JPS6361096B2 - - Google Patents

Info

Publication number
JPS6361096B2
JPS6361096B2 JP2916480A JP2916480A JPS6361096B2 JP S6361096 B2 JPS6361096 B2 JP S6361096B2 JP 2916480 A JP2916480 A JP 2916480A JP 2916480 A JP2916480 A JP 2916480A JP S6361096 B2 JPS6361096 B2 JP S6361096B2
Authority
JP
Japan
Prior art keywords
container
powder
filled
pressure
inner container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2916480A
Other languages
Japanese (ja)
Other versions
JPS56126031A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2916480A priority Critical patent/JPS56126031A/en
Publication of JPS56126031A publication Critical patent/JPS56126031A/en
Publication of JPS6361096B2 publication Critical patent/JPS6361096B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 本発明は熱間静氎圧プレス成圢以䞋HIPずい
うの改良法に関し、詳しくは被成圢材料をHIP
凊理に先立぀お予熱する堎合の䜜業時間の短瞮を
図り、歩留りの向䞊を達成し埗る改良されたHIP
プロセスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method of hot isostatic pressing (hereinafter referred to as HIP).
Improved HIP that reduces operating time and increases yield when preheating prior to processing
It's about process.

近幎高速床鋌粉末、超合金粉末等の成圢、緻密
化及び焌結にHIPプロセスが甚いられ、䌁業化さ
れ぀぀ある。この堎合、比范的高䟡なHIP装眮の
皌動率をいかに高めるか、換蚀すれば、HIPのサ
むクル時間をいかに短瞮するかが、コスト䜎枛に
倧きく寄䞎する。ずくに、最近のように補品の倧
型化に䜵い、HIP装眮本䜓も倧型化の傟向にあ
り、HIPサむクル時間はたすたす増倧するため、
それを短瞮する目的で、コンプレツサヌの高胜率
化、倧容量化、加熱装眮の改善、その他のHIP装
眮を高胜率化させるための手段が皮々ずられおい
るが、装眮自䜓の改善にはおのずから限界があ
り、装眮䟡栌も莫倧なものになる。
In recent years, the HIP process has been used for forming, densifying, and sintering high-speed steel powder, superalloy powder, etc., and is being commercialized. In this case, how to increase the operating rate of the relatively expensive HIP equipment, or in other words, how to shorten the HIP cycle time will greatly contribute to cost reduction. In particular, as products have become larger in recent years, HIP equipment has also tended to become larger, and HIP cycle times are increasing.
In order to shorten this time, various measures have been taken to make the compressor more efficient, increase the capacity, improve the heating device, and make other HIP equipment more efficient, but there are naturally limits to improving the equipment itself. Therefore, the cost of the equipment will be enormous.

その他に最も効果のある方法ずしお、HIP凊理
に先立぀お、容噚に充填した粉末の密床を䞊昇さ
せるために冷間圧瞮成圢を斜したり、あるいは垞
圧炉で被凊理䜓を予熱する方匏、たたはそれらの
組合わせが採甚されおいる。ずころで、本発明者
らは、HIPプロセスに぀いお皮々の怜蚎し、詊行
錯誀をくり返えしたずころ、圧力䞋ず倧気圧䞋ず
では、被凊理䜓を必芁な枩床にたで昇枩するのに
芁する時間に倧きな差異の生じるこずを芋い出し
た。぀たり、容噚に充填した粉末材料の䞭心郚を
必芁な枩床にたで加熱するのに芁する時間は、以
䞋の理由によ぀お、圧力䞋の堎合は倧気圧䞋の堎
合よりも著しく短くなるこずが刀぀た。
Other most effective methods include performing cold compression molding to increase the density of the powder filled in the container prior to HIP treatment, or preheating the object in an atmospheric pressure furnace. A combination of these has been adopted. By the way, the inventors of the present invention have conducted various studies on the HIP process, and after repeated trial and error, have found that the time required to raise the temperature of the object to be processed to the required temperature under pressure and under atmospheric pressure is We found that there was a large difference in the In other words, the time required to heat the center of the powdered material packed in a container to the required temperature is found to be significantly shorter under pressure than under atmospheric pressure for the following reasons: Ivy.

