JPS636392A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS636392A
JPS636392A JP14926586A JP14926586A JPS636392A JP S636392 A JPS636392 A JP S636392A JP 14926586 A JP14926586 A JP 14926586A JP 14926586 A JP14926586 A JP 14926586A JP S636392 A JPS636392 A JP S636392A
Authority
JP
Japan
Prior art keywords
passage
header
tube
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14926586A
Other languages
Japanese (ja)
Other versions
JPH0682038B2 (en
Inventor
Hideaki Miura
三浦 秀明
Shoichi Watanabe
正一 渡辺
Noboru Ogasawara
昇 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP14926586A priority Critical patent/JPH0682038B2/en
Publication of JPS636392A publication Critical patent/JPS636392A/en
Publication of JPH0682038B2 publication Critical patent/JPH0682038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce circulation resistance and improve heat exchanging efficiency by a method wherein a central partition wall dividing a space equally is installed in a primary header and a disturbing plate projecting tube direction in a secondary header on the other side and the tube is provided with a central partition wall dividing equally a refrigerant passage into a front passage and a back passage. CONSTITUTION:Gaseous refrigerant flowing in a front passage 10a in a primary header 2 is distributed into the front passage 13 of a tube 3 and rises up inside and enters a refrigerant passage 18 in a secondary header 2. Because of the existence of a positioning and disturbing plate 17, the refrigerant flowing around the lower part of the plate turns its direction in being disturbed sufficiently and then flows into the back passage 13b of the tube 3 and descends along it. At that time, the refrigerant is in a gas-liquid mixed condition and even while the refrigerant descends, the refrigerant is further deprived of its holding heat amount by heat exchanger with the open air and is brought to a specified low temp. condition to be gathered at the back passage 10b of the header 2 and then discharged from an outlet 8. Therefore, the heat exchanger has an excellent heat exchanging efficiency as a whole heat exchanger and miniaturization of the heat exchanger is made possible.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は熱交換器、とくにカークーラー用コンデンサ
ーとして使用されるようなアルミニウム製熱交換器に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to heat exchangers, in particular aluminum heat exchangers such as those used as condensers for car coolers.

従来の技術 カークーラー用コンデンサーとして用いられるような熱
交換器は、冷媒に比較的高圧のガスが取扱われる関係上
、安全性の面から耐圧性に優れたものであることが要求
される。
BACKGROUND ART Heat exchangers such as those used as condensers for car coolers are required to have excellent pressure resistance from the viewpoint of safety, since relatively high pressure gas is used as a refrigerant.

このため従来では一般的にはサーペンタインチューブ型
の熱交換器が用いられている。即ち、ハーモニカチュー
ブと称されるような多孔押出扁平チューブを蛇行状に曲
げ、その平行部間にフィンを配置してコアを構成したも
のが一般に用いられている。
For this reason, conventionally, a serpentine tube type heat exchanger is generally used. That is, a core is generally used by bending a multi-hole extruded flat tube called a harmonica tube into a serpentine shape and arranging fins between the parallel parts.

発明が解決しようとする問題点 しかしながら、上記のような熱交換器では、冷媒回路が
一本のチューブ内をその一端から他端に向けて蛇行状に
形成されるものであるため、冷媒の流通抵抗が比較的大
きくなるという難点があった。この流通抵抗を小さくす
るためには、チューブの断面積を大きくすることが当然
考慮されるが、熱交換器のコアの大きさはその設置スペ
ースとの関係で制約されるため、かかる対応手段は適用
し難いものであった。加えて、上記サーペンタインチュ
ーブ型熱交換器では、前記のようにチューブの一端から
他端に向けて蛇行状に冷媒回路が構成されるものである
ため、細かく分析すると、冷媒の入口側近傍部分と出口
側近傍部分とで熱交換効率の差が大きく、またチューブ
の幅方向、即ち空気流の流入側に位置する前部と流出側
に位置する後部との間でも熱交換効率に差を生じるため
、必ずしもコアの全域を最大限に有効活用して効率の良
い熱交換を行い得ているものとはいい得なかった。更に
また、製作面においても、チューブの蛇行状の曲げ加工
がいささか厄介であるのに加えて、チューブとフィンと
の組立も、フィンの挿入によってチューブの蛇行曲げ状
態が拡がり傾向を示すため、該組立を機械的な自動組立
によって行うことが困難であり、生産性が低く結果的に
コスト高につくというような憾みがあった。
Problems to be Solved by the Invention However, in the above-mentioned heat exchanger, the refrigerant circuit is formed in a meandering manner from one end to the other end of a single tube, so the refrigerant flow is limited. The problem was that the resistance was relatively large. In order to reduce this flow resistance, it is natural to consider increasing the cross-sectional area of the tube, but since the size of the heat exchanger core is limited by its installation space, such countermeasures are not possible. It was difficult to apply. In addition, in the serpentine tube type heat exchanger, the refrigerant circuit is configured in a meandering manner from one end of the tube to the other as described above, so if we analyze it in detail, the part near the refrigerant inlet side and There is a large difference in heat exchange efficiency between the part near the outlet side, and there is also a difference in heat exchange efficiency in the width direction of the tube, that is, between the front part located on the inflow side of the air flow and the rear part located on the outflow side. However, it cannot be said that the entire area of the core is utilized effectively to the maximum extent for efficient heat exchange. Furthermore, in terms of manufacturing, not only is it somewhat difficult to bend the tube into a meandering shape, but also the assembly of the tube and fins is difficult because the meandering bending of the tube tends to expand when the fins are inserted. It is difficult to assemble by automatic mechanical assembly, which results in low productivity and high costs.

この発明は上記のような従来技術に鑑み、コンデンサー
としての実用に適する耐圧性を保有しながら、流通抵抗
の減少、熱交換効率の向上をはかり得ると共に、組立製
作も自動化を可能とする熱交換器を提供することを目的
とする。
In view of the above-mentioned prior art, this invention provides a heat exchanger that has pressure resistance suitable for practical use as a condenser, reduces flow resistance, improves heat exchange efficiency, and enables automation of assembly and manufacturing. The purpose is to provide equipment.

問題点を解決する為の手段 この発明は、ヘッダー及びチューブをいずれもアルミニ
ウム材による中空押出型材で構成するものとし、かつチ
ューブ群内の冷媒通路を系外空気の流通方向に対して前
部側の通路と後部側の通路とに分けて、コアの厚さ方向
に対し各チューブ内を前後において対向方向に冷媒を流
すようにすると共に、上段のヘッダー内で冷媒に撹乱作
用を与えるようにして熱交換効率の一層の増大をはかる
ようにしたものである。
Means for Solving the Problems In the present invention, both the header and the tubes are constructed of hollow extruded aluminum members, and the refrigerant passages in the tube group are arranged on the front side with respect to the flow direction of the air outside the system. The refrigerant is divided into a passage on the front side and a passage on the rear side, and the refrigerant is made to flow in opposite directions in the front and back of each tube in the thickness direction of the core, and a disturbance effect is given to the refrigerant in the upper header. This is intended to further increase heat exchange efficiency.

