JPS6364294A - Thin film electroluminescence device - Google Patents

Thin film electroluminescence device

Info

Publication number
JPS6364294A
JPS6364294A JP61207944A JP20794486A JPS6364294A JP S6364294 A JPS6364294 A JP S6364294A JP 61207944 A JP61207944 A JP 61207944A JP 20794486 A JP20794486 A JP 20794486A JP S6364294 A JPS6364294 A JP S6364294A
Authority
JP
Japan
Prior art keywords
thin film
transparent electrode
insulating layer
electrode pattern
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61207944A
Other languages
Japanese (ja)
Inventor
浩 川崎
英夫 田辺
熊田 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP61207944A priority Critical patent/JPS6364294A/en
Publication of JPS6364294A publication Critical patent/JPS6364294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は交流電界の印加によりエレクトロルミネセンス
(EL)を呈する薄膜エレクトロルミネセンス素子(以
下薄膜EL素子と称する)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film electroluminescent device (hereinafter referred to as a thin film EL device) that exhibits electroluminescence (EL) upon application of an alternating current electric field.

〔従来の技術〕[Conventional technology]

近年、大容量ディスプレイとして、ブラウン管(以下C
RTと称する)が広く用いられているが、CRTは真空
管であるため、大重量で破損の危険性もあり、また奥行
き寸法が太きい、偏向走査歪が避けにく(、さらには数
KV以上の高電圧を必要とするなどの問題があった。
In recent years, cathode ray tubes (C
(referred to as RT) are widely used, but since CRTs are vacuum tubes, they are heavy and have the risk of breakage, and their depth is large, making it difficult to avoid deflection and scanning distortion (and even more There were problems such as the high voltage required.

一方、平面形のディスプレイとしては、プラズマディス
プレイパネル(以下FDPと称する)の開発が進められ
ているが、FDPはCRTに比較して薄形であり、動作
電圧も低く、マトリックス形であるため走査歪がないと
いう利点があるが、ガス放電管であり、また真空管の一
種であるために重量が大きく、破損の危険性は避けられ
ない。
On the other hand, as a flat display, plasma display panels (hereinafter referred to as FDPs) are being developed, but FDPs are thinner than CRTs, have lower operating voltages, and are matrix-type, so they cannot be scanned. Although it has the advantage of not being distorted, since it is a gas discharge tube and a type of vacuum tube, it is heavy and the risk of breakage is unavoidable.

また、液晶ディスプレイディバイス(以下LCDと称す
る)は、固体素子に近く、動作′重圧も数■ないし十数
Vと低いが、応答速度が小さい、動作可能温度範囲が狭
く、さらには受光形デバイスのため表示面が暗いといっ
た問題を抱えている。
In addition, liquid crystal display devices (hereinafter referred to as LCDs) are similar to solid-state devices and have low operating pressures of several to several tens of volts, but their response speeds are low, their operating temperature ranges are narrow, and they are light-receiving devices. Therefore, there is a problem that the display screen is dark.

これに対してELを呈する薄膜EL素子を用いた薄膜E
Lパネルは、CRTと比較して駆動電圧が低く、またF
DPに比較して重量、大きさ等において優れ、LCDに
比較して動作可能温度範囲が広い等、多くの利点を、有
しており、文字、グラフィック表示に対して最適である
On the other hand, thin film E using a thin film EL element exhibiting EL
The L panel has a lower driving voltage than a CRT, and
It has many advantages such as being superior in weight and size compared to DP, and has a wider operating temperature range than LCD, making it ideal for displaying characters and graphics.

この薄膜EL素子は1例えば硫化亜鉛(ZnS)を母体
とし、これに付活剤としてマンガン(M n )や希土
類化合物等を添加した発光層の両側あるいは片側に酸化
イツトリウム(Y2O3)や窒化シリコン(SiNx)
等の絶縁層を設け、対向電極でサンドイッチ状に挟持し
た構成が輝度、寿命等の点で優れている。
This thin film EL element has a light-emitting layer made of zinc sulfide (ZnS) as a base material, to which manganese (M n ) or a rare earth compound is added as an activator, and yttrium oxide (Y2O3) or silicon nitride ( SiNx)
A structure in which an insulating layer is provided and sandwiched between opposing electrodes is superior in terms of brightness, lifespan, etc.

