁
場との相対位置関係は自転動作中不変のため、作成した
膜に良好な磁気特性が付与できる。
The substrate side electrode 3 is connected to the rotational drive mechanism 17,
The substrate 14 is capable of rotational movement 18 with its own center as the rotation axis.As a result of this continuous rotational movement during film formation, the film thickness distribution of the film formed on the surface of the substrate 14 can be controlled. It can be made uniform. Here, since the substrate 14 is rotationally driven together with the permanent magnet 15, the relative positional relationship with the applied magnetic field remains unchanged during the rotation operation, so that good magnetic properties can be imparted to the produced film.

第2図に基板面の正面図を示す0本例では図示のようバ
捧状の永久磁石15を対にして用いることにより、簡単
な磁石形状で基板14の範囲内に平行性の良い磁界19
を印加することが出来る。
FIG. 2 shows a front view of the substrate surface. In this example, by using a pair of bar-like permanent magnets 15 as shown in the figure, a magnetic field 19 with good parallelism is generated within the range of the substrate 14 with a simple magnet shape.
can be applied.

第3図は、さらに、磁界19が周辺でふくらむのを防止
するため、永久磁石15の端部に磁性体でできた突起2
0を設けたものである。これにより磁界19の平行性が
さらに改善される。
FIG. 3 further shows a protrusion 2 made of magnetic material at the end of the permanent magnet 15 in order to prevent the magnetic field 19 from expanding around the periphery.
0 is set. This further improves the parallelism of the magnetic field 19.

第4図は永久磁石15の周辺に磁界の帰路を構成する鉄
心21を設けたものである。これにより同一の磁石の大
きさで磁界の強さを約二倍以上に強める。又は、磁石サ
イズを小型化できる。
In FIG. 4, an iron core 21 is provided around the permanent magnet 15 to form a return path for the magnetic field. This more than doubles the strength of the magnetic field with the same magnet size. Alternatively, the magnet size can be reduced.

第5図は板状磁石22と基板14を重ね合わせた構成で
あり、基板の取付は密度を上げる場合に有効となる。
FIG. 5 shows a structure in which a plate magnet 22 and a substrate 14 are stacked on top of each other, and mounting of the substrate is effective when increasing the density.

第6図と第7図に多数枚の基板を同時に処理する場合の
基板ホルダの構成例を示す、第6図は断面図、第7図は
正面図である。これは第1図の構−成に加え、真空容器
1に取付けた大径歯車と、基し騰ホルダ23の外周部に
設けた歯車部27をかみ合わせ、さらに回転摺動支持部
28を介して公転部24に取付けたものである。こうす
ることにより、回転駆動機[17で公転部24を矢印2
9の方向に回転させると、基板ホルダ23は歯車部27
により矢印30の回転駆動を実現することができる。基
板14と永久磁石15の配置は第1図のものと同一のま
ま、その組数を増すだけで本実施例の機構を用いること
により多数枚の基板を同時に処理できる。自公転機構を
実現することが可能となる。ここで、自転運動により基
板面内の膜厚分布均一性の改善が、公転運動により基板
間の変動幅の改善がなされる。
FIGS. 6 and 7 show an example of the configuration of a substrate holder for processing a large number of substrates at the same time. FIG. 6 is a sectional view, and FIG. 7 is a front view. In addition to the configuration shown in FIG. It is attached to the revolution part 24. By doing this, the rotational drive machine [17 moves the revolution part 24 in the direction indicated by the arrow 2].
When rotated in the direction 9, the substrate holder 23 rotates into the gear portion 27.
The rotational drive of the arrow 30 can be realized by this. The arrangement of the substrates 14 and permanent magnets 15 remains the same as in FIG. 1, and by simply increasing the number of sets, a large number of substrates can be processed simultaneously by using the mechanism of this embodiment. It becomes possible to realize a rotation-revolution mechanism. Here, the rotational motion improves the uniformity of the film thickness distribution within the substrate plane, and the orbital motion improves the variation width between the substrates.