更に具体的には、この発明に係る熱交換器は、平行状に
配置された1対の中空押出型材製ヘッダーと、両ヘッダ
ー間に並列状に配置され両端をヘッダーに挿入してその
内部の冷媒通路に連通接続された多数本の押出型材製チ
ューブと、隣接するチューブ間及び両端のチューブとサ
イドプレートとの間の空気流通間隙に配置されたフィン
とを備え、前記両ヘッダーのうち冷媒出入口側の一方の
第1へラダー内に、その内部の冷媒通路を長さ方向に沿
って前側通路と後側通路とに2分する中央隔壁が一体に
設けられ、かつ他方の第2ヘッダー内にその冷媒通路の
断面の途中の位置までチューブ方向に突出した撹乱板が
設けられると共に、前記チューブにもその内部の冷媒通
路を前側通路と後側通路とに2分する中央隔壁が設けら
れ、第1ヘッダーとチューブとの接続状態においてそれ
らの上記隔壁が当接されることにより、両者の前側通路
どおし及び後側通路どおしが相互に各独立状態に連通さ
れたものとなされる一方、チューブの上端部が第2ヘッ
ダー内に突出されてその隔壁を前記攪乱板に当接される
ことにより、該第2ヘッダー内に前記攪乱板の下側をく
ぐって前記前側通路と後側通路とを相互に連通ずる迂回
状の冷媒通路が形成されてなることを特徴とする熱交換
器を要旨とする。
More specifically, the heat exchanger according to the present invention includes a pair of headers made of hollow extruded material arranged in parallel, and a pair of headers made of hollow extruded material arranged in parallel between both headers, with both ends inserted into the header. The refrigerant inlet/outlet of both headers includes a large number of extruded tubes connected in communication with the refrigerant passage, and fins arranged in the air circulation gap between adjacent tubes and between the tubes at both ends and the side plate. A central partition wall that bisects the refrigerant passage therein into a front passage and a rear passage along the length direction is integrally provided within the first ladder on one side, and within the second header on the other side. A disturbance plate is provided that protrudes in the tube direction to a position midway in the cross section of the refrigerant passage, and the tube is also provided with a central partition wall that divides the internal refrigerant passage into a front passage and a rear passage. 1. When the header and the tube are connected, the above-mentioned partition walls are brought into contact with each other, so that the front passages and the rear passages of both are connected to each other independently. The upper end of the tube is projected into the second header and its partition wall is brought into contact with the disturbance plate, so that the tube passes under the disturbance plate into the second header and forms the front passage and the rear passage. The gist of the heat exchanger is that a detour-like refrigerant passage is formed to communicate with the heat exchanger.

実施例 以下、この発明の構成を更に図示の実施例に基づいて詳
しく説明する。
EXAMPLES Below, the structure of the present invention will be further explained in detail based on illustrated examples.

実施例1 この発明の適用による最も基本的な熱交換器の具体的構
成例を、第1図ないし第5図に示す。
Embodiment 1 A specific example of the most basic structure of a heat exchanger to which the present invention is applied is shown in FIGS. 1 to 5.

この実施例の熱交換器は、アルミニウム合金製のもので
あり、その主要構成部材として、第1図に示すように上
下の1対の平行状に配置されたヘッダー(1)(2)と
、それらの間に渡して並列状に配置され、両端部がそれ
ぞれ上記ヘッダー(1)(2)に連通接合された多数本
のチューブ(3)と、この隣接するチューブ間及び最外
側のチューブ(3)とサイドプレート(4)(4)との
間の空気流通空間内に介在配置されたコルゲート型のフ
ィン(5)とを有する。
The heat exchanger of this embodiment is made of aluminum alloy, and its main components include a pair of upper and lower headers (1) and (2) arranged in parallel as shown in FIG. A large number of tubes (3) are arranged in parallel between them, and both ends are connected to the headers (1) and (2), respectively. ) and a corrugated fin (5) interposed in the air circulation space between the side plate (4) and the side plate (4).

ヘッダー(1)(2)はいずれもアルミニウム材による
円形パイプ状の中空押出型材からなるものであり、下段
側の第1ヘッダー(2)は、両端が冷媒の入口(7)と
同出口(8)に形成されると共に、内部中央に縦向きの
隔壁(9)が−体に縦設され、これによって内部冷媒通
路(10)が長さ方向に沿って2分されて、前側通路0
0a )と後側通路(10b )とに仕切られている。
The headers (1) and (2) are both made of circular pipe-shaped hollow extrusions made of aluminum, and the first header (2) on the lower stage has a refrigerant inlet (7) and an outlet (8) at both ends. ), and a vertically oriented partition wall (9) is vertically installed in the center of the interior, thereby dividing the internal refrigerant passage (10) into two along the length direction, and forming a front passage (0).
0a) and a rear passage (10b).

そしてその後側通路(10b )における冷媒入口(7
)側の一端は、第3図に示すようにサイドプレート(4
)から延長さ−れた差込遮断板(11)によって閉塞さ
れ、冷媒入口(7)から流入される冷媒を前側通路(1
0a)側にのみ導入しうるようになされている。またこ
れとは逆に、前側通路(10a )は冷媒出口(8)側
の一端において前記同様にサイドプレート(4)の差込
遮断板(11)によって塞がれており、冷媒出口(8)
を後側通路(10b)のみに開口せしめたものとなされ
ている。−方、上段側のヘッダー(1)は、第2図に示
すように、内面の中央上部に下端が略中心点近くまで達
するチューブ位置決め兼用の攪乱板(17)が垂下状に
一体成形されると共に、両端が蓋片(6)(6)閉塞さ
れて内部に密閉空間としての単一の冷媒通路(1g)を
形成したものとなされている。
And the refrigerant inlet (7) in the rear passage (10b)
) side is attached to the side plate (4) as shown in Figure 3.
) is blocked by an insertion blocking plate (11) extending from the front passageway (1
It is designed so that it can be introduced only to the 0a) side. In addition, on the contrary, the front passage (10a) is blocked at one end on the refrigerant outlet (8) side by the insertion blocking plate (11) of the side plate (4) in the same manner as described above, and the refrigerant outlet (8)
is opened only to the rear passage (10b). - On the other hand, the upper header (1) has, as shown in Fig. 2, a disturbance plate (17) that is integrally molded in the upper center of the inner surface, which also functions as tube positioning and whose lower end reaches almost the center point. At the same time, both ends are closed with lid pieces (6) (6) to form a single refrigerant passage (1g) as a sealed space inside.

チューブ(3)は、アルミニウム材による扁平状の中空
押出型材からなるものであり、これも内部の幅方向中央
部に中央隔壁(12)を有して、第1ヘッダー(2)に
対応するように内部の冷媒通路(13)が前側通路(1
3a)と後側通路(13b )に2分されている。この
チューブ(3)は所謂ハモニカチューブと称されるよう
な多孔形のものを用いても良い。この場合、前側通路及
び後側通路がそれぞれ複数個ずつの独立した通路部分を
もって形成される。
The tube (3) is made of a flat hollow extruded material made of aluminum material, and also has a central partition wall (12) at the center in the width direction of the inside so as to correspond to the first header (2). The internal refrigerant passage (13) is connected to the front passage (1
It is divided into two parts: 3a) and a rear passage (13b). This tube (3) may be of a porous type, so-called a harmonica tube. In this case, the front passage and the rear passage are each formed with a plurality of independent passage sections.