 圧力䞋では、炉雰囲気から被凊理䜓ぞの熱䌝
導率が極めお倧きくなる。すなわち、雰囲気か
ら被凊理䜓ぞ熱が良く䌝わる。たずえば、1000
Kgcm2の高圧アルゎンガスは、倧気圧のアルゎ
ンに比べお、数癟倍の密床を有する反面、その
粘性は1.1〜倍皋床に過ぎないため、激しい
察流が生じ、察流熱䌝達率が極めお倧きな倀ず
なる。
a Under pressure, the thermal conductivity from the furnace atmosphere to the object to be processed becomes extremely high. That is, heat is well transferred from the atmosphere to the object to be processed. For example, 1000
Although high-pressure argon gas of Kg/cm 2 has a density several hundred times that of argon at atmospheric pressure, its viscosity is only about 1.1 to 3 times, so intense convection occurs and the convective heat transfer coefficient decreases. This is an extremely large value.

 HIPサむクルの初期の段階に、粉末材料の緻
密化が進行し、この結果、粉末材料の熱䌝導率
が飛躍的に向䞊する。すなわち、被凊理䜓内郚
の熱の䌝導が良くなる。
b At the early stage of the HIP cycle, the powder material becomes densified, resulting in a dramatic increase in the thermal conductivity of the powder material. That is, heat conduction inside the object to be processed is improved.

 緻密化の進行によ぀お、容噚が収瞮する。昇
枩時間は、被凊理䜓盎埄の乗に反比䟋するた
め、この䜜甚によ぀おも、昇枩時間は短瞮す
る。぀ぎに、第図は、炉雰囲気枩床を1000℃
ずしお、高速床鋌粉末が充填された倖埄310mm
の容噚を、℃から加熱する堎合の昇枩曲線あ
り、瞊軞は被凊理䜓䞭心郚枩床、暪軞は時間を
瀺したもので、蚈算は有限芁玠法を甚いお行な
぀た。
c The container shrinks as densification progresses. Since the temperature increase time is inversely proportional to the square of the diameter of the object to be treated, this effect also shortens the temperature increase time. Next, in Figure 1, the furnace atmosphere temperature is set to 1000℃.
310mm outer diameter filled with high speed steel powder as
The temperature rise curve is for heating a container from 0° C., where the vertical axis shows the temperature at the center of the object to be processed and the horizontal axis shows time. Calculations were performed using the finite element method.

図䞭、〜は䞋蚘の条件に盞圓するもの
である。
In the figure, #1 to #4 correspond to the following conditions.

倧気圧䞋の加熱に盞圓 高圧䞋1000Kgcm2での熱䌝達の向䞊
のみを考慮 緻密化による熱䌝導率の向䞊を考慮 緻密化による容噚の収瞮も考慮 第図から刀るように、容噚䞭心郚が950℃
炉雰囲気枩床の95に達するのに芁する時間
は、で435分、で368分、で94分、
で79分ずな぀た。この結果、容噚に充填した
粉末を加熱する堎合、圧力䞋では倧気圧のない
し分のの昇枩時間で枈むこずが刀り、そのな
かでも、ずくにの緻密化による熱䌝導率の向
䞊が昇枩時間の短瞮に倧きく寄䞎しおいるこずが
刀明した。
#1: Equivalent to heating under atmospheric pressure #2: Considering only improvement in heat transfer under high pressure (1000Kg/cm 2 ) #3: Considering improvement in thermal conductivity due to densification #4: Container due to densification As you can see from Figure 1, the temperature at the center of the container is 950℃.
The time required to reach (95% of the furnace atmosphere temperature) is 435 minutes for #1, 368 minutes for #2, 94 minutes for #3,
#4 took 79 minutes. As a result, it was found that when heating the powder packed in a container, the heating time under pressure is one-fourth to one-fifth that of atmospheric pressure. It was found that this improvement greatly contributed to shortening the heating time.