第2図は発光層を絶縁層で挟持させた二重絶縁層構造の
薄膜EL素子の一例を示す要部断面図である。同図にお
いて、1はガラス基板、2は酸化インジウム(Ir+z
Oa)あるいはインジウムと錫との酸化物(IT○)等
からなる透明電極、3はY2O5,SiNx等からなる
第1の絶縁層、4はMnあるいは希土類化合物等を添加
したZnS発光層、5は第2の絶縁層、6はアルミニウ
ム(AQ)等からなる背面電極、7は交流電源である。
FIG. 2 is a sectional view of a main part showing an example of a thin film EL element having a double insulating layer structure in which a light emitting layer is sandwiched between insulating layers. In the figure, 1 is a glass substrate, 2 is indium oxide (Ir+z
3 is a first insulating layer made of Y2O5, SiNx, etc., 4 is a ZnS light-emitting layer doped with Mn or a rare earth compound, etc., 5 is a transparent electrode made of Oa) or an oxide of indium and tin (IT○), etc. A second insulating layer, 6 a back electrode made of aluminum (AQ) or the like, and 7 an AC power source.

このような構成による薄膜EL索子は、透明電極2と背
面電極6との間に交流な源7により交流電界を印加する
と、約106V/an程度の高電界により高輝度に発光
する。このように高輝度を得るためには、極めて高い電
界を必要とするため、第1、第2の絶縁層3,5は極め
て高い絶縁耐圧をもつことが不可欠である。
When an alternating current electric field is applied between the transparent electrode 2 and the back electrode 6 by an alternating current source 7, the thin film EL cord having such a structure emits light with high brightness due to the high electric field of about 106 V/an. In order to obtain such high brightness, an extremely high electric field is required, so it is essential that the first and second insulating layers 3 and 5 have an extremely high dielectric strength voltage.

なお、絶M層全体の絶縁性を向上させる方法としては、
絶縁層成膜後、真空中、400〜600℃で熱処理する
方法が特公昭59−10033号公報において詳記され
ている。
In addition, as a method to improve the insulation of the entire absolute M layer,
Japanese Patent Publication No. 59-10033 describes in detail a method of heat-treating in vacuum at 400 to 600° C. after forming an insulating layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このように構成される薄膜EL索子は、
同図から明らかなようにガラス基板1上に形成する透明
゛正極2.第1の絶縁層3.Zn’S発光層4.第2の
絶縁層5および背面′市極6を真空蒸着あるいはスパッ
タリング法等で成膜し、透明電極2および背面電極6に
ついては所望のパターンをエツチング法あるいはマスク
成膜法により得た場合、パターンエツジ部に段差を生し
る。特に透明電極2のパターンエツジ部ではこの上に積
層した第1の絶縁層34発光層4および第2の絶8層5
にも段差が生じ1局部的に膜厚が小さくなる。また、こ
の第2の絶縁層5上に背面電極6を形成し、透明電極2
と背面電極6との間に高電界を印加すると、透明電極2
のパターンエツジ部に電界集中が生じ、絶縁破壊の起点
となる可能性があり、また高輝度を得るために著しく悪
影響を与え、信頼性を著しく低下させていることが判明
した。
However, the thin film EL cord configured in this way,
As is clear from the figure, a transparent positive electrode 2 is formed on a glass substrate 1. First insulating layer 3. Zn'S light emitting layer 4. When the second insulating layer 5 and the back electrode 6 are formed by vacuum evaporation or sputtering, and the desired pattern is obtained for the transparent electrode 2 and the back electrode 6 by an etching method or a mask film forming method, the pattern Creates a step at the edge. In particular, at the pattern edge portion of the transparent electrode 2, a first insulating layer 34, a light emitting layer 4, and a second insulating layer 5 are laminated thereon.
A difference in level also occurs, and the film thickness becomes locally small. Further, a back electrode 6 is formed on this second insulating layer 5, and a transparent electrode 2 is formed on the second insulating layer 5.
When a high electric field is applied between the transparent electrode 2 and the back electrode 6, the transparent electrode 2
It has been found that electric field concentration occurs at the edge of the pattern, which may become a starting point for dielectric breakdown, and has a significant negative effect on obtaining high brightness, significantly reducing reliability.

したがって本発明は、前述した従来の問題に鑑みてなさ
れたものであり、その目的とするところは、高電界印加
時に絶縁性基板上に形成した電極パターンのエツジ部に
生じる電界集中を抑止し、品質および信頼性を向上させ
た薄膜EL;+3子を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to suppress electric field concentration occurring at the edge portion of an electrode pattern formed on an insulating substrate when a high electric field is applied; Our objective is to provide thin film EL with improved quality and reliability.