ヘッダー(1)(2)とチューブ(3)の連通接続は、
第3図に示されるようにヘッダー(1)(2)のチュー
ブ取付部分にチューブ幅対応の切込み(14)を形成し
、これにチューブ(3)の端部を緊密に嵌合すると共に
、チューブ材に予め被覆した亜鉛層あるいは別途付着さ
せるろう材等の接合用材料を利用して、両者を強固に接
合することによって行われている。この接合時において
、チューブ(3)はその両端部中央に予め形成した切込
凹部(15)  (15)を上段の第2ヘッダー(1)
の位置決め兼用撹乱板(17) 、及び下段の第1ヘッ
ダー(2)の隔壁(9)に適合させることにより、その
嵌合深さと相対位置を規制されるものとなっている。
The communication connection between the header (1) (2) and the tube (3) is as follows:
As shown in Figure 3, a notch (14) corresponding to the tube width is formed in the tube attachment part of the header (1) (2), and the end of the tube (3) is tightly fitted into this, and the tube This is done by firmly joining the two using a zinc layer coated on the material in advance or a joining material such as a brazing filler metal that is separately attached. At the time of this joining, the tube (3) is connected to the upper second header (1) by inserting the notch (15) (15) previously formed in the center of both ends of the tube (3).
By fitting the positioning/disturbing plate (17) and the partition wall (9) of the first header (2) in the lower stage, the fitting depth and relative position thereof are regulated.

かつ接続状態においてチューブ(3)の中央隔壁(12
)は、特にその下端が第1ヘッダー(2)の隔壁(9)
に密接状態に当接されたものとなされ、これによって該
第1ヘッダー(2)とチューブ(3)の各前側通路(l
og )  (13a )どおし、及び後側通路(10
b )  (13b )どおしが各独立状態に連通され
たものとなされている。
and the central partition wall (12) of the tube (3) in the connected state.
), in particular its lower end is the bulkhead (9) of the first header (2).
The first header (2) and each front passage (l) of the tube (3) are brought into close contact with each other.
og ) (13a) doorway and rear passage (10
b) (13b) Both are connected to each independent state.

従ってこの熱交換器における冷媒回路(C1)は、jI
I5図に示すように第1ヘッダー(2)の前側通路(1
0a )からチューブ(3)の前側通路を経て第2ヘッ
ダー(1)内の冷媒通路(18)内で反転し、然るのち
チューブ(3)の後側通路(13b )から第1ヘッダ
ー(2)の後側通路(10b )を経て冷媒出口(8)
に至るものとなされている。
Therefore, the refrigerant circuit (C1) in this heat exchanger is jI
As shown in Figure I5, the front passage (1) of the first header (2)
0a), passes through the front passage of the tube (3), turns in the refrigerant passage (18) in the second header (1), and then passes from the rear passage (13b) of the tube (3) to the first header (2). ) through the rear passage (10b) to the refrigerant outlet (8).
It is assumed that the

また、チューブ(3)の上端部は、第4図に示されるよ
うに第2ヘッダー(1)内に挿し込み状態に突出され、
その隔壁(12)が攪乱板(17)に当接されることに
より、該第2ヘッダー(1)内に隣接するチューブ(3
)(3)間において上記攪乱板(17)の下側をくぐっ
てチューブ(3)の前側通路(13a )と同後側通路
(13b )とを迂回状態に連通ずる冷媒通路(18)
を形成せしめたものとなされている。従って、この迂回
状の冷媒通路を通る間に、冷媒は第2ヘッダー(1)内
で十分な撹乱作用を与えられるものとなっている。
Further, the upper end of the tube (3) is inserted into the second header (1) and protrudes as shown in FIG.
By abutting the partition wall (12) against the disturbance plate (17), the adjacent tube (3) is inserted into the second header (1).
) and (3), a refrigerant passage (18) passes under the above-mentioned disturbance plate (17) and communicates the front passage (13a) and the rear passage (13b) of the tube (3) in a roundabout manner.
It is said to have caused the formation of Therefore, the refrigerant is sufficiently disturbed within the second header (1) while passing through this detour-shaped refrigerant passage.

フィン(5)は隣接するチューブ(3)(3)の間隔に
相当する高さを有するコルゲート状のもので、−般的な
ろう付けの手段でチューブ(3)及びサイドプレート(
4)に接合されている。
The fins (5) are corrugated and have a height corresponding to the spacing between adjacent tubes (3) (3);
4).

サイドプレート(4)は、第3図に示すような断面略コ
字状のもので、その開口面側を外向きにして両ヘッダー
(1)(2)の両端部間に配置されている。このサイド
プレート(4)の取付けは、その両端部に延長状に突出
された差込部(4a )  (4b )を、ヘッダー(
1)(2)の対応部分に穿たれたスリット(16)に差
込み、かつ適宜ろう接することによって行われている。
The side plate (4) has a substantially U-shaped cross section as shown in FIG. 3, and is disposed between both ends of the headers (1) and (2) with its opening side facing outward. To install this side plate (4), connect the insertion parts (4a) (4b) extending from both ends of the side plate (4) to the header (4b).
This is done by inserting it into a slit (16) made in the corresponding part of 1) and (2) and soldering as appropriate.

上記において、冷媒は下段の第1ヘッダー(2)の−端
の冷媒入口(7)から該ヘッダー内の前側通路(10a
 )に入る。後側通路(10b )は前記のようにサイ
ドプレート(4)の差込遮断板(11)によって入口側
が塞がれているため、入口(7)からのガス状冷媒が直
接入ることはない。第1ヘッダー(2)の前側通路(1
0a )に入ったガス状冷媒は、続いてチューブ(3)
の前側通路(13a)に分配されてその中を上昇する。
In the above, the refrigerant is supplied from the refrigerant inlet (7) at the -end of the lower first header (2) to the front passage (10a) in the header.
)to go into. Since the rear passage (10b) is blocked at the inlet side by the insertion blocking plate (11) of the side plate (4) as described above, the gaseous refrigerant from the inlet (7) does not directly enter. The front passage (1) of the first header (2)
The gaseous refrigerant that entered the tube (3)
and rises therein.

この過程で先ず隣接チューブ(3)(3)間を流れる外
部空気流により、ガス状冷媒は、空気流との相対的温度
差が大きいことも相俟ってコアの全域において効率の良
い熱交換が行われる。続いて冷媒は、第2ヘッダー(1
)内の冷媒通路(18)に入る。そして、ここで位置決
め兼撹乱板(17)の存在により、その下方を第4図に
矢印で示すように迂回して充分に撹乱されつつ方向転換
したのち、今度はチューブ(3)の後側通路(13b 
)に入ってこれを下降する。
In this process, first of all, due to the external air flow flowing between the adjacent tubes (3) (3), the gaseous refrigerant has a large relative temperature difference with the air flow, resulting in efficient heat exchange throughout the entire core. will be held. Subsequently, the refrigerant is transferred to the second header (1
) into the refrigerant passage (18). Then, due to the existence of the positioning/disturbing plate (17), the direction is changed by detouring below it as shown by the arrow in Fig. 4, and is sufficiently disturbed, and then the rear passage of the tube (3) is changed. (13b
) and descend this.

