JPS6364247A - Plasma device - Google Patents

Plasma device

Info

Publication number
JPS6364247A
JPS6364247A JP61207914A JP20791486A JPS6364247A JP S6364247 A JPS6364247 A JP S6364247A JP 61207914 A JP61207914 A JP 61207914A JP 20791486 A JP20791486 A JP 20791486A JP S6364247 A JPS6364247 A JP S6364247A
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
microwave
substrate
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61207914A
Other languages
Japanese (ja)
Inventor
Yoshimi Hakamata
袴田 好美
Yukio Kurosawa
黒沢 幸夫
Kenichi Natsui
健一 夏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61207914A priority Critical patent/JPS6364247A/en
Publication of JPS6364247A publication Critical patent/JPS6364247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To obtaine highly parallel ion beams in a plasma device consisting of a vacuum envelope, a exhausting device, a gas introducing portion and a plasma producing portion, by providing a generating means of a magnetic field perpendicular to the electric field produced by a microwave and to the outgoing direction of ion beams in the plasma producing portion. CONSTITUTION:A substrate 7 to be treated with plasma is placed on a substrate holder 6 installed in a vacuum envelope 5 connected to a vacuum exhausting device 11 through an exhausting tube 8. Above this substrate a beam taking out electrode having many aperture is provided, and above the electrode a plasma room 1 connected to a waveguide 3 through a dielectric window 13 is arranged, and a microwave oscillator 10 is attached to the waveguide. In this configuration, an exciting coil 14 and a yoke 15 are provided around the plasma room 1 so as to generate a magnetic field perpendicular to the outgoing direction of the ion beam when the microwave from the oscillator 10 is radiated on the substrate 7 to treat with plasma. Thereby be magnetic field producing the electron cyclotron resonance can be made perpendicular to the outgoing direction of the bean to obtaine highly parallel ion beams.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体回路素子や薄膜磁気ヘッドなどの薄膜
素子製造装置に係り、特に、サブミクロン領域のLSI
プロセスのドライエツチング及び磁性膜のドライエツチ
ングに好適なプラズマ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for manufacturing thin film elements such as semiconductor circuit elements and thin film magnetic heads, and is particularly applicable to LSIs in the submicron region.
The present invention relates to a plasma apparatus suitable for dry etching processes and dry etching of magnetic films.

〔従来の技術〕[Conventional technology]

LSI製造プロセスでは、加工寸法の微細化に伴い、溶
液を用いた湿式のプロセスからプラズマを用いた乾式の
プロセスへと移ってきている。最近良く用いられるよう
になってきたマイクロ波を使ったドライエツチング装置
は、特開昭56−152969号公報に記載のような構
成となっている。
In the LSI manufacturing process, with the miniaturization of processing dimensions, there has been a shift from a wet process using a solution to a dry process using plasma. A dry etching apparatus using microwaves, which has recently become popular, has a structure as described in Japanese Patent Application Laid-open No. 152969/1983.

すなわち、従来は第3図に示すように、真空排気装置1
1を備えた真空容器5内に基板ホルダ6が設けられ、基
板ホルダ6に対向してプラズマ室1が設けられている。
That is, conventionally, as shown in FIG.
A substrate holder 6 is provided in a vacuum container 5 equipped with a plasma chamber 1 , and a plasma chamber 1 is provided opposite the substrate holder 6 .

プラズマ室1にはその外周部に励磁ソレノイド2が設け
られ、この励磁ソレノイドと同軸状に導波管3が設けら
九、その端部にはマイクロ波発振器10が設置されてい
る。はじめ、真空容器5およびプラズマ室1は、圧力1
O−8Torr以下の超高真空に排気される。その後、
ガス供給口9よりCF4などのエツチングガスが導入さ
れ、プラズマ室1の内部は所定の圧力にされる。
An excitation solenoid 2 is provided on the outer periphery of the plasma chamber 1, a waveguide 3 is provided coaxially with the excitation solenoid, and a microwave oscillator 10 is installed at the end of the waveguide 3. Initially, the vacuum vessel 5 and the plasma chamber 1 are at a pressure of 1
It is evacuated to an ultra-high vacuum of O-8 Torr or less. after that,
Etching gas such as CF4 is introduced from the gas supply port 9, and the inside of the plasma chamber 1 is brought to a predetermined pressure.

次に、マイクロ波発振器10を動作させ1例えば。Next, the microwave oscillator 10 is operated, for example.

