JPS6361607A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPS6361607A
JPS6361607A JP61205892A JP20589286A JPS6361607A JP S6361607 A JPS6361607 A JP S6361607A JP 61205892 A JP61205892 A JP 61205892A JP 20589286 A JP20589286 A JP 20589286A JP S6361607 A JPS6361607 A JP S6361607A
Authority
JP
Japan
Prior art keywords
tire
maximum
ground contact
vehicle
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61205892A
Other languages
Japanese (ja)
Other versions
JPH0515562B2 (en
Inventor
Ryoji Hanada
亮治 花田
Naoyuki Katsura
直之 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP61205892A priority Critical patent/JPS6361607A/en
Publication of JPS6361607A publication Critical patent/JPS6361607A/en
Publication of JPH0515562B2 publication Critical patent/JPH0515562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PURPOSE:To improve the operational safety by forming a given asymmetric pattern in which the direction having the maximum and minimum shearing stiffness ratio and the maximum stiffness is made to be specified in tires mounted with a V-shaped pattern directed toward in the forward direction of a vehicle. CONSTITUTION:A tire tread pattern is formed left and right at a place of 70% of a ground width, and the left side formation is formed in which the maximum and minimum shearing stiffness ratio of 1.2-1.8 is to be obtained in the state where the direction having the maximum shearing stiffness of blocks 1 has a crossing angle of 60-80 deg. to a tire peripheral direction EE'. Blocks 1 of the remaining right side formation is formed in which the maximum and minimum shearing stiffness ratio of 1.2-1.8 is to be obtained in the state where the direction having the maximum shearing stiffness has a crossing angle of -60--80 deg. to the tire peripheral direction EE'. This asymmetric formation of the tred pattern and the mounting of a tire having a V-shaped pattern formed in the vehicle traveling direction enables the improvement in the operational safety.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、操縦安定性を向上させた空気入りタイヤに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pneumatic tire with improved handling stability.

〔従来技術〕[Prior art]

従来、タイヤ周方向中心線に対して非対称のトレッドパ
ターンを有するタイヤを車両に装着させる際に、タイヤ
の旋回性能、排水性、プライステア等の性能を考慮して
、車両の進行方向中心線に対して対称となるようにタイ
ヤを駆動軸に取付ける方法が提案されている(特願昭6
0−297745号)。しかし、この方法では、これら
の性能の左右均等化をはかることはできるが、操縦安定
性自体を向上させ得るわけではない。
Conventionally, when installing tires with a tread pattern that is asymmetrical with respect to the circumferential center line of the tire on a vehicle, consideration has been given to the tire's performance such as turning performance, drainage performance, and plysteer. A method has been proposed in which the tires are mounted on the drive shaft so that they are symmetrical (Japanese patent application No. 6).
0-297745). However, with this method, although it is possible to equalize these performances on the left and right sides, it is not possible to improve the steering stability itself.

また、主にウェットスキツド性の向上のために、タイヤ
踏面のトレッドパターンを工夫しているが(特開昭60
−45404号公報、特開昭60−183206号公報
)、この場合、ともに線対称パターンであるために、駆
動力によるパターンの横力を操縦安定性の向上に十分に
結び付けることができない。
In addition, the tread pattern of the tire tread has been devised mainly to improve wet skid properties (Japanese Patent Laid-Open No. 60
45404, Japanese Patent Application Laid-Open No. 60-183206), in this case, since both patterns are line symmetrical, the lateral force of the pattern due to the driving force cannot be sufficiently linked to the improvement of steering stability.

〔発明の目的〕[Purpose of the invention]

本発明は、トレッドパターンを工夫することにより操縦
安定性を向上させた空気入りタイヤを提供することを目
的とする。
An object of the present invention is to provide a pneumatic tire with improved handling stability by devising a tread pattern.