このときには既に冷媒は多くの部分が気液混合状態であ
り、この下降中にも更に外気との間で熱交換して保有熱
量を奪われ、やがて所要の低温状態になって第1ヘッダ
ー(2)の後側通路(10b )に集合し、次いで出口
(8)から送出される。
At this time, most of the refrigerant is already in a gas-liquid mixed state, and during this descent, it further exchanges heat with the outside air and loses its retained heat, and eventually reaches the required low temperature, and the first header (2 ) is collected in the rear passageway (10b), and then sent out from the outlet (8).

実施例2 この実施例は、第6図ないし第8図に示すもので、第1
実施例に較ベヘッダーとチューブの接合構造及び冷媒回
路の回路構成に特異性を有するものである。
Embodiment 2 This embodiment is shown in FIGS. 6 to 8.
Compared to the embodiments, this embodiment has specificity in the joint structure of the header and tubes and the circuit configuration of the refrigerant circuit.

この実施例の上下両ヘッダー(31)  (32)は、
いずれもその内部が長さ方向に連続状に設けられた仕切
壁(33)  (34)によって冷媒通路(35)(3
B)とチューブ固定用樹脂充填空間(37)(38)と
に仕切られている。そして、多孔扁平押出型材からなる
チューブ(39)はその両端部がヘッダー(31)  
(32)内にその外周壁から上記仕切壁(33)  (
34)を貫通する状態に挿入され、それぞれ該ヘッダー
(31)  (32)内の冷媒通路(35)  (3B
)に連通されたものとなされると共に、樹脂充填空間(
37)  (3g)内にはチューブ固定用の樹脂(40
)が注入充填されかつ硬化されることにより、ヘッダー
(31)  (32)とチューブ(39)との−体不離
かつ気密状態の接合が行われたものとなされている。か
つ、この接合強度を充分なものとするために、チューブ
(39)の端部には外面に凹部(43)が加工され、こ
れに樹脂(40)が喰い込むことによってチューブ(3
9)の抜脱を一層確実に防止しうるちのとなされている
。上記の樹脂(40)の注入は、ヘッダー(31)  
(32)の周壁に適宜設けられる注入孔(44)  (
第6図)から行われる。また、用いる樹脂(40)とし
ては、ヘッダー(31)(32)とチューブ(39)と
の充分な接合力を発揮し、あるいは注入作業性の良いも
のであれば任意のものを採用可能であるが、特に好適な
ものとしてエポキシ樹脂をあげうる。
Both the upper and lower headers (31) (32) of this example are as follows:
In both cases, refrigerant passages (35) (3) are defined by partition walls (33) (34) provided continuously in the length direction.
B) and tube fixing resin filling spaces (37) and (38). The tube (39) made of a porous flat extruded material has headers (31) at both ends.
(32) from its outer peripheral wall to the partition wall (33) (
34), and the refrigerant passages (35) (3B
), and the resin-filled space (
37) (3g) contains resin (40g) for fixing the tube.
) is injected and cured to form an inseparable and airtight connection between the header (31) (32) and the tube (39). In addition, in order to ensure sufficient joint strength, a recess (43) is formed on the outer surface of the end of the tube (39), and the resin (40) bites into the recess (43).
9) is made to be more securely prevented from coming off. The above resin (40) is injected into the header (31)
Injection holes (44) (
(Fig. 6). Further, as the resin (40) to be used, any resin can be used as long as it exhibits sufficient bonding force between the header (31), (32) and the tube (39), or has good injection workability. However, epoxy resin is particularly preferred.

また、下段側の第1ヘッダー(32)はその冷媒通路(
36)が更に隔壁(30)によって前側通路(38a 
)と後側通路(38b )とに2分されている。そして
、この隔! (30)に、チューブ(39)内の冷媒通
路(41)を前側通路(41a )と後側通路(41b
 )とに2分している中央隔壁(42)の下端面が密に
当接されており、もって第1ヘッダー(32)とチュー
ブ(39)の前側通路(38a )  (41a )ど
おし、及び同後側通路どおしく38b )  (’41
b ’)どおしが各独立状態に相互連通せられたものと
なされている。
In addition, the first header (32) on the lower stage side has its refrigerant passage (
36) is further connected to the front passageway (38a) by the partition wall (30).
) and a rear passage (38b). And this gap! (30), the refrigerant passage (41) in the tube (39) is connected to the front passage (41a) and the rear passage (41b).
) The lower end surfaces of the central partition wall (42) which are divided into two parts are in close contact with each other, so that the front passages (38a) and (41a) of the first header (32) and the tube (39) are connected to each other. and the rear passage 38b) ('41
b') They are assumed to be interconnected in each independent state.

−方、第2のヘッダー(31)内には、上記仕切壁(3
3)の方向に向けてその内部の冷媒通路(35)の断面
の途中の位置までのびた位置決め兼用の攪乱板(27)
が設けられている。そして、前記実施例1の場合と同じ
く、この攪乱板(27)によって該ヘッダー(31)内
の冷媒通路(35)を、攪乱板(27)の下側をくぐっ
てチューブ(39)の前側通路(41a )と後側通路
(41b )とを連通ずる迂回状のものに形成している
- On the other hand, inside the second header (31), the partition wall (3
3) A disturbance plate (27) that also serves as a positioner and extends to a position midway in the cross section of the refrigerant passage (35) inside the plate.
is provided. As in the case of the first embodiment, the stirring plate (27) allows the refrigerant passage (35) in the header (31) to pass through the lower side of the stirring plate (27) and pass through the front passage of the tube (39). (41a) and the rear passage (41b) are formed in a detour shape that communicates with each other.