2.45GH7のマイクロ波をプラズマ発生部1に供給
する。一方、励磁ソレノイド2によって、電子がサイク
ロトロン共鳴をする磁界875Gaussの磁界が印加
される。これにより、プラズマ室1では電子サイクロト
ロン共鳴が発生して、ガス分子の電離が活発に行なわれ
、濃いプラズマが発生する。引出し電極4により濃いプ
ラズマからイオ一部がビームとなって引出され、基板を
照射する。
Microwaves of 2.45GH7 are supplied to the plasma generation section 1. On the other hand, the excitation solenoid 2 applies a magnetic field of 875 Gauss that causes electrons to undergo cyclotron resonance. As a result, electron cyclotron resonance occurs in the plasma chamber 1, gas molecules are actively ionized, and a dense plasma is generated. A portion of the ions are extracted from the dense plasma as a beam by the extraction electrode 4, and the substrate is irradiated.

これによって基板のエツチングが行なわれる。This allows etching of the substrate.

〔発明が解決しようとする問題点〕 上記従来技術では、ソレノイド2が発生する磁束Bは、
引出し電piA4を突き貫け、その一部は基板7に達し
ている。従って、引出し電極4から引出されたイオンは
磁束との相互作用によりその軌道が曲げられ、ビームが
発散する。
[Problems to be solved by the invention] In the above conventional technology, the magnetic flux B generated by the solenoid 2 is
It penetrates the lead-out electric current piA4, and a part of it reaches the board 7. Therefore, the trajectory of the ions extracted from the extraction electrode 4 is bent by interaction with the magnetic flux, and the beam diverges.

本発明の目的は、平行性の良いイオンビームを引き出す
ことができるプラズマ装置を提供することにある。
An object of the present invention is to provide a plasma device that can extract an ion beam with good parallelism.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、電子サイクロトロン共鳴を発生させる磁界
を、イオンビーム引出し方向と略直角方向に印加するこ
とにより達成される。
The above object is achieved by applying a magnetic field that generates electron cyclotron resonance in a direction substantially perpendicular to the ion beam extraction direction.

〔作用〕[Effect]

電子サイクロトロン共鳴を発生させる磁界は、イオンビ
ーム引出し方向と直角方向に印加されているので、引出
し電極から引出されたイオンビームは電子サイクロトロ
ン共鳴を発生させる磁界の影響を受けることが無く、平
行性の良いイオンビームが得られる。
Since the magnetic field that generates electron cyclotron resonance is applied in a direction perpendicular to the ion beam extraction direction, the ion beam extracted from the extraction electrode is not affected by the magnetic field that generates electron cyclotron resonance, and the parallelism is maintained. A good ion beam can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。真空
排気装置11を備えた真空容器5内に基板ホルダ6が設
けられ、基板ホルダ6に対向してプラズマ室1が設けら
れる。プラズマ室1の一端には誘電体窓13が設けてあ
り、これに合致して導波管3が取付けられ、その先端に
はマイクロ発振器10が取付けられている。一方、プラ
ズマ室1の他端は、互いに同じ位置に多数の孔を設けた
引出し電極4が配置されている。プラズマ室の外部に励
磁コイル14及びヨーク15が設けてあり。
An embodiment of the present invention will be described below with reference to FIG. A substrate holder 6 is provided in a vacuum container 5 equipped with a vacuum evacuation device 11, and a plasma chamber 1 is provided opposite the substrate holder 6. A dielectric window 13 is provided at one end of the plasma chamber 1, and a waveguide 3 is attached to match the dielectric window 13, and a micro oscillator 10 is attached to the tip of the waveguide 3. On the other hand, at the other end of the plasma chamber 1, an extraction electrode 4 having a large number of holes at the same position is arranged. An excitation coil 14 and a yoke 15 are provided outside the plasma chamber.

イオンビーム引出し方向に対して略直角に、磁界が印加
されている。はじめ、真空容器5並びにプラズマ室1は
圧力10″″BTorr以下の超高真空に排気される。
A magnetic field is applied approximately perpendicular to the ion beam extraction direction. Initially, the vacuum container 5 and the plasma chamber 1 are evacuated to an ultra-high vacuum with a pressure of 10"" BTorr or less.