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成するために、本発明による薄膜E
L索子は、透明電極パターンを絶縁性基板内に埋め込ん
で設け、この上に積層する絶縁層および発光層を平坦化
させたものである。
In order to achieve this purpose, the thin film E according to the present invention
The L-shaped element has a transparent electrode pattern embedded in an insulating substrate, and an insulating layer and a light emitting layer laminated thereon are planarized.

〔作用〕[Effect]

透明電極パターンを絶縁性基板内に埋めこんで設ける結
果、透明電極パターンを十分厚く形成しても、絶縁性基
板と透明′1jlf極パターンとの上面を而−にもしく
は段差を減少した状態で構成することができ、したがっ
て、透明゛電極パターンのエツジ部による段差の問題が
少なくなる。
As a result of providing the transparent electrode pattern embedded in the insulating substrate, even if the transparent electrode pattern is formed sufficiently thick, the top surface of the insulating substrate and the transparent electrode pattern can be formed with the same structure or with a reduced level difference. Therefore, the problem of steps caused by the edge portions of the transparent electrode pattern is reduced.

〔実施例〕〔Example〕

次に図面を用いて本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail using the drawings.

第1図(a)、(b)は本発明による薄膜EL素子の一
例を示す要部平面図、そのA−A’断面図である。同図
において、絶縁性基板として例えばホウケイ酸ガラス基
板8を用い、この基板全面にフォトレジストを塗布する
9次にこのレジストを所望のストライブ状パターンに形
成し、この状態でガラス基板8をフッ酸系のエツチング
液に浸漬し、2000人程度基板をエツチングして、透
明電極パターン9を埋設するためのストライプ状の溝を
形成する。この場合、フォトレジストの股ノ1メは0゜
5〜5.0μmの範囲が良く、望ましくは1〜2μmの
厚さに形成し、これを所定のフォトマスクを用いて露光
してju!し、このレジストパターンを用いて基板のエ
ツチングを行なって透明電極パターン9を埋設するため
の溝を形成する。次にフォトレジストをそのまま残した
状態で全面にインジウムと錫の酸化物をスパッタリング
して厚さ約2000基稈度の透明導電膜を形成する。次
にフォトレジストの溶剤中にこれを浸漬し、リフトオフ
によりガラス鋸板8上のフォトレジストとその上の透明
導電膜とを除去し、基板8の溝中に埋設された透明電極
9を形成する。これにより透明電極パターン9のエツジ
に段差のない基板が形成される。次にこの表面が平坦な
透明電極パターン9が形成されたガラス基板8上に基板
温度約300°CでY2O3をEB蒸着して膜厚約30
00基稈度の第1の絶縁層10を形成する。次にこの絶
縁層10上に付活剤としてMnを約0,5wt%加えた
ZnSの焼結体を材料として基板温度約250℃でEB
蒸着により発光層11を約5ooo人の厚さに形成する
。その後、真空中において約550℃で2時間アニール
処理を行ない、発光!11中のM nの分布の均一化と
各薄膜の欠陥の低減をはかる。次にこの発光層1上上に
鎖板温度300℃でY2O3を約3000基板度の厚さ
にEB蒸着して第2の絶縁層12を形成する。最後に透
明電極パターン9と直交する方向にアルミニウムを約2
000基稈度の厚さにマスク蒸着してストライプ状の背
面電極13を形成して素子を完成する。
FIGS. 1(a) and 1(b) are a plan view of a main part showing an example of a thin film EL element according to the present invention, and a sectional view thereof taken along line AA'. In the figure, a borosilicate glass substrate 8, for example, is used as an insulating substrate, and a photoresist is applied to the entire surface of the substrate.Next, this resist is formed into a desired striped pattern, and in this state, the glass substrate 8 is covered with a film. The substrate is immersed in an acid-based etching solution and etched by about 2000 steps to form striped grooves in which the transparent electrode pattern 9 is to be embedded. In this case, the thickness of the photoresist is preferably in the range of 0°5 to 5.0 μm, preferably 1 to 2 μm, and exposed using a predetermined photomask. Then, using this resist pattern, the substrate is etched to form a groove in which the transparent electrode pattern 9 is to be buried. Next, with the photoresist left intact, indium and tin oxides are sputtered over the entire surface to form a transparent conductive film with a thickness of about 2000 silica. Next, this is immersed in a photoresist solvent, and the photoresist on the glass saw plate 8 and the transparent conductive film thereon are removed by lift-off, thereby forming a transparent electrode 9 buried in the groove of the substrate 8. . As a result, a substrate with no step at the edge of the transparent electrode pattern 9 is formed. Next, on the glass substrate 8 on which the transparent electrode pattern 9 with a flat surface was formed, Y2O3 was EB-deposited at a substrate temperature of about 300°C to a film thickness of about 30°C.
A first insulating layer 10 having a 00 base culmness is formed. Next, on this insulating layer 10, a sintered body of ZnS to which about 0.5 wt% of Mn was added as an activator was used as a material, and EB was carried out at a substrate temperature of about 250°C.
The light emitting layer 11 is formed by vapor deposition to a thickness of about 5 mm. After that, annealing is performed in a vacuum at approximately 550°C for 2 hours, and light is emitted! The aim is to make the distribution of Mn in No. 11 uniform and to reduce defects in each thin film. Next, a second insulating layer 12 is formed on the light emitting layer 1 by EB vapor deposition of Y2O3 to a thickness of about 3000 substrates at a chain plate temperature of 300.degree. Finally, add approximately 2 pieces of aluminum in the direction perpendicular to the transparent electrode pattern 9.
A stripe-shaped back electrode 13 is formed by mask vapor deposition to a thickness of 0.000 bases, and the device is completed.