぀ぎに、第図は、同じ高速床鋌粉末を甚いた
堎合の、圧力の粉末の密床ずの関係を瀺した線図
でである。この堎合の炉の枩床は1050℃である
が、加圧前の初期の粉末充填密床が65であ぀た
のにも拘らず、僅か200Kgcm2の圧力で粉末の密
床は90にたで䞊昇し、熱䌝導の向䞊に充分寄䞎
しおいるこずが刀る。ずころで、前蚘のように、
被凊理䜓の熱䌝導率を向䞊させようずする堎合、
冷間で圧瞮しお充填密床を䞊昇させる方法はよく
知られおいるが、この堎合には、冷間ゆえに4000
〜5000Kgcm2もの圧力が必芁で、か぀そのずきの
圧瞮密床は数䞊昇するに過ぎず、高䟡な冷間成
圢機を䜿甚する割りには、熱䌝導率の改善ぞの効
果は小さいものである。
Next, FIG. 2 is a diagram showing the relationship between pressure and powder density when the same high-speed steel powder is used. The temperature of the furnace in this case is 1050℃, but even though the initial powder packing density before pressurization was 65%, the powder density increased to 90% with a pressure of only 200Kg/ cm2 . It can be seen that the amount of heat increases, and it contributes sufficiently to the improvement of heat conduction. By the way, as mentioned above,
When trying to improve the thermal conductivity of the object to be treated,
The method of increasing the packing density by cold compression is well known, but in this case, 4000
A pressure of ~5000Kg/ cm2 is required, and the compressed density at that time increases by only a few percent, so the effect on improving thermal conductivity is small considering the use of an expensive cold forming machine. It is.

さらに通垞、粉末をHIP凊理する堎合には、気
䜓浞透性のない材料で䜜られた容噚内に粉末を充
填し、内郚を真空脱気したのち、容噚を密封しお
HIP凊理するのが䞀般的である。又、耇雑な圢状
をした工具鋌補品等をHIP法によ぀お補品するた
めに、補品圢状に察応する圢状の鋳型容噚䞭に金
属粉末材料を充填し、該鋳型容噚を、圧媒粒子を
収容した倖偎容噚䞭に埋蚭し、前蚘同様、真空脱
気、予熱工皋を経お、HIP凊理を行なうこずも既
に呚知である。
Furthermore, when powder is subjected to HIP processing, the powder is usually filled into a container made of a material that is not permeable to gases, the inside is vacuum degassed, and the container is sealed.
HIP processing is common. In addition, in order to manufacture tool steel products with complex shapes using the HIP method, metal powder material is filled into a mold container with a shape corresponding to the product shape, and the mold container is used to house pressure medium particles. It is already well known that the material is buried in a heated outer container, and subjected to the same vacuum degassing and preheating steps as described above, followed by HIP treatment.