〔発明の構成〕[Structure of the invention]

このため、本発明は、複数の主溝と複数のサブ溝により
タイヤ踏面にブロックを形成したトレッドパターンを有
し、車両前方より見てV字形となるように車両の左右駆
動輪に装着されたタイヤであって、(1)剪断剛性の最
大・最小の比が1.2〜1.8で剪断剛性が最大となる
方向がタイヤ周方向に対してなす角度θが60°〜80
°のブロックがタイヤ接地幅の60〜75%の幅で左駆
動輪のタイヤでは左ショルダー部側に、右駆動輪のタイ
ヤでは右ショルダー部側にその部分の実接地面積の70
%以上の領域に配置されており、(2)残りの接地幅の
部分には、剪断剛性の最大・最小の比が1.2〜1.8
で剪断剛性が最大となる方向がタイヤ周方向に対してな
す角度θが−60゜〜−80゜のブロックがその部分の
実接地面積の70%以上の領域に配置されていることを
特徴とする空気入りタイヤを要旨とするものである。
For this reason, the present invention has a tread pattern in which blocks are formed on the tire tread surface by a plurality of main grooves and a plurality of sub-grooves, and is mounted on the left and right drive wheels of a vehicle so as to form a V-shape when viewed from the front of the vehicle. A tire that (1) has a maximum/minimum ratio of shear stiffness of 1.2 to 1.8 and an angle θ of 60° to 80° between the direction of maximum shear stiffness and the circumferential direction of the tire.
The block with a width of 60 to 75% of the tire ground contact width is located on the left shoulder side for tires on the left drive wheel, and on the right shoulder side for tires on the right drive wheel.
(2) The remaining ground contact width has a maximum/minimum ratio of shear stiffness of 1.2 to 1.8.
The block whose direction of maximum shear stiffness is at an angle θ of -60° to -80° with respect to the tire circumferential direction is arranged in an area covering 70% or more of the actual ground contact area of that part. This article focuses on pneumatic tires.

以下、図を参照して本発明の構成につき詳しく説明する
Hereinafter, the configuration of the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の空気入りタイヤのトレッドパターン
の一例を示す平面視説明図である。
FIG. 1 is an explanatory plan view showing an example of the tread pattern of the pneumatic tire of the present invention.

この第1図において、タイヤ踏面にタイヤ周方向EE’
に複数の主溝aが環状に設けられ、また、タイヤ幅方向
FF’ に複数のサブ溝すが矢筈模様状に配置されて複
数のブロック1を形成している。第1図に示されるトレ
ッドパターンは、タイヤ周方向中心線mに対して非対称
となっている。
In FIG. 1, the tire tread surface has a tire circumferential direction EE'
A plurality of main grooves a are annularly provided in the tire width direction FF', and a plurality of sub-grooves are arranged in a herringbone pattern to form a plurality of blocks 1. The tread pattern shown in FIG. 1 is asymmetrical with respect to the tire circumferential center line m.

この第1図に示されるトレンドパターンを有するタイヤ
は、例えば、第2図(A)、(B)。
Tires having the trend pattern shown in FIG. 1 are shown in FIGS. 2(A) and 2(B), for example.

(C)に示すようにサブ溝すが車両の進行方向に7字形
状となるように車両の左右駆動輪に装着される。第2図
(A)は、FF車(前部機関前輪駆動車)の車輪配置図
である。第2図(A)では、サブ溝すが車両の進行方向
に7字形状となるようにタイヤ2が車両の前部左右駆動
輪に装着されている。第2図(B)は、FR車(前部機
関後輪駆動車)の車輪配置図である。第2図(B)では
、サブ溝すが車両の進行方向にV字形状となるようにタ
イヤ2が車両の後部左右駆動輪に装着されている。第2
図(C)は、4WD車(4輪駆動車)の車輪配置図であ
る。第2図(C)では、サブ溝すが車両の進行方向に7
字形状となるようにタイヤ2が車両の前後部左右駆動輪
に装着されている。
As shown in (C), the sub-grooves are attached to the left and right drive wheels of the vehicle so as to form a figure 7 shape in the direction of travel of the vehicle. FIG. 2(A) is a wheel arrangement diagram of a FF vehicle (front engine front wheel drive vehicle). In FIG. 2(A), the tire 2 is mounted on the front left and right drive wheels of the vehicle so that the sub-grooves form a figure 7 shape in the direction of travel of the vehicle. FIG. 2(B) is a wheel arrangement diagram of an FR vehicle (front engine rear wheel drive vehicle). In FIG. 2(B), the tire 2 is mounted on the rear left and right drive wheels of the vehicle so that the sub-grooves form a V-shape in the direction of travel of the vehicle. Second
Figure (C) is a wheel arrangement diagram of a 4WD vehicle (four-wheel drive vehicle). In Figure 2 (C), the sub-groove is 7 in the direction of travel of the vehicle.
Tires 2 are mounted on the front, rear, left and right drive wheels of the vehicle so as to form a letter shape.