そしてまた、上下の第1及び第2各ヘッダー(31) 
 (32)の冷媒通路(35)  (3B)内には、第
6図に示されるように、互いに対応位置において該通路
を遮断する通路遮断板(45)  (4B)及び(47
)  (48)が設けられている。即ち、第2ヘッダー
(31)には、その全長を略3等分する位置において半
円形状の遮断板(45)  (47)が2個設けられ、
第1ヘッダー(32)側においては、上記遮断板(45
)  (47)に対応する位置において、前側通路C3
8a )を遮断する第1の遮断板(46)と、後側通路
(38b )を遮断する第2の遮断板(48)とが設け
られている。而して、このような遮断板(45)  C
m  (47)  (48)の設置により、熱交換器コ
アの冷媒回路(C2)は、第6図及び第8図に示すよう
に、入口(7)から第1ヘッダー(32)の前側通路(
36a)、入口側の第1チューブ群(I)の前側通路(
41a)、第2ヘッダー(31) 、同第1チユーブ群
(1)の後側通路(41b > 、第1ヘッダー(32
)、中間の第2チューブ群(n)の後側通路(41b)
、第2ヘッダー(31) 、同第2チユーブ群(n)の
前側通路(41a ) 、第1ヘッダー(32)の前側
通路(36a ) 、出口側の第3チューブ群(m)の
前側通路(38a ) 、第2ヘッダー(31)、同第
3チユーブ群の後側通路(36b )を順次巡って出口
(8)へ至る実質上蛇行状に形成されたものとなされて
いる。
And also the upper and lower first and second headers (31)
As shown in FIG. 6, in the refrigerant passage (35) (3B) of (32), passage blocking plates (45) (4B) and (47
) (48) is provided. That is, the second header (31) is provided with two semicircular blocking plates (45) and (47) at positions that approximately divide the entire length into three equal parts.
On the first header (32) side, the shielding plate (45
) At the position corresponding to (47), the front passage C3
A first blocking plate (46) for blocking the rear passage (38b) and a second blocking plate (48) for blocking the rear passage (38b) are provided. Therefore, such a blocking plate (45) C
m (47) and (48), the refrigerant circuit (C2) of the heat exchanger core runs from the inlet (7) to the front passage (32) of the first header (32), as shown in FIGS.
36a), the front passage of the first tube group (I) on the inlet side (
41a), the second header (31), the rear passage of the first tube group (1) (41b>, the first header (32)
), the rear passage (41b) of the intermediate second tube group (n)
, the second header (31), the front passage (41a) of the second tube group (n), the front passage (36a) of the first header (32), the front passage of the third tube group (m) on the outlet side ( 38a), the second header (31), and the rear passageway (36b) of the third tube group in order to reach the outlet (8) in a substantially meandering manner.

上記の遮断板(45)  (48)  (47)  (
48)は、ヘッダー(31)  (32)に切込みを設
けてこれに嵌め込むことにより設置されたものであり、
そ弁ぞれ外方に連続してのびたブラケット部(49)(
50)  (51)  (52)を−体に有するものと
なされている。該ブラケット部(49)  (50) 
 (51)(52)は、先端部を適宜の方向に折曲して
取付孔を穿設してあり、熱交換器の取付用に使用される
ものである。
The above blocking plates (45) (48) (47) (
48) is installed by making a cut in the header (31) (32) and fitting it into the cut,
The bracket part (49) extends continuously outward from each valve.
50) (51) (52) is considered to have the - body. The bracket part (49) (50)
(51) and (52) have a mounting hole formed by bending the tip in an appropriate direction, and are used for mounting a heat exchanger.

その他の構成事項は前記実施例1の場合と同様であり、
相当部分を同一の符号で示して説明を省略する。
Other configuration items are the same as in the first embodiment,
Corresponding parts are indicated by the same reference numerals and their explanation will be omitted.

この実施例の熱交換器は、入口(7)がら導入された冷
媒が前述ように上下のヘッダー(31)(32)での反
転および横移動を介してチューブ(39)内の前側通路
(4La )と後側通路(41b )を順次的に巡る蛇
行状回路(C2)をもってコア内を流通し、その間に隣
接チューブ(39)間を流通する外部の空気との熱交換
により冷却され、所定の低温かつ液化の進んだ状態にな
って出口(8)から送出されるものである。
In the heat exchanger of this embodiment, the refrigerant introduced from the inlet (7) passes through the front passage (4La) in the tube (39) through inversion and lateral movement at the upper and lower headers (31) (32) as described above. ) and the rear passageway (41b) in order through the core through a meandering circuit (C2), during which it is cooled by heat exchange with external air flowing between adjacent tubes (39). It is sent out from the outlet (8) in a low temperature and highly liquefied state.

実施例3 この実施例は、第9図に示すように、実施例2に対して
そのヘッダーの形状を変更した変形例を示すものである
Embodiment 3 This embodiment is a modification of Embodiment 2 in which the shape of the header is changed, as shown in FIG. 9.

即ち、上下のヘッダー(81)  (82)はいずれも
、チューブ(39)の接合側の周面の一部を平坦状とし
た断面長半円形状に形成されており、この平坦状の外周
壁部分と平行に、内部に2つの仕切壁(83)  (8
4)が相互に平行状に設けられ、樹脂充填空間(65)
が2つの部分に区画形成されたものとなされている。そ
して、これらの画部分に各独立に樹脂(40)が注入充
填されることにより、両仕切壁(63)  (64)を
貫通して挿入されたチューブ(39)の端部を固定した
ものとなされている。その他は実施例2と同様であり、
相当部分を同一の符号で示して説明を省略する。
That is, the upper and lower headers (81) and (82) are both formed to have an elongated semicircular cross section with a part of the peripheral surface on the joint side of the tube (39) being flat, and this flat outer peripheral wall Parallel to the section, there are two internal partition walls (83) (8
4) are provided in parallel to each other, and the resin filling space (65)
is divided into two parts. By injecting and filling each of these areas with resin (40) independently, the ends of the tube (39) inserted through both the partition walls (63) and (64) are fixed. being done. Others are the same as in Example 2,
Corresponding parts are indicated by the same reference numerals and their explanation will be omitted.

発明の効果 この発明に係る熱交換器は、冷媒回路を構成する1対の
ヘッダー及びそれらの間のチューブが、いずれもアルミ
ニウム材による中空押出型材によって構成され、しかも
それらがチューブの端部をヘッダーの周面に挿入するこ
とによって連通状態に接続されたものとなされている。
Effects of the Invention In the heat exchanger according to the present invention, a pair of headers constituting a refrigerant circuit and a tube between them are both constructed of hollow extruded aluminum members, and in addition, they connect the ends of the tubes to the header. By inserting it into the peripheral surface of the device, the device is connected in a communicating state.

このため、従来のサーペンタインチューブ型の熱交換器
に較べても何ら遜色のない耐圧強度を有し、比較的高圧
のガス状冷媒を取扱い対象とするカークーラー用のコン
デンサーとしての用途にも好都合に使用しうる。
Therefore, it has a pressure resistance comparable to that of conventional serpentine tube heat exchangers, making it suitable for use as a condenser for car coolers that handle relatively high-pressure gaseous refrigerants. Can be used.

また、両ヘッダー間に多数本のチューブを平行状に設け
、その全部または所定本数のチューブ群毎に、冷媒をそ
れらの前側通路と後側通路とに巡らせて流通させるもの
となされているから、冷媒回路の通路断面積を設計上の
要請に応じて任意に拡縮変更することが可能である。し
たがって冷媒の流通抵抗を充分に小さくすることが可能
であり、従来のサーペンタインチューブ型のコンデンサ
ーに較べ、圧力損失の少ないものとなしうる。
In addition, a large number of tubes are provided in parallel between both headers, and the refrigerant is circulated through the front passage and the rear passage for all or a predetermined number of tube groups. The passage cross-sectional area of the refrigerant circuit can be expanded or contracted as desired in accordance with design requirements. Therefore, it is possible to sufficiently reduce the flow resistance of the refrigerant, and the pressure loss can be reduced compared to a conventional serpentine tube type condenser.