かゝる呚知慣甚の方法にあ぀おは、容噚内郚の
脱気を充分に行なわなければ、残存空気あるいは
眮換ガスであるN2等、若しくは金属粉末材料か
ら発生するガスのために、最終補品内郚に実甚䞊
問題ずなる様な気孔あるいは組織が生じる結果を
招来するず信じられ、長時間かけお䞹念な脱気䜜
業を行なうこずが重芁ずされ、曎に脱気によ぀お
容噚内が真空状態ずなり熱䌝導が䜎䞋する為、予
熱工皋に長時間を芁する等、工皋の効率化を著し
く阻害する芁因を包蔵しおいた。特公昭51−
18202号公報には予熱工皋においお効果的な熱䌝
導を䞎える為、脱気工皋埌にヘリりム、氎玠のよ
うな䞍掻性の、分子量の小さいガス容噚を䞀旊充
満し、予熱時間の短瞮を図り、所望の枩床迄加熱
したならばガスを陀去しおHIP凊理に付する方法
が開瀺されおいる。この方法においおも、脱気、
ガス眮換、排ガスを順次行なわねばならず、䟝然
ずしお工皋の簡略化は達成されおいない。
In such well-known and commonly used methods, if the inside of the container is not sufficiently degassed, residual air or replacement gas such as N2 , or gases generated from the metal powder material may cause the inside of the final product to leak. It is believed that this can lead to the formation of pores or structures that can be a practical problem, and it is important to perform the degassing process carefully over a long period of time. Due to the reduction in conductivity, the preheating process required a long time, which significantly hindered the efficiency of the process. Tokuko Showa 51-
Publication No. 18202 discloses that in order to provide effective heat conduction during the preheating process, an inert, low molecular weight gas container such as helium or hydrogen is temporarily filled after the degassing process to shorten the preheating time and achieve the desired temperature. A method is disclosed in which, once heated to a temperature, the gas is removed and the material is subjected to HIP treatment. In this method as well, degassing,
Gas replacement and exhaust gas must be performed sequentially, and simplification of the process has not yet been achieved.

䞀方、本発明者等は、HIP法を皮々の被凊理材
料に぀いお詊み、仔现に怜蚎を加えたずころ、非
垞に成分芏定の厳密なものを陀けば、䞀般に残留
ガスが及がす成分倉動は埮々たるものであるこず
を知芋するに至぀た。かゝる事実は次に説明によ
぀おも明らかである。
On the other hand, the inventors of the present invention have tried the HIP method on various materials to be treated, and after conducting detailed studies, they have found that, except for those with very strict composition regulations, the compositional fluctuations caused by residual gas are generally negligible. I came to the conclusion that this is the case. This fact is also clear from the following explanation.

今、窒玠ガスアトマむズ法によ぀お補造された
被凊理鉄合金粉末を内容積なる倖偎容噚
䞭に空気䞭で充填し、その充填率が、圧媒粒子型
及び合金粉末を含め党䜓でβであ぀たずする。そ
しおそのたゝ前蚘倖偎容噚内郚に空気が残存する
状態で容噚を密封するず、容噚䞭には−β
の空気が閉じ蟌められおいるこずになる。
ずころが、空気䞭の䞻芁成分はO220.93
N278.10Ar0.9325である。埓぀お、容
噚䞭に閉じ蟌められた−βの空気䞭
には䞋蚘の量のO2.N2及びArが倫々存圚するこず
になる。
Now, the iron alloy powder to be processed manufactured by the nitrogen gas atomization method is filled in air into an outer container with an internal volume of V(l), and the filling rate is as follows: Suppose it is β. Then, when the container is sealed with air remaining inside the outer container, V(1-β)
This means that the air in (l) is trapped.
However, the main components in the air are O2 : 20.93%,
N2 : 78.10%, Ar: 0.9325%. Therefore, the following amounts of O 2 .N 2 and Ar exist in the air of V(1-β)(l) confined in the container.