(1)本発明では、剪断剛性の最大・最小の比が1.2
〜1.8のブロックがタイヤ踏面に配置されている。
(1) In the present invention, the maximum/minimum ratio of shear stiffness is 1.2
~1.8 blocks are placed on the tire tread.

進行方向(タイヤ周方向EE”)に対して角度θをもっ
て配置されたブロック1に、第3図に示すように駆動力
Tが加わった場合にブロック1は駆動力Tの方向に真直
ぐに変形するのではなく、剪断剛性が弱い方向に斜めに
変形する。
When a driving force T is applied to a block 1 arranged at an angle θ with respect to the traveling direction (tire circumferential direction EE'') as shown in FIG. 3, the block 1 deforms straight in the direction of the driving force T. Instead, it deforms diagonally in the direction of weak shear stiffness.

このため、ブロック1には、その反力としての駆動力T
と反対方向の力F1だけでなく、横方向の力F2も同時
に発生する。
Therefore, the block 1 has a driving force T as a reaction force.
Not only a force F1 in the opposite direction but also a lateral force F2 are generated at the same time.

第3図に示す横方向の力F2の大きさは、ブロック1の
剪断剛性の最大・最小の比に依存し、その比が1.2以
上になると急激に大となる。
The magnitude of the lateral force F2 shown in FIG. 3 depends on the maximum/minimum ratio of the shear stiffness of the block 1, and increases rapidly when the ratio becomes 1.2 or more.

したがって、この最大・最小の比を大きくすればするほ
ど駆動力Tに対する横力の発生比率は高くなるので、こ
の横力により駆動力によるコーナリングフォースの減少
を防げるが、その比が大きくなればなるほど偏摩耗が問
題となる。
Therefore, as the maximum/minimum ratio increases, the generation ratio of lateral force to the driving force T increases, and this lateral force can prevent a decrease in cornering force due to the driving force, but as the ratio increases, Uneven wear becomes a problem.

そこで、本発明では1.8を限界としている。Therefore, in the present invention, the limit is set to 1.8.

ブロックの剪断剛性を測定するには、例えば、岩本製作
所製の「回転円盤式摩擦測定機」を用い、荷重6kg 
、摩擦速度160cm /h 、温度25℃で、セイフ
ティウォーク路面で測定すればよい。
To measure the shear rigidity of a block, for example, use a "rotating disk friction measuring machine" manufactured by Iwamoto Seisakusho, and use a load of 6 kg.
, a friction speed of 160 cm /h, a temperature of 25° C., and a safety walk road surface.

また、車両の旋回時にはロールおよび荷重移動を伴うの
で、タイヤの接地形状は旋回方向外側に片寄った形状と
なり、さらに、旋回外側の接地面積が内側の接地面積よ
りも大となる。そこで、本発明では、ブロックを第2図
(A)〜(C)に示すように配置してコーナリング中に
駆動力を受けるブロックの方向が極力同じ方向になるよ
うにしている。
Further, when a vehicle turns, it involves roll and load movement, so the tire's ground contact shape is biased toward the outside in the turning direction, and furthermore, the ground contact area on the outside of the turn is larger than the ground contact area on the inside. Therefore, in the present invention, the blocks are arranged as shown in FIGS. 2(A) to 2(C) so that the directions of the blocks receiving the driving force during cornering are as much as possible in the same direction.

(2)また、本発明では、剪断剛性の最大・最小比が1
.2〜1.8で、その最大となる方向がタイヤ周方向に
対してなす角度θが60’〜80°のブロックがタイヤ
接地幅の60〜75%の部分の実接地面積の70%を占
めており、かつ、残りの部分には剪断剛性の最大となる
方向がタイヤ周方向に対してなす角度θが一60°〜−
80°のブロックがその部分の実接地面積の70%を占
めている。
(2) Also, in the present invention, the maximum/minimum ratio of shear stiffness is 1
.. 2 to 1.8, and the block whose maximum direction makes an angle θ of 60' to 80° with respect to the tire circumferential direction occupies 70% of the actual ground contact area in a portion of 60 to 75% of the tire ground contact width. The angle θ that the direction of maximum shear stiffness makes with respect to the tire circumferential direction is 160° to -
The 80° block occupies 70% of the actual ground contact area in that part.