このときのターゲット形状は、はぼ、基板設置範囲に対
応する大面積ターゲットとすることも可能であるが、第
8図のように、小面積のターゲット電極2を複数個配置
する、又は、第9図のように、ターゲット電極2と基板
加熱ヒータ31を交互に並べることも可能である。真空
中では1aJ当たり9.8 Nの力が加わるため、ター
ゲットの大泗積化はその強度設計上不必要に厚くするこ
とが必要となり、小面積のターゲットを複数測置いた方
が有利となる場合が多い、又1作成する膜の材料により
適正温度が変るが、一般には、ある程度の温度管理が必
要となる場合が多い。
The target shape at this time can be a large-area target corresponding to the substrate installation range, but it is also possible to arrange a plurality of small-area target electrodes 2 as shown in FIG. As shown in FIG. 9, it is also possible to alternately arrange the target electrodes 2 and substrate heaters 31. In a vacuum, a force of 9.8 N per 1aJ is applied, so if the target is made large, it is necessary to make it unnecessarily thick due to its strength design, and it is more advantageous to place multiple small-area targets. In many cases, the appropriate temperature varies depending on the material of the film to be produced, but in general, a certain degree of temperature control is often required.

以上、基板とターゲットが平行平板状に対向している例
を示したが、第10図に同軸円筒状に対向している例を
示す1図ではターゲット7がターゲット支持台32に絶
縁支持され、基板14が永久磁石15と共に一体に固定
されている基板ホルダ23が回転環33に円筒状に回転
摺動可能に等間隔に配置されている0回転環33を図示
しない外部駆動系により、矢印29の方向に回転させる
と、基板ホルダ23は歯車部27の効果により図示しな
い大径歯車との作用で矢印30の回転運動を実現できる
。ここでは外周に基板、内周側にターゲットを配置した
が、逆に外周側にターゲット、内周側に基板を配置する
ことも可能である。
Above, an example has been shown in which the substrate and the target face each other in a parallel plate shape, but in FIG. The substrate holder 23 to which the substrate 14 is integrally fixed together with the permanent magnet 15 rotates and slides around the rotation ring 33 in a cylindrical shape and is arranged at equal intervals so as to be rotatable and slidable. When the substrate holder 23 is rotated in the direction indicated by the arrow 30, the effect of the gear portion 27 allows the substrate holder 23 to realize the rotational movement indicated by the arrow 30 through the action of the large-diameter gear (not shown). Here, the substrate is arranged on the outer periphery and the target is arranged on the inner periphery, but it is also possible to arrange the target on the outer periphery and the substrate on the inner periphery.

第11図、第12図に基板傾斜機構を備えた例を示す、
第11図は断面図、第12図は正面図である0図におい
て、真空容器1内に大径歯車26が部材34を介して固
着されている。公転部24は摺動可能に真空容器1に支
持され、部材35の歯車部36を介して回転駆動機構1
7に接続されている。基板及び永久磁石を挿着する基板
ホルダ13は傾斜ガイド37に摺動可能に支持され、歯
車部27で大径歯車26に接続されている自転駆動部材
38に球形接合部39を介して接合される。
FIGS. 11 and 12 show an example equipped with a substrate tilting mechanism,
11 is a sectional view, and FIG. 12 is a front view. In FIG. 0, a large-diameter gear 26 is fixed in the vacuum container 1 via a member 34. The revolution part 24 is slidably supported by the vacuum container 1 and is connected to the rotational drive mechanism 1 via a gear part 36 of a member 35.
7 is connected. A substrate holder 13 into which a substrate and a permanent magnet are inserted is slidably supported by an inclined guide 37, and is joined via a spherical joint 39 to a rotation drive member 38 connected to a large-diameter gear 26 at a gear portion 27. Ru.

自転駆動部材38は公転部24に摺動可能に支持されて
いる、さらに、傾斜調整機構40を外部がら回転操作す
ることにより、ねじ部41を介して接続されている部材
42を矢印43の方向に駆動し、その結果、傾斜ガイド
の角度が変わり、基板ホルダ13の傾斜角度を制御する
ことが可能となっている6以上の構成で回転駆動機構1
7が回転することにより、公転部を経て基板ホルダ13
の公転運動が得られ、歯車部27の作用により同時に自
転運動も得られる。この公転速度は比較的ゆっくりした
ものであり、動作中に傾斜調整機構40を手動操作する
ことにより傾斜角度を変更することが可能である。モー
タ等の駆動機構を備えることにより、これも自動化する
ことは当然可能である。
The rotation drive member 38 is slidably supported by the revolution part 24. Furthermore, by rotating the inclination adjustment mechanism 40 from the outside, the member 42 connected via the threaded part 41 is rotated in the direction of the arrow 43. The rotational drive mechanism 1 has six or more configurations, and as a result, the angle of the tilt guide changes, making it possible to control the tilt angle of the substrate holder 13.
7 rotates, the substrate holder 13 passes through the revolution part.
A revolution motion is obtained, and an autorotation motion is also obtained at the same time due to the action of the gear portion 27. This revolution speed is relatively slow, and the inclination angle can be changed by manually operating the inclination adjustment mechanism 40 during operation. Of course, this can also be automated by providing a drive mechanism such as a motor.