O2−β×3222.4×0.2093 0.299V−β N2−β×282.24×0.7810 0.976V−β Ar−β×0.009325 0.009325V−β しかし、䞊蚘の粉末ず共に倖偎容噚䞭に閉じ蟌
められた空気䞭のN2は、HIP工皋における加熱
の際、合金粉末䞭に殆んど吞収されおしたい、
HIP埌の焌結䜓には最早、ガスずしお存圚しな
い。因に、この空気䞭の窒玠によ぀お増加する窒
玠濃床は次のようになる。即ち、今、合金材料の
真密床をρ、倖偎容噚に察する合金粉末
の充填率をγずするず、最終的に埗られる
焌結䜓の重量はVγρである。埓぀お、最初、
倖偎容噚内に残存しおいた空気䞭の窒玠が党お合
金粉末䞭に吞収されるずした堎合これによ぀お増
加する窒玠濃床は 0.976V−βVγρ0.976−βγρ
ずなる。
O 2 :V(1-β)×32/22.4×0.2093 =0.299V(1-β)(g) N2 :V(1-β)×28/2.24×0.7810 =0.976V(1-β)( g) Ar: V(1-β) x 0.009325 = 0.009325V(1-β)(l) However, the N2 in the air trapped in the outer container with the above powder, during heating in the HIP process, Most of it is absorbed into the alloy powder,
It no longer exists as a gas in the sintered body after HIP. Incidentally, the nitrogen concentration increased by this nitrogen in the air is as follows. That is, if the true density of the alloy material is ρ (g/l) and the filling rate of the alloy powder in the outer container is γ (%), then the weight of the final sintered body is Vγρ (g). . Therefore, at first,
If all the nitrogen in the air remaining in the outer container is absorbed into the alloy powder, the increased nitrogen concentration will be 0.976V(1-β)/Vγρ=0.976(1-β)/ γρ
becomes.

次に䞀方、空気䞭の酞玠であるが、党おの金属
は高枩に加熱された際に酞化され、酞化物を圢成
するこずが知られおいる。埓぀お、初期に容噚内
に残存しおいた空気䞭の酞玠は、酞化物ずしお粉
末䞭に吞収されおしたい、HIP凊理埌の焌結䜓䞭
には最早、ガスずしお残存しない。そしお、この
空気䞭の酞玠によ぀お増加する酞玠濃床は同様に
0.299−βγρずなる。
On the other hand, oxygen in the air is known to oxidize all metals when heated to high temperatures, forming oxides. Therefore, the oxygen in the air that initially remained in the container is absorbed into the powder as an oxide, and no longer remains as a gas in the sintered body after the HIP treatment. And the oxygen concentration increased by this oxygen in the air is also
0.299(1-β)/γρ.

以䞊述べたずころから明らかなように圓初粉末
ず共に倖偎容噚䞭に閉じ蟌められた空気のうち、
少くずも20.9378.1090.03のガス成分がHIP
工皋䞭に粉末䞭に吞収されおしたうこずになる。
そこで、䞊蚘の酞玠及び窒玠の酞玠濃床増量に぀
いお怜蚎を加えお芋るに、合金を高速床鋌ずしお
その真密床ρを8200、倖偎容噚ぞの党
䜓の充填率βを70、倖偎容噚に察する合金
粉末の充填率γを50ずするず、 窒玠濃床増量0.976−0.700.5×8200 7.14×10-571.4ppm 酞玠濃床増量0.299−0.700.5×8200 2.18×10-521.8ppm ずなる。
As is clear from the above, among the air initially trapped in the outer container together with the powder,
At least 20.93+78.10=90.03% gas component is HIP
It will be absorbed into the powder during the process.
Therefore, considering the increase in the oxygen concentration of oxygen and nitrogen mentioned above, we found that the alloy is high speed steel, the true density (ρ) is 8200g/, the total filling rate (β) in the outer container is 70%, Assuming that the filling rate (γ) of alloy powder in the outer container is 50%, increase in nitrogen concentration = 0.976 (1-0.70) / 0.5 x 8200 = 7.14 x 10 -5 = 71.4 ppm Increase in oxygen concentration = 0.299 (1 - 0.70) /0.5×8200 =2.18×10 -5 =21.8ppm.

そしお、この皋床の窒玠及び酞玠濃床の増加は
補品品質に党く悪圱響を䞎えないこずは既に公知
の事実であり、逆に合金材料の皮類によ぀おは、
䟋えば特開昭50−49108号公報特に開瀺されおい
るように、窒玠の含有が補品品質の向䞊をもたら
すものず芋られる。
It is already a well-known fact that an increase in nitrogen and oxygen concentrations to this extent has no adverse effect on product quality; on the contrary, depending on the type of alloy material,
For example, as specifically disclosed in JP-A-50-49108, the inclusion of nitrogen appears to improve product quality.