ブロックの剪断剛性が最大となる方向がタイヤ周方向E
E’ に対してなす角度θ(ブロック1のタイヤ周方向
EE’ に対する傾斜角度と同じ)を第4図(A)に示
すように0゜〜90″まで種々変化させてFt 、Ft
の大きさを測定した結果、Fz/F+ は40″≦θ≦
80°の範囲で大きくなることが判った。なお、第4図
(A)中、N:ICo  (MAX ’) /Co  
(MIN ) =1.9の場合を、XはCo  (MA
X) / Co  (MIN ) =1゜6の場合を、
yはC(1(MAX ) /C,(MIN )−1,1
の場合をそれぞれ表わす。ここで、C0(MAX )と
はブロックを360  ’回転させて各角度での剪断剛
性を測定し、測定値のうち最大のものをいい、Co(M
IN)とは同じくブロックを360  °回転させて各
角度での剪断剛性を測定し、測定値のうち最小のものを
いう。
The direction in which the shear rigidity of the block is maximum is the tire circumferential direction E
By varying the angle θ with respect to E' (same as the inclination angle of block 1 with respect to tire circumferential direction EE') from 0° to 90'' as shown in FIG. 4(A), Ft, Ft
As a result of measuring the size, Fz/F+ is 40″≦θ≦
It was found that it becomes large in the range of 80°. In addition, in Fig. 4 (A), N: ICo (MAX') /Co
(MIN) = 1.9, X is Co (MA
X) / Co (MIN) = 1°6,
y is C(1(MAX)/C,(MIN)-1,1
represents each case. Here, C0(MAX) refers to the maximum value among the measured values obtained by rotating the block 360' and measuring the shear stiffness at each angle.
Similarly, the block is rotated 360° and the shear stiffness at each angle is measured, and the value of IN) is the minimum value among the measured values.

これに対し、ブロックの断面方向の剪断剛性は、第4図
(B)に示すように剪断剛性の最大方向から30°以上
離れると急激に低下した。ブロックの断面方向の剪断剛
性が低いということは、同じスリップ角をつけた時に発
生するコーナリングフォースが低いということであり、
駆動力により発生する横力を加味してもトータルとして
のコーナリングフォースは低下してしまう。このため、
駆動力により発生する横力をトータルのコーナリングフ
ォースを低下させることなく利用できるようにするため
、剪断剛性最大の方向は夕・イヤ周方向に対して60°
〜80°又は−60’〜−80’ とした。
On the other hand, the shear stiffness in the cross-sectional direction of the block sharply decreased when the block moved away from the maximum direction of shear stiffness by 30° or more, as shown in FIG. 4(B). The lower shear stiffness in the cross-sectional direction of the block means that the cornering force generated at the same slip angle is lower.
Even when the lateral force generated by the driving force is taken into account, the total cornering force decreases. For this reason,
In order to utilize the lateral force generated by the driving force without reducing the total cornering force, the direction of maximum shear rigidity is 60° with respect to the direction of the front and rear circumferences.
~80° or -60' to -80'.

また、剪断剛性の最大・最小の比が1.2〜1゜8でか
つその最大となる角度θが60゜〜80°のブロックが
接地幅の60〜75%の幅の実接地面積の70%以上を
占め、かつ残りの実接地面積の部分には、剪断剛性の最
大・最小の比が1.2〜1゜8でかつその最大となる角
度θが一60゜〜−80゜のブロックがその実接地面積
の70%以上を占めるとしたのは、剪断剛性が最大とな
る方向を断面方向としないことによるコーナリングフォ
ースの低下を駆動力による横力で補うためには少なくと
も70%のブロックによりその横力を発生させる必要が
あるためである。
In addition, a block with a maximum/minimum ratio of shear stiffness of 1.2 to 1°8 and a maximum angle θ of 60° to 80° has a width of 70% of the actual ground contact area with a width of 60 to 75% of the ground contact width. % or more, and the remaining actual ground contact area is a block with a maximum/minimum ratio of shear stiffness of 1.2 to 1°8 and a maximum angle θ of 160° to -80°. occupies more than 70% of the actual ground contact area, because at least 70% of the block should be used to compensate for the decrease in cornering force due to the fact that the direction of maximum shear stiffness is not the cross-sectional direction. This is because it is necessary to generate that lateral force.

以下に実施例を示す。Examples are shown below.