その後に、ガス供給口よりCFaなとのエツチングガス
が導入され、所定の動作圧力に設定される。次に、マイ
クロ波発振器10を動作させて、例えば、周波数2.4
5GHzのマイクロ波を導波管3を介してプラズマ室1
に供給する。
Thereafter, an etching gas such as CFa is introduced from the gas supply port, and a predetermined operating pressure is set. Next, the microwave oscillator 10 is operated to generate a frequency of, for example, 2.4.
A 5 GHz microwave is passed through the waveguide 3 to the plasma chamber 1.
supply to.

ところでマイクロ波の電界Eは、マイクロ波の進行方向
に対して直交する方向である。励磁コイル14の作る磁
界が、このマイクロ波の電界に対しても直交する方向に
むく様にヨーク15を配貨してあり、かつ、その磁束密
度がプラズマ室1の少なくとも一部でマイクロ波の周波
数で電子サイクロトロン共鳴を起す密度に設定しである
。このとき、電子は電子サイクロトロン共鳴により強力
に加速され、CF4等のガス分子に衝突し電離を行なう
。その結果、プラズマ室内には濃いプラズマが発生し、
引出し電極4に適切な電圧を印加することにより、イオ
ンビームを引き出すことができる。二のとき、励磁コイ
ル14の作る磁界は真空容器5側に入り込まないので、
引き出されたイオンビームを引き出することができ、よ
り微細な加工を行なうことができる。
Incidentally, the electric field E of the microwave is in a direction perpendicular to the direction of propagation of the microwave. The yoke 15 is arranged so that the magnetic field created by the excitation coil 14 is perpendicular to the microwave electric field, and the magnetic flux density is such that the microwave The frequency is set to a density that causes electron cyclotron resonance. At this time, the electrons are strongly accelerated by electron cyclotron resonance, collide with gas molecules such as CF4, and ionize. As a result, dense plasma is generated in the plasma chamber,
By applying an appropriate voltage to the extraction electrode 4, the ion beam can be extracted. In case 2, the magnetic field created by the excitation coil 14 does not enter the vacuum container 5 side, so
The extracted ion beam can be extracted and finer processing can be performed.

第2図は、本発明による他の実施例である。この場合、
電子サイクロトロン共鳴を起す磁界発生手段として永久
磁石12を用いている。プラズマ室1はイオンビームを
引出している状態で高電位となる。励磁コイルを使う場
合には、プラズマ室1とヨーク15.あるいは、ヨーク
15とコイル14を電気的に絶縁するか、あるいは、コ
イル用電源高電位とする必要がある。磁界発生手段とし
て、永久磁石を用いた場合には、そ九らの問題が解決さ
れ、小形で経済的なプラズマ装置を提供することができ
る。
FIG. 2 shows another embodiment according to the invention. in this case,
A permanent magnet 12 is used as a magnetic field generating means for causing electron cyclotron resonance. The plasma chamber 1 has a high potential while extracting the ion beam. When using an excitation coil, the plasma chamber 1 and the yoke 15. Alternatively, it is necessary to electrically insulate the yoke 15 and the coil 14, or to set the power source for the coil at a high potential. When a permanent magnet is used as the magnetic field generating means, these problems can be solved and a small and economical plasma device can be provided.

なお、プラズマ生成室は1円形でもよい。Note that the plasma generation chamber may have a circular shape.

なお、7は基板、8は排気管、12は永久磁石である。Note that 7 is a substrate, 8 is an exhaust pipe, and 12 is a permanent magnet.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子サイクロトロン共鳴を起すための
磁界が引出されたイオンビームに影響を与えるのを防ぐ
ことができ、平行性の良いイオンビームを引き出すこと
ができる。
According to the present invention, it is possible to prevent the magnetic field for causing electron cyclotron resonance from affecting the extracted ion beam, and it is possible to extract an ion beam with good parallelism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は本発明の
他の実施例の断面図、第3図は従来例を示す断面図であ
る。 1・・・プラズマ室、2・・・ソレノイド、3・・・導
波管。 4・・・引出し電極、5・・・真空容器、6・・・基板
ホルダー、7・・・基板、8・・・排気管、10・・・
マイクロ波発振器、11・・・真空排気装置、12・・
・永久磁石。 14・・・励磁コイル、15・・・ヨーク。
FIG. 1 is a sectional view of one embodiment of the present invention, FIG. 2 is a sectional view of another embodiment of the invention, and FIG. 3 is a sectional view of a conventional example. 1... Plasma chamber, 2... Solenoid, 3... Waveguide. 4... Extraction electrode, 5... Vacuum container, 6... Substrate holder, 7... Substrate, 8... Exhaust pipe, 10...
Microwave oscillator, 11... Vacuum exhaust device, 12...
·permanent magnet. 14... Excitation coil, 15... Yoke.