更に、この発明の熱交換器では、チューブ内の冷媒通路
が、前側通路を後側通路とに分けられ、コアの少なくと
も一部において上記前側通路から後側通路に冷媒を反転
させて各車−のチューブ内を対向状に2回以上バスさせ
るようになっている。従って、隣接チューブ間を流れる
空気の風上側、即ちチューブの前方部分において効率の
高い熱交換が行われたのち、更にその後方部分でも別途
繰返して熱交換が行われる。
Further, in the heat exchanger of the present invention, the refrigerant passage in the tube is divided into a front passage and a rear passage, and the refrigerant is reversed from the front passage to the rear passage in at least a part of the core, and the refrigerant is transferred to each vehicle. The tubes are designed to be bathed two or more times in opposite directions. Therefore, after highly efficient heat exchange is performed on the windward side of the air flowing between adjacent tubes, that is, in the front portion of the tubes, heat exchange is performed separately and repeatedly in the rear portion.

このため全チューブによる総合的な評価において、熱交
換効率をコアの全体に平均化し、かつ個々のチューブ部
分の受けもつ熱交換効率も増大して、全体として熱交換
効率を大幅に増大しうる。加えて、冷媒を前側通路から
後側通路に反転させる第2ヘッダー内に攪乱板が設けら
れ、チューブの前側通路と後側通路とを、該攪乱板の下
側をくぐって連通せしめる迂回状の冷媒通路に形成した
ものとなされている。従って、冷媒は、該第2ヘッダー
内で流れ方向を反転される一方で、上記攪乱板の存在に
よって激しく撹乱作用を受け、気液混合状態及び温度の
均一化が促進される。このための第2へラダー内の迂回
状冷媒通路を経て流通する冷媒の熱交換が一層効果的に
行われる。故に、熱交換器の全体としての熱交換効率に
優れたものとなり、ひいては熱交換器の小型化を可能に
する。
Therefore, in a comprehensive evaluation using all the tubes, the heat exchange efficiency is averaged over the entire core, and the heat exchange efficiency of each tube section is also increased, making it possible to significantly increase the heat exchange efficiency as a whole. In addition, a disturbance plate is provided in the second header that reverses the refrigerant from the front passage to the rear passage, and a detour-like plate is provided in which the front passage and the rear passage of the tube are communicated by passing under the disturbance plate. It is formed in the refrigerant passage. Therefore, while the flow direction of the refrigerant is reversed within the second header, the refrigerant is violently disturbed by the presence of the above-mentioned disturbance plate, thereby promoting uniformity of gas-liquid mixing state and temperature. For this purpose, heat exchange of the refrigerant flowing through the detour-shaped refrigerant passage in the second ladder is performed more effectively. Therefore, the heat exchanger as a whole has excellent heat exchange efficiency, which in turn makes it possible to downsize the heat exchanger.

更にまた、この発明の熱交換器は、1対の押出型材製ヘ
ッダー間に、サイドプレートとチューブ及びフィンを配
して組立てられるものであるから、組立てに際し両ヘッ
ダーとサイドプレート及びチューブによって強固な枠組
みを形成しうる。従ってこの枠組み中にフィンを強制的
に嵌合しても著しい形状変化を来たすことがなく、構成
部材相互の仮組み状態をそれ自体で安定に保持しうる。
Furthermore, since the heat exchanger of the present invention is assembled by arranging the side plates, tubes and fins between a pair of extruded headers, the headers, side plates and tubes provide a strong structure during assembly. It can form a framework. Therefore, even if the fins are forcibly fitted into this framework, no significant change in shape occurs, and the temporarily assembled state of the constituent members can be stably maintained by themselves.