又、最埌に前蚘空気䞭のアルゎンの圱響に぀い
お怜蚎を加える。
Finally, we will consider the influence of argon in the air.

アルゎンは䞍掻性ガスであり、ごく少数の郚分
は高圧高枩䞋で金属䞭に溶けこむが、殆んどの郚
分は最終的にガスの状態で倖偎容噚内に存圚する
こずになるず䞀般に考えられる。そこで、このア
ルゎンに぀いお定量的な怜蚎を加えおみるず既に
述べたように、圓初倖偎容噚䞭に閉じ蟌められた
アルゎンの量は0.009325V−β(l)である。
It is generally believed that argon is an inert gas, and although a small portion will dissolve into the metal under high pressure and temperature, most of the portion will end up in the outer container in a gaseous state. Therefore, when we quantitatively examine this argon, as already mentioned, the amount of argon initially confined in the outer container is 0.009325V (1 - β) (l).

HIP凊理の枩床を〓、圧力をatmず
し、HIP凊理埌のアルゎンの容積をずす
る。容噚の密封を300〓27℃で実斜し、閉じ
蟌められたアルゎンが党お気䜓のたゝ倖偎容噚内
の圧密䜓䞭に残及するずすれば、次匏が成立す
る。
Let the temperature of HIP treatment be T (〓), the pressure be P (atm), and the volume of argon after HIP treatment be V (l). If the container is sealed at 300°C (27°C) and all the trapped argon remains as a gas in the compacted body inside the outer container, the following equation holds.

atm×0.009325V−β(l)300〓 atm・〓 埓぀お 0.009325V−β300P (l) 䞀方、HIP埌の倖偎容噚の容積はVβである
から 気孔率0.009325V−β300PVβ 3.11×10-5−βPβ ずなる。
1(atm)×0.009325V(1-β)(l)/300(〓) =P(atm)・V(l)/T(〓) Therefore, V=0.009325V(1-β)T/300P ( l) On the other hand, since the volume of the outer container after HIP is Vβ (l), porosity = 0.009325V (1-β)T/300P/Vβ = 3.11×10 -5 (1-β)T/Pβ .

今ここで、β0.701373〓 1000atmずするず 気孔率3.11×10-5−0.70×13731000×0.75 1.71×10-50.0017 ずなり、焌結䜓の密床は倖偎容噚内のその他の物
質ず同皋床に圧瞮されおいるずするず、盞察密床
99.9983、即ち実甚䞊党く問題のない倀たで高
密床化するこずが刀る。
Now, if β = 0.70, T = 1373 (〓) P = 1000 (atm), porosity = 3.11 × 10 -5 (1 - 0.70) × 1373 / 1000 × 0.75 = 1.71 × 10 -5 = 0.0017% Assuming that the density of the sintered body is compressed to the same degree as the other material in the outer container, the relative density is
It can be seen that the density can be increased to 99.9983%, which is a value that poses no problem in practice.