本実施例によれば、自公転運動に加えて、基板傾斜角度
も制御可能になることにより、基板表面に作成された段
差部への膜厚を、傾斜角度を適切に制御することにより
、所望の厚さが得られる様になる特徴をもつ。
According to this embodiment, in addition to the rotational movement, it is also possible to control the substrate inclination angle, so that the film thickness on the stepped portion created on the substrate surface can be adjusted to the desired thickness by appropriately controlling the inclination angle. It has the characteristic that it is possible to obtain a thickness of .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、一つの基板面内の膜厚分布の均一性を
改善することができ、多数枚の基板を同時に処理する際
に、基板面での膜厚変動も少なくすることができる。
According to the present invention, it is possible to improve the uniformity of the film thickness distribution within the plane of one substrate, and when processing a large number of substrates at the same time, it is possible to reduce variations in the film thickness on the substrate plane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図はf51図
の要部を示す正面図、第3図yt第4図。 第5図は第2図の変形例図、第6図は本発明の他の実施
例の断面図、第7図は第6図の正面図、第8図、第9図
は異なる部位を示す正面図、第10図は異なる実施例を
示す断面図、第11図は基板傾斜角度を備えた例の断面
図、第12図は第11図の正面図である。 1・・・真空容器、7・・・ターゲット、14・・・裁
板。 18.30・・・自転回転、15・・・永久磁石、29
・・・乎612] 専(Oの 塾1]区
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a front view showing the main parts of FIG. FIG. 5 is a modification of FIG. 2, FIG. 6 is a sectional view of another embodiment of the invention, FIG. 7 is a front view of FIG. 6, and FIGS. 8 and 9 show different parts. 10 is a sectional view showing a different embodiment, FIG. 11 is a sectional view of an example with a substrate tilt angle, and FIG. 12 is a front view of FIG. 11. 1...Vacuum container, 7...Target, 14...Cutting board. 18.30... Rotation, 15... Permanent magnet, 29
...乎612] SEN (O's cram school 1) Ward

Claims (1)

【特許請求の範囲】 1、真空容器と前記真空容器より電気的に絶縁支持され
たターゲットと、前記ターゲットと略対向位置に支持さ
れた基板とからなり、前記基板は該基板の略中心を軸に
自転回転駆動されるものにおいて、 前記基板は前記基板面に略平行な磁界を発生するように
配置した一つもしくは一対の永久磁石と組にし、かつ、
相対的位置を固定して配置したことを特徴とするスパッ
タ装置。 2、特許請求の範囲第1項において、 前記基板は複数枚よりなり、それらの略中心軸に公転回
転運動されることを特徴とするスパッタ装置。
[Scope of Claims] 1. Consisting of a vacuum container, a target electrically insulated and supported from the vacuum container, and a substrate supported at a position substantially opposite to the target, the substrate having an axis centered approximately at the center of the substrate. In the device that is driven to rotate on its own axis, the substrate is paired with one or a pair of permanent magnets arranged to generate a magnetic field substantially parallel to the substrate surface, and
A sputtering device characterized by being arranged with fixed relative positions. 2. The sputtering apparatus according to claim 1, wherein the substrate is made up of a plurality of substrates and is rotated around their central axes.
JP20951686A 1986-09-08 1986-09-08 Sputtering device Pending JPS6365069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20951686A JPS6365069A (en) 1986-09-08 1986-09-08 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20951686A JPS6365069A (en) 1986-09-08 1986-09-08 Sputtering device

Publications (1)