ひいてはこのため、組立工程を機械的に実施することが
可能となり、熱交換器の製造工程を自動化してコストダ
ウンをはかることが可能となる。
Consequently, it becomes possible to perform the assembly process mechanically, and it becomes possible to automate the manufacturing process of the heat exchanger and reduce costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図はこの発明の第1の実施例を示すも
ので、第1図は熱交換器の全体の正面図、第2図は第1
図■−■線の断面図、第3図は構成部材を分離状態にし
て示した要部の斜視図、第4図は第1図rV−IV線の
断面図、第5図は冷媒回路構成図である。 第6図ないし第8図はこの発明の第2実施例を示すもの
であり、第6図は熱交換器全体の一部破砕斜視図、第7
図は第6図■−■線断面図、第8図は冷媒回路構成図で
ある。 第9図はこの発明の第3の実施例を示すもので、第2実
施例の第7図相当部分の断面図である。 (1)  (31)  (81)・・・第2ヘッダー、
(2)(32)  (62)・・・第1ヘッダー、(3
)  (39)・・・チューブ、(4)・・・サイドプ
レート、(5)・・・フィン、(7)・・・冷媒入口、
(8)・・・冷媒出口、(9)・・・隔壁、(10) 
 (3B)・・・冷媒通路、(10a )  (36a
 ) ・・・前側通路、(10b )  (38b )
 ・・・後側通路、(12)  (42)・・・中央隔
壁、(13)(41)・・・冷媒通路、(13a ) 
 (41a )・・・前側通路、(13b ’)  (
41b )・・・後側通路、(17)  (27)・・
・位置決め兼用撹乱板、(33)  (34)  (8
3)  (64)・・・仕切壁、(37)  (3g)
  (65)・・・樹脂充填空間、(40)・・・樹脂
、(45)  (4B)  (47)  (48)・・
・通路遮断板、(C1)(C2)・・・冷媒回路。 以上 特許出願人  昭和アルミニウム株式会社手続補正書 昭和61年11月17日 特許庁長官  黒 1)明 雄 殿 昭和61年 特許願 第149265号2、発明の名称 熱交換器 3、補正をする者 事件との関係  特許出願人 住所   堺市海山町6丁224番地 名 称    昭和アルミニウム株式会社代表者 石 
井   親 4、代理人 住所   大阪市南区鰻谷中之町72番45、補正命令
の日付  (自発補正) 8、補正の内容 (1) 明細書の特許請求の範囲を別紙のとおり補正す
る。 (2) 同書第5頁第17行〜第19行に「この発明は
、・・・・・・ものとし、」とあるのを「この発明は、
1対のヘッダー間に多数のチューブを平行状に配置した
ヘッダー型のものとし、」と訂正する。 (3) 同省第6頁第10行の「押出型材製」を削除す
る。 (4) 同書第20頁第2行の「及びそれらの間のチュ
ーブ」を削除する。 以上 特許請求の範囲 (1) 平行状に配置された1対の中空押出型材製ヘッ
ダーと、両ヘッダー間に並列状に配置され両端をヘッダ
ーに挿入してその内部の冷媒通路に連通接続された多数
本のチューブと、隣接するチューブ間及び両端のチュー
ブとサイドプレートとの間の空気流通間隙に配置された
フィンとを備え、 前記両ヘッダーのうち冷媒出入口側の一方の第1ヘッダ
ー内に、その内部の冷媒通路を長さ方向に沿って前側通
路と後側通路とに2分する中央隔壁が一体に設けられ、
かつ他方の第2ヘッダー内にその冷媒通路の断面の途中
の位置までチューブ方向に突出した攪乱板が設けられる
と共に、前記チューブにもその内部の冷媒通路を前側通
路と後側通路とに2分する中央隔壁が設けられ、第1ヘ
ッダーとチューブとの接続状態においてそれらの上記隔
壁が当接されることにより、両者の前側通路どおし及び
後側通路どおしが相互に各独立状態に連通されたものと
なされる一方、チューブの上端部が第2ヘッダー内に突
出されてその隔壁を前記攪乱板に当接されることにより
、該第2ヘッダー内に前記攪乱板の下側をくぐって前記
前側通路と後側通路とを相互に連通ずる迂回状の冷媒通
路が形成されてなることを特徴とする熱交換器。 (2) ヘッダー内に、冷媒通路と樹脂充填空間とに区
画する仕切壁が長さ方向に沿って連続状に形成され、チ
ューブの端部がヘッダー内にその外周壁と前記仕切壁と
を貫通して挿入されると共に、前記樹脂充填空間に樹脂
が注入充填されることによりヘッダーとチューブが一体
的に接合固定されてなる特許請求の範囲第1項記載の熱
交換器。 (3) 樹脂充填空間に注入された樹脂がエポキシ系樹
脂からなる特許請求の範囲第2項記載の熱交換器。 (4) 両ヘッダーの冷媒通路内にそれぞれ工ないし複
数個の通路遮断板が設置されることにより、コア内の冷
媒回路が前記前側通路と後側通路とを複数回順次に巡る
実質上蛇行状に形成されてなる特許請求の範囲第1項な
いし第3項のいずれか1に記載の熱交換器。
1 to 5 show a first embodiment of the present invention, in which FIG. 1 is a front view of the entire heat exchanger, and FIG. 2 is a front view of the entire heat exchanger.
Figure 3 is a perspective view of the main parts with the components separated, Figure 4 is a sectional view taken along line rV-IV in Figure 1, Figure 5 is the refrigerant circuit configuration. It is a diagram. 6 to 8 show a second embodiment of the present invention, in which FIG. 6 is a partially exploded perspective view of the entire heat exchanger, and FIG.
The figures are a cross-sectional view taken along the line ■--■ in FIG. 6, and FIG. 8 is a refrigerant circuit configuration diagram. FIG. 9 shows a third embodiment of the present invention, and is a sectional view of a portion corresponding to FIG. 7 of the second embodiment. (1) (31) (81)...Second header,
(2) (32) (62)...first header, (3
) (39)...tube, (4)...side plate, (5)...fin, (7)...refrigerant inlet,
(8)... Refrigerant outlet, (9)... Partition wall, (10)
(3B)... Refrigerant passage, (10a) (36a
)...Front passage, (10b) (38b)
... Rear passage, (12) (42) ... Central partition, (13) (41) ... Refrigerant passage, (13a)
(41a)...front passage, (13b') (
41b)... Rear passage, (17) (27)...
・Positioning and disturbance plate, (33) (34) (8
3) (64)...Partition wall, (37) (3g)
(65)...Resin filling space, (40)...Resin, (45) (4B) (47) (48)...
- Passage blocking plate, (C1) (C2)...refrigerant circuit. Applicant for the above patents: Showa Aluminum Co., Ltd. Procedural Amendment November 17, 1988 Commissioner of the Patent Office Kuro 1) Yu Akira, 1986 Patent Application No. 149265 2, Name of invention Heat exchanger 3, Case of the person making the amendment Relationship with Patent Applicant Address 6-224 Kaizancho, Sakai City Name Showa Aluminum Co., Ltd. Representative Ishi
Chika I 4, Agent address: 72-45 Unagidani Nakano-cho, Minami-ku, Osaka, Date of amendment order (voluntary amendment) 8. Contents of amendment (1) The scope of claims in the specification will be amended as shown in the attached sheet. (2) On page 5, lines 17 to 19 of the same book, the phrase ``This invention shall...'' be replaced with ``This invention shall...''.
It is a header type with many tubes arranged in parallel between a pair of headers.'' (3) Delete "Made from extruded material" on page 6, line 10 of the Ministry of the Ministry of Health. (4) Delete "and the tube between them" in the second line of page 20 of the same book. Claims (1) A pair of headers made of hollow extruded material arranged in parallel, and a pair of headers arranged in parallel between both headers, with both ends inserted into the header and connected to the refrigerant passage therein. A plurality of tubes and fins arranged in air circulation gaps between adjacent tubes and between the tubes and the side plates at both ends, and in one of the first headers on the refrigerant inlet and outlet side of the two headers, A central partition wall is integrally provided that bisects the internal refrigerant passage into a front passage and a rear passage along the length direction,
In addition, a disturbance plate is provided in the other second header and protrudes in the tube direction to a position midway in the cross section of the refrigerant passage, and the refrigerant passage inside the tube is also divided into two into a front passage and a rear passage. A central partition wall is provided, and when the first header and the tube are connected, the partition walls are brought into contact with each other, so that the front passages and the rear passages of both are mutually independent. On the other hand, the upper end of the tube is projected into the second header and its partition wall is brought into contact with the disturbance plate, so that the tube passes under the disturbance plate into the second header. A heat exchanger characterized in that a detour-shaped refrigerant passage is formed to communicate the front passage and the rear passage with each other. (2) A partition wall partitioning the refrigerant passage and the resin filling space is formed continuously along the length direction in the header, and the end of the tube passes through the outer peripheral wall and the partition wall inside the header. 2. The heat exchanger according to claim 1, wherein the header and the tube are integrally bonded and fixed by being inserted into the resin filling space and by injecting and filling the resin filling space with resin. (3) The heat exchanger according to claim 2, wherein the resin injected into the resin filling space is an epoxy resin. (4) By installing one or more passage blocking plates in the refrigerant passages of both headers, the refrigerant circuit in the core sequentially passes through the front passage and the rear passage several times in a substantially meandering manner. A heat exchanger according to any one of claims 1 to 3, which is formed by:

Claims (4)