実施例 下記のタイヤについて操縦安定性および偏摩耗比を評価
した。
Example The following tires were evaluated for handling stability and uneven wear ratio.

iaJ  本発明タイヤ。iaJ Tire of the present invention.

タイヤサイズ185/705R13゜以下の説明は左車
輪用タイヤで行う。トレッドパターンとしては、第1図
に示すパターンで、パターンの方向は接地幅の70%の
所で変っている。左側から接地幅の70%までのブロッ
クの剪断剛性が最大となる方向がタイヤ周方向EE’ 
に対してなす角度θi 65 ”。剪断剛性の最大・最
小の比;1.4゜構成比率100%。残りの接地幅の部
分のブロックの剪断剛性が最大となる方向−65°、最
大・最小比1.4で、構成比率100%。
Tire size: 185/705R13° The following explanation will be based on left wheel tires. The tread pattern is the pattern shown in FIG. 1, with the direction of the pattern changing at 70% of the ground contact width. The direction in which the shear rigidity of the block from the left side to 70% of the contact width is maximum is the tire circumferential direction EE'
Angle θi 65". Maximum/minimum ratio of shear stiffness: 1.4° Composition ratio 100%. Direction where the shear stiffness of the block in the remaining ground contact width is maximum -65°, maximum/minimum With a ratio of 1.4, the composition ratio is 100%.

(bl  従来タイヤ。(bl Conventional tire.

タイヤサイズ185/705R13゜第5図に示す対称
トレッドパターン。本発明タイヤの右2.3列目のブロ
ックを断面方向に対して逆方向としたパターン。
Tire size 185/705R13° Symmetrical tread pattern shown in FIG. A pattern in which the blocks in the 2nd and 3rd rows on the right of the tire of the present invention are oriented in the opposite direction to the cross-sectional direction.

(C1対比タイヤ1゜ タイヤサイズ185/705R13゜第6図に示すトレ
ッドパターン。サブ溝すの配置が第1図と逆。
(Compared to C1 Tire 1° Tire size 185/705R13° Tread pattern shown in Figure 6. The arrangement of the sub grooves is opposite to that in Figure 1.

(d)  対比タイヤ2゜ タイヤサイズ185/705R13゜第7図に示すトレ
ッドパターン。タイヤ周方向中心&1mに対して対称な
方向性パターン、本発明タイヤの左か。
(d) Comparison tire 2° Tire size 185/705R13° Tread pattern shown in FIG. The directional pattern is symmetrical with respect to the circumferential center of the tire and 1 m, and is it to the left of the tire of the present invention?

ら3列目のブロックを断面方向に対して逆方向としたパ
ターン。
A pattern in which the blocks in the third row are oriented in the opposite direction to the cross-sectional direction.

(1111対比タイヤ3゜ タイヤサイズ185/705R13゜第8図に示すトレ
ッドパターン、サブ溝すの配置が一方向流れ型、ブロッ
クの剪断剛性が最大となる方向がタイヤ周方向に対して
なす角度θ、 65 @、剪断剛性の最大・最小比1.
45゜ 盪豊玄定性坐笠璽: 以上のタイヤを5KJJX13のリムに組み、空気圧を
2.0kg 1cm”として、4輪駆動方式の乗用車の
4輪に組み、アスファルト舗装の直線路に30m間隔で
パイロンを5本設置してスラローム走行を行い、その平
均速度を計測した。そして、従来タイヤのタイムを10
0とした実車スラローム指数で操縦安定性を評価した。
(Compared to 1111 Tire 3° Tire size 185/705R13° Tread pattern shown in Figure 8, sub-groove arrangement unidirectional flow type, angle θ of the direction in which the block's shear rigidity is maximum with respect to the tire circumferential direction , 65 @, maximum/minimum ratio of shear stiffness 1.
45゜Hogendensei Zagasagaku: The above tires were assembled on 5KJJX13 rims, the air pressure was set to 2.0kg 1cm'', they were installed on the four wheels of a four-wheel drive passenger car, and they were placed on a straight asphalt pavement at 30m intervals. We set up five pylons and ran a slalom and measured the average speed.
Steering stability was evaluated using the actual vehicle slalom index, which was set to 0.

この結果を第9図に示す。数値の大きい方が操縦安定性
に優れているので、第9図から、本発明タイヤが操縦安
定性において優れていることが判る。
The results are shown in FIG. Since the larger the numerical value, the better the steering stability, it can be seen from FIG. 9 that the tire of the present invention is superior in the steering stability.