このような構成によれば、ガラス基板8内に埋め込んで
透明電極パターン9を形成したことにより、透明電極パ
ターン9のパターンエツジによる電界の集中の発生が抑
止され、絶縁破壊の起点となることを防止できるので、
素子の絶縁耐圧が飛界的に向上し、発光の寿命を向上さ
せることができる。
According to such a configuration, by forming the transparent electrode pattern 9 by embedding it in the glass substrate 8, the occurrence of electric field concentration due to the pattern edges of the transparent electrode pattern 9 is suppressed, thereby preventing it from becoming a starting point of dielectric breakdown. Because it can be prevented,
The dielectric strength of the element is dramatically improved, and the lifetime of light emission can be extended.

なお、前述した実施例においては、透明電極パターン9
のエツジの影響を抑止するために透明電極パターン9の
1漠厚は、基板に設ける溝の深さと同一とした場合につ
いて説明したが、これが最も効果的であるが、全く同じ
にすることが困難な場合は、透明電極パターン9の膜厚
に対する溝深さの比を0.5〜2.0の範囲に抑えれば
前述と同様の効果が得ら塾る。この場合、この比が0.
5以下とすると、透明電極パターンのエツジの影響を抑
止することができなくなる。またこの比を2゜0以上と
すると、第1の絶縁層10が透明電極パターン9上に均
一な膜厚で形成されにくくなるため好ましくない。した
がってその比は0.5〜2゜0の範囲が好ましい。
In addition, in the embodiment described above, the transparent electrode pattern 9
In order to suppress the influence of the edges, a case has been described in which the thickness of the transparent electrode pattern 9 is set to be the same as the depth of the groove provided in the substrate. Although this is most effective, it is difficult to make it exactly the same. In such a case, the same effect as described above can be obtained by suppressing the ratio of the groove depth to the film thickness of the transparent electrode pattern 9 within the range of 0.5 to 2.0. In this case, this ratio is 0.
When it is less than 5, it becomes impossible to suppress the influence of edges of the transparent electrode pattern. Further, if this ratio is 2° or more, it is not preferable because it becomes difficult to form the first insulating layer 10 with a uniform thickness on the transparent electrode pattern 9. Therefore, the ratio is preferably in the range of 0.5 to 2.0.

また、前述した実施例において、ガラス基板8はホウケ
イ酸ガラスを用いたが、本発明はこれに限定されるもの
ではなく、不透明基板を用いた場合でもこの不透明基板
上の電極(この場合は背面電極となる)のパターンのエ
ツジを同様の方法で平坦化することにより、前述した実
施例の場合と全く同様の効果が得られることは明白であ
る。
Further, in the above embodiment, the glass substrate 8 was made of borosilicate glass, but the present invention is not limited to this, and even when an opaque substrate is used, the electrodes on this opaque substrate (in this case, the back surface It is clear that by flattening the edges of the pattern (which will become the electrode) in a similar manner, exactly the same effect as in the embodiment described above can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、絶縁性基板上に形
成した電極パターンのエツジによる段差がなくなるので
、この電極パターン上に積層形成する絶縁層9発光層お
よび対向電極の平坦化が容易に実現可能となり、電極パ
ターンエツジ部の電界集中が著しく抑制でき、信頼性の
高い高品質。
As explained above, according to the present invention, there are no steps caused by the edges of the electrode pattern formed on the insulating substrate, so it is easy to flatten the insulating layer 9, the light-emitting layer, and the counter electrode that are laminated on the electrode pattern. It is now possible to achieve high reliability and high quality by significantly suppressing electric field concentration at the edge of the electrode pattern.