【特許請求の範囲】[Claims] (1) 平行状に配置された1対の中空押出型材製ヘッ
ダーと、両ヘッダー間に並列状に配置され両端をヘッダ
ーに挿入してその内部の冷媒通路に連通接続された多数
本の押出型材製チューブと、隣接するチューブ間及び両
端のチューブとサイドプレートとの間の空気流通間隙に
配置されたフィンとを備え、 前記両ヘッダーのうち冷媒出入口側の一方の第1ヘッダ
ー内に、その内部の冷媒通路を長さ方向に沿って前側通
路と後側通路とに2分する中央隔壁が一体に設けられ、
かつ他方の第2ヘッダー内にその冷媒通路の断面の途中
の位置までチューブ方向に突出した攪乱板が設けられる
と共に、前記チューブにもその内部の冷媒通路を前側通
路と後側通路とに2分する中央隔壁が設けられ、第1ヘ
ッダーとチューブとの接続状態においてそれらの上記隔
壁が当接されることにより、両者の前側通路どおし及び
後側通路どおしが相互に各独立状態に連通されたものと
なされる一方、チューブの上端部が第2ヘッダー内に突
出されてその隔壁を前記攪乱板に当接されることにより
、該第2ヘッダー内に前記攪乱板の下側をくぐって前記
前側通路と後側通路とを相互に連通する迂回状の冷媒通
路が形成されてなることを特徴とする熱交換器。
(1) A pair of hollow extruded headers arranged in parallel, and a large number of extruded members arranged in parallel between both headers, with both ends inserted into the header and connected to the internal refrigerant passages. and a fin disposed in an air circulation gap between adjacent tubes and between the tube and the side plate at both ends; A central partition wall is integrally provided that bisects the refrigerant passage into a front passage and a rear passage along the length direction,
In addition, a disturbance plate is provided in the other second header and protrudes in the tube direction to a position midway in the cross section of the refrigerant passage, and the refrigerant passage inside the tube is also divided into two into a front passage and a rear passage. A central partition wall is provided, and when the first header and the tube are connected, the partition walls are brought into contact with each other, so that the front passages and the rear passages of both are mutually independent. On the other hand, the upper end of the tube is projected into the second header and its partition wall is brought into contact with the disturbance plate, so that the tube passes under the disturbance plate into the second header. A heat exchanger characterized in that a detour-shaped refrigerant passage is formed to communicate the front passage and the rear passage with each other.
(2) ヘッダー内に、冷媒通路と樹脂充填空間とに区
画する仕切壁が長さ方向に沿って連続状に形成され、チ
ューブの端部がヘッダー内にその外周壁と前記仕切壁と
を貫通して挿入されると共に、前記樹脂充填空間に樹脂
が注入充填されることによりヘッダーとチューブが一体
的に接合固定されてなる特許請求の範囲第1項記載の熱
交換器。
(2) A partition wall partitioning the refrigerant passage and the resin filling space is continuously formed in the header along the length direction, and the end of the tube passes through the outer peripheral wall and the partition wall inside the header. 2. The heat exchanger according to claim 1, wherein the header and the tube are integrally joined and fixed by being inserted into the resin filling space and by injecting and filling the resin filling space with resin.
(3) 樹脂充填空間に注入された樹脂がエポキシ系樹
脂からなる特許請求の範囲第2項記載の熱交換器。
(3) The heat exchanger according to claim 2, wherein the resin injected into the resin filling space is an epoxy resin.
(4)両ヘッダーの冷媒通路内にそれぞれ1ないし複数
個の通路遮断板が設置されることにより、コア内の冷媒
回路が前記前側通路と後側通路とを複数回順次に巡る実
質上蛇行状に形成されてなる特許請求の範囲第1項ない
し第3項のいずれか1に記載の熱交換器。
(4) One or more passage blocking plates are installed in each of the refrigerant passages of both headers, so that the refrigerant circuit in the core sequentially passes through the front passage and the rear passage multiple times in a substantially meandering manner. A heat exchanger according to any one of claims 1 to 3, which is formed by:
JP14926586A 1986-06-24 1986-06-24 Heat exchanger Expired - Lifetime JPH0682038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14926586A JPH0682038B2 (en) 1986-06-24 1986-06-24 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14926586A JPH0682038B2 (en) 1986-06-24 1986-06-24 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS636392A true JPS636392A (en) 1988-01-12
JPH0682038B2 JPH0682038B2 (en) 1994-10-19

Family

ID=15471458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14926586A Expired - Lifetime JPH0682038B2 (en) 1986-06-24 1986-06-24 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0682038B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219986A (en) * 1989-02-21 1990-09-03 Matsushita Refrig Co Ltd Heat exchanger
JPH02140166U (en) * 1989-04-24 1990-11-22
JPH043275U (en) * 1990-04-13 1992-01-13
US5479985A (en) * 1992-03-24 1996-01-02 Nippondenso Co., Ltd. Heat exchanger
WO1999023432A1 (en) * 1997-11-04 1999-05-14 Thermal Components, A Division Of Insilco Corporation Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
KR100480112B1 (en) * 2002-08-28 2005-04-06 엘지전자 주식회사 Guide device for refrigerant flow of regenerator
US7069980B2 (en) * 2002-10-18 2006-07-04 Modine Manufacturing Company Serpentine, multiple paths heat exchanger
KR100667702B1 (en) 2005-09-13 2007-01-12 주식회사 두원공조 Header of heat exchanger using co2 refrigerant
JP2016102628A (en) * 2014-11-28 2016-06-02 株式会社ケーヒン・サーマル・テクノロジー Evaporator
US20180010813A1 (en) * 2015-07-02 2018-01-11 Schneider Electric It Corporation Cooling system and method having micro-channel coil with countercurrent circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219986A (en) * 1989-02-21 1990-09-03 Matsushita Refrig Co Ltd Heat exchanger
JPH02140166U (en) * 1989-04-24 1990-11-22
JPH043275U (en) * 1990-04-13 1992-01-13
US5479985A (en) * 1992-03-24 1996-01-02 Nippondenso Co., Ltd. Heat exchanger
WO1999023432A1 (en) * 1997-11-04 1999-05-14 Thermal Components, A Division Of Insilco Corporation Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
US5941303A (en) * 1997-11-04 1999-08-24 Thermal Components Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
KR100480112B1 (en) * 2002-08-28 2005-04-06 엘지전자 주식회사 Guide device for refrigerant flow of regenerator
US7069980B2 (en) * 2002-10-18 2006-07-04 Modine Manufacturing Company Serpentine, multiple paths heat exchanger
KR100667702B1 (en) 2005-09-13 2007-01-12 주식회사 두원공조 Header of heat exchanger using co2 refrigerant
JP2016102628A (en) * 2014-11-28 2016-06-02 株式会社ケーヒン・サーマル・テクノロジー Evaporator
US20180010813A1 (en) * 2015-07-02 2018-01-11 Schneider Electric It Corporation Cooling system and method having micro-channel coil with countercurrent circuit

Also Published As

Publication number Publication date
JPH0682038B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US5898995A (en) Method of manufacture of a primary heat exchanger jacketed by a secondary heat exchanger
KR20040012939A (en) Evaporator, manufacturing method of the same, header for evaporator and refrigeration system
JP2003075024A (en) Evaporator, its manufacturing method, header member for the vaporizer and refrigerating system
JPH1114288A (en) Heat exchanger
JPH09189463A (en) Distributor of heat exchanger and manufacture hereof
JPH04187991A (en) Heat exchanger
JPS633191A (en) Heat exchanger
JPH04369388A (en) Heat exchanger
JPS636392A (en) Heat exchanger
JPS633192A (en) Heat exchanger
JPH05312492A (en) Heat exchanger
US4967834A (en) Heat exchangers
JPH0245945B2 (en)
JP2008224213A (en) Evaporator
JPH11142087A (en) Heat-exchanger
JP2001215095A (en) Heat exchanger
JPH051865A (en) Aluminum made condenser for air condioner
JPH10111086A (en) Heat exchanger
JPS6391488A (en) Heat exchanger
JP2004271143A (en) Heat exchanger
JPS63169497A (en) Heat exchanger
JP2634982B2 (en) Heat exchanger
JPH0345302B2 (en)
JPH10170184A (en) Heat exchanger
JPH0332944Y2 (en)