謳31はし化1伺: 実施例のタイヤを5%JJX13のリムに組み、内圧2
.0kg 1cm”とし、4輪駆動方式の乗用車の4輪
に装着し、比較的良路の多いコースをそれぞれ1万km
走行し、偏摩耗の評価を行った。この結果を第10図に
示す。第10から、剪断剛性の最大・最小の比が1.2
〜1.8において偏摩耗比が小さいことが判る。
Song 31 Hashiwa 1: The tire of the example was assembled on a rim of 5% JJX13, and the internal pressure was 2.
.. 0kg 1cm" and mounted on the four wheels of a four-wheel drive passenger car, each driving 10,000km on a course with relatively good roads.
The vehicle was driven and uneven wear was evaluated. The results are shown in FIG. From No. 10, the maximum/minimum ratio of shear stiffness is 1.2
It can be seen that the uneven wear ratio is small at ~1.8.

第11図(A)はトレッド部のタイヤ周方向断面を示す
説明図、第11図(B)はトレンド部のタイヤ幅方向断
面を示す説明図である。第11図(A)、  (B)に
おいて、偏摩耗比の説明を行う。また、偏摩耗比は4輪
のうち、最も偏摩耗のひどいタイヤにおいて計算した。
FIG. 11(A) is an explanatory view showing a cross section of the tread portion in the tire circumferential direction, and FIG. 11(B) is an explanatory view showing a cross section of the trend portion in the tire width direction. The uneven wear ratio will be explained in FIGS. 11(A) and 11(B). Moreover, the uneven wear ratio was calculated for the tire with the worst uneven wear among the four wheels.

摩耗量は、各ブロックの中心線上において測定した(第
11図(C)の点線)。第11図(A)では、ブロック
の周方向の摩耗状況を示している。δ、は第11図(C
)のaの点線上における最も摩耗量の多い所と最も摩耗
量の少ない所との差である。
The amount of wear was measured on the center line of each block (dotted line in FIG. 11(C)). FIG. 11(A) shows the wear status of the block in the circumferential direction. δ is shown in Figure 11 (C
) is the difference between the place with the most amount of wear and the place with the least amount of wear on the dotted line a.