Publication Number Publication Date
JPS6365069A true JPS6365069A (en) 1988-03-23

Family

ID=16574086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20951686A Pending JPS6365069A (en) 1986-09-08 1986-09-08 Sputtering device

Country Status (1)

Country Link
JP (1) JPS6365069A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143274A (en) * 1990-10-05 1992-05-18 Shinku Kikai Kogyo Kk Thin film forming device
FR2732362A1 (en) * 1995-03-31 1996-10-04 Balzers Hochvakuum Planetary cathodic sputter deposition station for optical or opthalmic lenses
KR100295551B1 (en) * 1998-11-14 2001-07-12 손명호 Conductive metal coating method and aparatus thereof
JP2002194542A (en) * 2000-12-27 2002-07-10 Anelva Corp Magnetron sputtering equipment
JP2009138277A (en) * 2009-01-27 2009-06-25 Canon Anelva Corp Magnetron sputtering apparatus
WO2009081953A1 (en) * 2007-12-26 2009-07-02 Canon Anelva Corporation Sputtering apparatus, sputter film forming method, and analyzer
JP2010248562A (en) * 2009-04-15 2010-11-04 Showa Shinku:Kk Magnetron cathode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143274A (en) * 1990-10-05 1992-05-18 Shinku Kikai Kogyo Kk Thin film forming device
FR2732362A1 (en) * 1995-03-31 1996-10-04 Balzers Hochvakuum Planetary cathodic sputter deposition station for optical or opthalmic lenses
US5911861A (en) * 1995-03-31 1999-06-15 Balzers Aktiengesellschaft Coating station
US6123814A (en) * 1995-03-31 2000-09-26 Balzers Aktiengesellschaft Coating station
KR100295551B1 (en) * 1998-11-14 2001-07-12 손명호 Conductive metal coating method and aparatus thereof
JP4592949B2 (en) * 2000-12-27 2010-12-08 キヤノンアネルバ株式会社 Magnetron sputtering equipment
JP2002194542A (en) * 2000-12-27 2002-07-10 Anelva Corp Magnetron sputtering equipment
WO2009081953A1 (en) * 2007-12-26 2009-07-02 Canon Anelva Corporation Sputtering apparatus, sputter film forming method, and analyzer
JP5259626B2 (en) * 2007-12-26 2013-08-07 キヤノンアネルバ株式会社 Sputtering apparatus, sputtering film forming method
JP2013174020A (en) * 2007-12-26 2013-09-05 Canon Anelva Corp Sputtering apparatus
US8877019B2 (en) 2007-12-26 2014-11-04 Canon Anelva Corporation Sputtering apparatus, sputter deposition method, and analysis apparatus
JP2009138277A (en) * 2009-01-27 2009-06-25 Canon Anelva Corp Magnetron sputtering apparatus
JP2010248562A (en) * 2009-04-15 2010-11-04 Showa Shinku:Kk Magnetron cathode

Similar Documents

Publication Publication Date Title
JP2002356772A (en) Magnetron sputter source with multipart target
JPH031378B2 (en)
US5626727A (en) Sputtering apparatus and method
US8999121B2 (en) Sputtering apparatus
JPH07166346A (en) Magnetron sputtering device
JP4213777B2 (en) Sputtering apparatus and method
JPS6365069A (en) Sputtering device
JP2005187830A (en) Sputtering apparatus
JPS61147873A (en) Magnetron sputtering device
JP2003073825A (en) Apparatus for forming thin film
JPS61288067A (en) Sputtering device
JPS6254907A (en) Sputtering device
JP2746695B2 (en) Sputtering apparatus and sputtering method
JPH11340165A (en) Sputtering device and magnetron unit
JP2637171B2 (en) Multi-source sputtering equipment
JPH03140467A (en) Sputtering device
JP3920955B2 (en) Sputtering equipment
JP4541014B2 (en) Plasma assisted sputter deposition system
JP2895506B2 (en) Sputtering equipment
JP3942218B2 (en) Apparatus for simultaneously forming both sides of magnetic thin film and method for manufacturing magnetic thin film
JP4028063B2 (en) Device having a magnetic field applying mechanism and method for arranging the same
JPH01279752A (en) Method and device for sputtering
JPH04371575A (en) Sputtering device
JP2001020067A (en) Sputtering method and device
US5922182A (en) Apparatus for coating substrates especially with magnetizable materials