Claims (1)

【特許請求の範囲】 1、真空容器と、前記真空容器に連通した排気装置と、
ガス導入部と、プラズマ生成部とより成り、前記プラズ
マ生成部にマイクロ波を導入する手段を設けたプラズマ
装置において、 前記プラズマ生成部に、マイクロ波の作る電界およびイ
オン引出し方向に略直交する磁界発生手段を設けたこと
を特徴とするプラズマ装置。 2、特許請求の範囲第1項において、 前記磁界発生手段が発生する磁界の少なくとも一部の磁
束密度が、前記マイクロ波の周波数と電子サイクロトロ
ン共鳴を生じる条件となるように選ばれていることを特
徴とするプラズマ装置。 3、特許請求の範囲第1項において、 前記磁界発生手段が永久磁石であることを特徴とするプ
ラズマ装置。
[Claims] 1. A vacuum container, an exhaust device communicating with the vacuum container,
In a plasma device comprising a gas introduction section and a plasma generation section, and provided with means for introducing microwaves into the plasma generation section, the plasma generation section is provided with an electric field generated by the microwave and a magnetic field substantially perpendicular to the ion extraction direction. A plasma device characterized by being provided with a generating means. 2. Claim 1 provides that the magnetic flux density of at least a portion of the magnetic field generated by the magnetic field generating means is selected such that the frequency of the microwave and the condition for causing electron cyclotron resonance are established. Characteristic plasma equipment. 3. The plasma device according to claim 1, wherein the magnetic field generating means is a permanent magnet.
JP61207914A 1986-09-05 1986-09-05 Plasma device Pending JPS6364247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61207914A JPS6364247A (en) 1986-09-05 1986-09-05 Plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61207914A JPS6364247A (en) 1986-09-05 1986-09-05 Plasma device

Publications (1)

Publication Number Publication Date
JPS6364247A true JPS6364247A (en) 1988-03-22

Family

ID=16547652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61207914A Pending JPS6364247A (en) 1986-09-05 1986-09-05 Plasma device

Country Status (1)

Country Link
JP (1) JPS6364247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107974A (en) * 2004-10-07 2006-04-20 Kanazawa Inst Of Technology Ion source
CN110412441A (en) * 2019-06-24 2019-11-05 深圳市森美协尔科技有限公司 Vacuum high/low temperature semiconducter device testing probe station and semiconducter device testing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107974A (en) * 2004-10-07 2006-04-20 Kanazawa Inst Of Technology Ion source
JP4534055B2 (en) * 2004-10-07 2010-09-01 学校法人金沢工業大学 Ion source
CN110412441A (en) * 2019-06-24 2019-11-05 深圳市森美协尔科技有限公司 Vacuum high/low temperature semiconducter device testing probe station and semiconducter device testing method

Similar Documents

Publication Publication Date Title
JP4073174B2 (en) Neutral particle beam processing equipment
JP3020580B2 (en) Microwave plasma processing equipment
US4277304A (en) Ion source and ion etching process
US4417178A (en) Process and apparatus for producing highly charged large ions and an application utilizing this process
JP2959508B2 (en) Plasma generator
EP0217361A2 (en) Ion source
JP3254069B2 (en) Plasma equipment
JP4042817B2 (en) Neutral particle beam processing equipment
JPS6338585A (en) Plasma device
JP2004158272A (en) High-frequency inductively-coupled plasma source, and high-frequency inductively-coupled plasma device
JPS6364247A (en) Plasma device
JP2001160553A (en) Plasma apparatus
JP4384295B2 (en) Plasma processing equipment
JPS5812346B2 (en) plasma etching equipment
JP2531134B2 (en) Plasma processing device
JP3045619B2 (en) Plasma generator
JP3205542B2 (en) Plasma equipment
JPH0715899B2 (en) Plasma processing method and apparatus
JPH04304630A (en) Microwave plasma generator
JPH04361529A (en) Microwave plasma generator
JPS63250822A (en) Plasma device
JP2913121B2 (en) ECR plasma generator
JPS63318127A (en) Plasma processing device
JPH07211702A (en) Semiconductor manufacturing device
JPH06252099A (en) Plasma treatment device