また、第11図(B)は、断面方向の摩耗状況をしめし
ている。δ2は第11図(C)のbの点線上における最
も摩耗量の多い所と最も摩耗量の少ない所との差である
。そこで、偏摩耗比は、δ、≧δ2のときδ、/δ、と
なり、δ、くδ2のときδ2/δ1となるので、常に1
より大である。
Moreover, FIG. 11(B) shows the wear condition in the cross-sectional direction. δ2 is the difference between the part with the greatest amount of wear and the part with the least amount of wear on the dotted line b in FIG. 11(C). Therefore, the uneven wear ratio becomes δ, /δ when δ, ≧ δ2, and δ2/δ1 when δ, ≧δ2, so it is always 1
It's bigger.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、偏摩耗性を悪化さ
せることなく操縦安定性を向上させることができる。し
たがって、本発明のタイヤは、自動車の直進安定性、操
縦安定性の向上に大きく寄与することが可能である。
As explained above, according to the present invention, steering stability can be improved without worsening uneven wear characteristics. Therefore, the tire of the present invention can greatly contribute to improving the straight running stability and handling stability of an automobile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空気入りタイヤのトレッドパターンの
一例を示す平面視説明図、第2図(A)、  (B)、
  (C)はそれぞれ本発明タイヤの各種駆動方式の車
両に対する装着図である。 第3図はタイヤ踏面のブロックに駆動力が作用したとき
の発生応力の方向を示す説明図、第4図(A)はブロッ
クの剪断剛性が最大となる方向が駆動力の方向となす角
度と第3図におけるFz/Fr との関係図、第4図(
B)はブロックの剪断剛性が最大となる方向が駆動力の
方向となす角度とCo / Co  (MAX)との関
係図である。 第5図〜第8図はそれぞれ実施例のトレッドパターン図
、第9図は各タイヤの実車スラローム指数をグラフで示
す説明図である。 第10図はブロックの剪断剛性の最大・最小比と偏摩耗
比との関係図、第11図(A)はトレッド部のタイヤ周
方向断面の摩耗量のはかり方を示す説明図、第11図(
B)はトレンド部のタイヤ幅方間断面の摩耗量のはかり
方を示す説明図、第11図(C)はブロックの周方向と
断面方向(幅方向)の摩耗量の測定を行った場所を示す
説明図である。 1・・・ブロック、2・・・タイヤ、a・・・主溝、b
・・・サブ溝、m・・・タイヤ周方向中心線。 第1図 第4図(A) F2 h。 川/71 (e”) 夙;□4− 1;□雪 零4図(B) 第5図 第6図 第7図
FIG. 1 is a plan view explanatory diagram showing an example of the tread pattern of the pneumatic tire of the present invention, FIG. 2 (A), (B),
(C) is a diagram showing how tires of the present invention are installed on vehicles with various drive systems. Figure 3 is an explanatory diagram showing the direction of stress generated when a driving force acts on a block on the tire tread, and Figure 4 (A) shows the angle between the direction of maximum shear rigidity of the block and the direction of the driving force. The relationship diagram with Fz/Fr in Figure 3, Figure 4 (
B) is a relationship diagram between Co/Co (MAX) and the angle between the direction of the maximum shear rigidity of the block and the direction of the driving force. 5 to 8 are tread pattern diagrams of examples, and FIG. 9 is an explanatory diagram showing the actual vehicle slalom index of each tire in a graph. Fig. 10 is a relationship diagram between the maximum/minimum ratio of block shear rigidity and uneven wear ratio, Fig. 11 (A) is an explanatory diagram showing how to measure the amount of wear of the tire circumferential cross section of the tread part, Fig. 11 (
B) is an explanatory diagram showing how to measure the amount of wear in the cross section across the width of the tire in the trend area, and Figure 11 (C) shows the locations where the amount of wear was measured in the circumferential direction and cross-sectional direction (width direction) of the block. FIG. 1...Block, 2...Tire, a...Main groove, b
...Sub groove, m...Circumferential center line of the tire. Figure 1 Figure 4 (A) F2 h. River/71 (e”) 夙;□4- 1;□Yukirei 4 (B) Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 複数の主溝と複数のサブ溝によりタイヤ踏面にブロック
を形成したトレッドパターンを有し、車両前方より見て
V字形となるように車両の左右駆動輪に装着されたタイ
ヤであって、(1)剪断剛性の最大・最小の比が1.2
〜1.8で剪断剛性が最大となる方向がタイヤ周方向に
対してなす角度θが60゜〜80゜のブロックがタイヤ
接地幅の60〜75%の幅で左駆動輪のタイヤでは左シ
ョルダー部側に、右駆動輪のタイヤでは右ショルダー部
側にタイヤ接地幅の60〜75%の幅の実接地面積の7
0%以上の領域に配置されており、(2)残りの接地幅
の部分には、剪断剛性の最大・最小の比が1.2〜1.
8で剪断剛性が最大となる方向がタイヤ周方向に対して
なす角度θが−60゜〜−80゜のブロックが残りの接
地幅における実接地面積の70%以上の領域に配置され
ていることを特徴とする空気入りタイヤ。
A tire having a tread pattern in which blocks are formed on the tire tread surface by a plurality of main grooves and a plurality of sub-grooves, and is mounted on the left and right drive wheels of a vehicle in a V-shape when viewed from the front of the vehicle, ) Maximum/minimum ratio of shear stiffness is 1.2
~1.8, the direction of maximum shear stiffness is at an angle θ of 60° to 80° with respect to the tire circumferential direction, and the width is 60% to 75% of the tire ground contact width, and in the case of a tire for the left drive wheel, the block is the left shoulder. For tires on the right drive wheel, on the right shoulder side, there is a width of 75% of the actual ground contact area of the tire, which is 60 to 75% of the tire ground contact width.
(2) The remaining ground contact width has a maximum/minimum ratio of shear stiffness of 1.2 to 1.
8. Blocks whose direction of maximum shear rigidity is at an angle θ of -60° to -80° with respect to the tire circumferential direction are arranged in an area of 70% or more of the actual ground contact area in the remaining ground contact width. A pneumatic tire featuring
JP61205892A 1986-09-03 1986-09-03 Pneumatic tire Granted JPS6361607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205892A JPS6361607A (en) 1986-09-03 1986-09-03 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205892A JPS6361607A (en) 1986-09-03 1986-09-03 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPS6361607A true JPS6361607A (en) 1988-03-17
JPH0515562B2 JPH0515562B2 (en) 1993-03-02