以䞊の説明により、容噚内郚を脱気しなくお
も、粉末が前蚘合金のように、N2O2を吞収す
る材料であれば、HIP凊理の最終補品には、ほず
んど匊害を及がさないこずが刀る。しかし、この
ような有利なプロセスを甚いおも、補品の生産性
を向䞊させるために予熱工皋をずろうずした堎合
には、実際には倧きな問題が生じる。぀たり、無
脱気の粉末充填容噚を予熱しようずしお、予め加
熱されおいる予熱炉に挿入した瞬間、容噚内郚の
残留ガスが熱膚脹しお、容噚を砎壊しおしたうの
である。このような珟象を防止する意味からも、
珟状では容噚内郚を真空に脱気しおいるのが䞀般
的である。このように、真空脱気を行なうずする
ず、容噚圢状が耇雑ずなり、脱気管の密封が困
難、真空脱気に長時間を芁する等の問題が生じ
る。たた、無脱気の密封カプセルを盎接HIP炉に
装入するずいう既に提案された方法では、HIP炉
内における昇枩時間が長くなり、HIPサむクルタ
むムの増倧による生産性の䜎䞋が、尚解決を芁す
る倧きな問題点ずしお残されおいた。
From the above explanation, even if the inside of the container is not degassed, if the powder is a material that absorbs N 2 and O 2 like the above alloy, there will be almost no adverse effects on the final product of HIP processing. I understand. However, even with such an advantageous process, a major problem actually arises when a preheating step is attempted to improve product productivity. In other words, when an attempt is made to preheat a non-degassed powder-filled container, the moment the container is inserted into a preheating furnace, the residual gas inside the container thermally expands and destroys the container. In order to prevent such phenomena,
Currently, it is common to evacuate the inside of the container to a vacuum. If vacuum degassing is performed in this way, problems arise such as the shape of the container becomes complicated, it is difficult to seal the degassing tube, and it takes a long time for vacuum degassing. In addition, with the already proposed method of directly charging a non-degassed sealed capsule into a HIP furnace, the temperature rise time in the HIP furnace becomes longer, resulting in a decrease in productivity due to an increase in HIP cycle time. This remained a major problem.

本発明方法は叙䞊の劂き埓来技術に付垯する
皮々の問題点を解消する為に鋭意研究の結果、前
述の劂き技術的知芋に基き、HIP凊理に先立぀お
特定の予熱条件を採甚するこずによ぀お完成され
たもので、その特城ずするずころは、金属粉末を
充填した内偎容噚を、圧媒粒子を充填した倖偎容
噚内に埋蚭し、これを予熱した埌、熱間静氎圧プ
レス凊理を行なう方法においお、内偎容噚玠材を
充填すべき金属粉末に察し䞍掻性な玠材ずし、䞀
方、倖偎容噚をガス䞍透過性材料をも぀お䜜補し
お前蚘内偎容噚に被凊理金属粉末を充填し、これ
を倖偎容噚内に埋蚭した埌、該倖偎容噚を密封し
おこれを予熱炉内にお加圧ガス雰囲気䞋で所定枩
床に予熱し、しかる埌、高圧炉にお高枩高圧ガス
雰囲気䞋で熱間静氎圧プレス凊理を行なうこずに
より前蚘内偎容噚内の金属粉末の緻密化焌結を行
なうこずにある。
The method of the present invention is based on the above-mentioned technical knowledge as a result of intensive research in order to solve the various problems associated with the conventional technology as described above, and adopts specific preheating conditions prior to HIP treatment. The unique feature of this product is that the inner container filled with metal powder is buried in the outer container filled with pressure medium particles, and after preheating, it is subjected to hot isostatic pressing. In this method, the inner container material is made of a material inert to the metal powder to be filled, while the outer container is made of a gas-impermeable material and the inner container is filled with the metal powder to be treated. After embedding in the outer container, the outer container is sealed and preheated to a predetermined temperature in a pressurized gas atmosphere in a preheating furnace, and then hot heated in a high pressure furnace in a high temperature and high pressure gas atmosphere. The object is to perform densification and sintering of the metal powder in the inner container by performing a hydrostatic press treatment.

こゝに本発明方法を適甚する金属粉末は、䟋え
ば、Fe基合金、Ni基合金チタン合金、コバルト
金属等の金属粉末が挙げられ、特にFe基合金、
Ni基合金は本発明方法を行なうに最も奜適であ
る。
Examples of metal powders to which the method of the present invention is applied include metal powders such as Fe-based alloys, Ni-based titanium alloys, and cobalt metals, particularly Fe-based alloys,
Ni-based alloys are most suitable for carrying out the method of the invention.