高性能、長寿命の薄膜EL素子が′41)られるという
極めて優れた効果を有する。
This has the extremely excellent effect of producing a thin film EL element with high performance and long life '41).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (i))は本発明による薄膜EL素子
の一例を説明するための要部断面図、並びにそのA−A
’断面回、第2図は従来周知の薄膜EL素子の要部断面
図である。 8・・・ガラス基板、9・・・透明電極パターン、1o
・・・第1の絶縁層、11・・・発光層。 12・・・第2の絶縁層、13・・・背面電極。
FIGS. 1(a) and 1(i) are sectional views of essential parts for explaining an example of a thin film EL element according to the present invention, and A-A thereof.
Figure 2 is a sectional view of a main part of a conventionally known thin film EL element. 8...Glass substrate, 9...Transparent electrode pattern, 1o
. . . first insulating layer, 11 . . . light emitting layer. 12... Second insulating layer, 13... Back electrode.

Claims (1)

【特許請求の範囲】[Claims] 1.絶縁性基板上に少なくとも透明電極,絶縁層,発光
層および背面電極を形成してなる薄膜エレクトロルミネ
センス素子において、前記絶縁性基板上の透明電極パタ
ーンを絶縁性基板内に埋め込んで設けたことを特徴とす
る薄膜エレクトロルミネセンス素子。
1. In a thin film electroluminescent device comprising at least a transparent electrode, an insulating layer, a light emitting layer, and a back electrode formed on an insulating substrate, the transparent electrode pattern on the insulating substrate is embedded in the insulating substrate. Characteristic thin film electroluminescent elements.
JP61207944A 1986-09-05 1986-09-05 Thin film electroluminescence device Pending JPS6364294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61207944A JPS6364294A (en) 1986-09-05 1986-09-05 Thin film electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61207944A JPS6364294A (en) 1986-09-05 1986-09-05 Thin film electroluminescence device

Publications (1)

Publication Number Publication Date
JPS6364294A true JPS6364294A (en) 1988-03-22

Family

ID=16548121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61207944A Pending JPS6364294A (en) 1986-09-05 1986-09-05 Thin film electroluminescence device

Country Status (1)

Country Link
JP (1) JPS6364294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250673A (en) * 1991-01-16 1992-09-07 Toshiba Corp Semiconductor light emitting element and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250673A (en) * 1991-01-16 1992-09-07 Toshiba Corp Semiconductor light emitting element and manufacture thereof

Similar Documents

Publication Publication Date Title
EP1775751A2 (en) Light emitting device using electron emission and flat display apparatus using the same
JPS6364294A (en) Thin film electroluminescence device
JPS6364291A (en) Thin film electroluminescence device
KR100317989B1 (en) High luminance blue dc-electroluminescent display
JPS6364293A (en) Thin film electroluminescence device
JPS61151995A (en) Thin film electroluminescence element
JPS61151996A (en) Thin film electroluminescence element and manufacture thereof
JPS61151994A (en) Manufacture of thin film electroluminescence element
JPS5829880A (en) Electric field luminescent element
JPS6147096A (en) Method of producing thin film el element
JPH0460317B2 (en)
JPH02306585A (en) Manufacture of thin film electroluminescence element
KR100330780B1 (en) Panels for flat panel display
JPS63128596A (en) Electroluminescence panel
JPH056141A (en) El display device
JPS62154495A (en) Manufacture of thin film electroluminescence device
JPS63181296A (en) Method of forming dielectric film
JPS62140396A (en) Manufacture of device with transparent electrode
KR100190174B1 (en) Electroluminescence display apparatus
JPS59154794A (en) Thin film el element
JPS59154793A (en) Thin film el element
JPS5991697A (en) Thin film el element
JPH04184893A (en) Thin film el element
JPS6089098A (en) Electrode structure of thin film el element
JPH02306594A (en) Thin film electroluminescence element