Family

ID=16514463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205892A Granted JPS6361607A (en) 1986-09-03 1986-09-03 Pneumatic tire

Country Status (1)

Country Link
JP (1) JPS6361607A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301108A (en) * 1987-05-31 1988-12-08 Toyo Tire & Rubber Co Ltd Installing method of tyre for automobile
JPS6452507A (en) * 1987-05-08 1989-02-28 Bridgestone Corp Pneumatic tire pair
JPH0231986A (en) * 1988-07-21 1990-02-01 Toyo Tire & Rubber Co Ltd Optimum arrangement of automotive tire with directional stability
JPH0231987A (en) * 1988-07-21 1990-02-01 Toyo Tire & Rubber Co Ltd Arrangement of tire with small variation in steering characteristics in drive braking
US5431208A (en) * 1992-09-16 1995-07-11 Sumitomo Rubber Industries, Ltd. Radial tire
US5482099A (en) * 1988-11-30 1996-01-09 Sumitomo Rubber Industries, Ltd. Pneumatic radial tire including a tread portion divided into four circumferential regions
US5967210A (en) * 1996-05-20 1999-10-19 Bridgestone Corporation Pneumatic tires having an asymmetric directional pattern

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018003U (en) * 1983-07-14 1985-02-07 住友ゴム工業株式会社 asymmetric tires
JPS6313802A (en) * 1986-07-04 1988-01-21 Yokohama Rubber Co Ltd:The Radial tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018003B2 (en) * 1981-08-19 1985-05-08 河口湖精密株式会社 digital measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018003U (en) * 1983-07-14 1985-02-07 住友ゴム工業株式会社 asymmetric tires
JPS6313802A (en) * 1986-07-04 1988-01-21 Yokohama Rubber Co Ltd:The Radial tire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452507A (en) * 1987-05-08 1989-02-28 Bridgestone Corp Pneumatic tire pair
JPS63301108A (en) * 1987-05-31 1988-12-08 Toyo Tire & Rubber Co Ltd Installing method of tyre for automobile
JPH0231986A (en) * 1988-07-21 1990-02-01 Toyo Tire & Rubber Co Ltd Optimum arrangement of automotive tire with directional stability
JPH0231987A (en) * 1988-07-21 1990-02-01 Toyo Tire & Rubber Co Ltd Arrangement of tire with small variation in steering characteristics in drive braking
US5482099A (en) * 1988-11-30 1996-01-09 Sumitomo Rubber Industries, Ltd. Pneumatic radial tire including a tread portion divided into four circumferential regions
US5431208A (en) * 1992-09-16 1995-07-11 Sumitomo Rubber Industries, Ltd. Radial tire
US5967210A (en) * 1996-05-20 1999-10-19 Bridgestone Corporation Pneumatic tires having an asymmetric directional pattern

Also Published As

Publication number Publication date
JPH0515562B2 (en) 1993-03-02

Similar Documents

Publication Publication Date Title
US3286756A (en) Automobile tire
JP3177466B2 (en) Pneumatic tire
JP3380647B2 (en) Asymmetric tire tread
JPH0311921B2 (en)
US8322388B2 (en) On/off-road tire for a motor vehicle
JP3035172B2 (en) Radial tire
JPH10157416A (en) Tread band of automotive tire
JPS62103205A (en) Heavy load pneumatic tyre
JP2017039408A (en) Automobile tire
JP2004058754A (en) Pneumatic tire
JPS6361607A (en) Pneumatic tire
JP4473689B2 (en) Pneumatic tire
JP2000006615A (en) Pneumatic tire
JP2001213120A (en) Pneumatic tire
JP3273736B2 (en) Motorcycle tires
JP4242954B2 (en) Tires for automobiles
JP2763856B2 (en) Pneumatic studless tire
JPS6116110A (en) Radial tyre for truck and bus
JP3294039B2 (en) Pneumatic tire
JP2769878B2 (en) Pneumatic tire
CN112996673A (en) Tread for agricultural vehicles
JPS61143206A (en) Pneumatic tire
JP2628949B2 (en) Studless tires for motorcycles
JPH11245630A (en) Snowy and muddy road traveling radial tire
JPH01311903A (en) Pneumatic tire