かゝる金属粉末を充填すべき内偎容噚は収容す
る金属粉末に察しお䞍掻性の玠材、䟋えばシリ
カ、アルミナ、ゞルコニりム、ニツケル、癜金或
いはそれらの混合物、又はそれらを含有する金属
を以お䜜られる。内偎容噚はこのような玠材によ
぀お最終補品の圢状に応じた圢状で䞔぀その䞀郚
に開口郚を備える劂くに圢成される。この開口郚
より前蚘金属粉末を倧気䞭又は窒玠ガス雰囲気䞋
に内偎容噚䞭に、奜たしくは撹拌又は振盪し乍ら
充填する。充填埌は開口郚に、ノズルを有する蓋
䜓を溶接しお取付け、曎に歀のノズルを鍜圧又は
挟圧し、気䜓の流通を蚱容するが、前蚘金属粉末
及び埌述の圧媒粒子の流通を阻止する皋床の狭隘
な間隙を残しお閉塞するこずが奜たしい。斯くす
るこずにより、内偎容噚を圧媒粒子䞭に埋蚭した
際、圧媒粒子が該容噚䞭に䟵入混合し、補品に悪
圱響を䞎えるこずを防止し、又金属粒子の挏掩溢
出を阻止する。
The inner container to be filled with such metal powder is made of a material that is inert to the metal powder contained, such as silica, alumina, zirconium, nickel, platinum or mixtures thereof, or metals containing these. The inner container is formed from such a material in a shape that corresponds to the shape of the final product and has an opening in a portion thereof. The metal powder is filled into the inner container through this opening in the air or under a nitrogen gas atmosphere, preferably while stirring or shaking. After filling, a lid with a nozzle is attached to the opening by welding, and this nozzle is further pressurized or clamped to allow the flow of gas, but to prevent the flow of the metal powder and pressure medium particles described below. It is preferable to close the gap while leaving a gap as narrow as possible. By doing so, when the inner container is embedded in the pressure medium particles, the pressure medium particles are prevented from entering and mixing with the container and having an adverse effect on the product, and also preventing leakage and overflow of the metal particles.

又、補品における成分芏定が厳密で、被凊理金
属材料ず酞玠又は窒玠ずの反応を回避する必芁が
ある堎合は、金属粉末を充填した内偎容噚の前蚘
ノズルを経お真空ポンプ等の手段により容噚内郚
の空気或いは窒玠ガスを吞匕脱気した埌、ノズル
を鍜圧閉塞し、曎に溶接等を斜しお溶着密封す
る。
In addition, if the product has strict composition regulations and it is necessary to avoid a reaction between the metal material to be treated and oxygen or nitrogen, the interior of the container may be pumped through the nozzle of the inner container filled with metal powder by means such as a vacuum pump. After deaerating the air or nitrogen gas, the nozzle is closed under pressure and then welded and sealed.

内偎容噚が収容される倖偎容噚は、ガス䞍透過
性材料を以぀お䜜補され、内偎容噚及び圧媒粒子
を受け入れる為の開口郚を備え、曎にその開口郚
は容易に密封し埗る構造に適宜圢成される。䟋え
ば内偎容噚及び圧媒粒子を収玍埌、蓋䜓を溶接し
お取付け密閉するか、又は、ノズルを有する蓋䜓
を取付け、内郚のガスを該ノズルを経お真空ポン
プで吞匕脱気し、ノズル郚分を閉塞しお密封す
る。ガス䞍透過性材料ずしおは、金属、特に軟鋌
が奜たしく又ガラス或は金属ずガラスずの耇合材
料等が適甚可胜である。
The outer container in which the inner container is housed is made of a gas-impermeable material and has an opening for receiving the inner container and the pressure fluid particles, and the opening is suitably configured to be easily sealed. be done. For example, after storing the inner container and the pressure medium particles, a lid is welded and sealed, or a lid with a nozzle is installed, and the gas inside is sucked and degassed by a vacuum pump through the nozzle, and the nozzle part is occlude and seal. As the gas-impermeable material, metal, particularly mild steel, is preferable, and glass or a composite material of metal and glass can be used.

斯かる倖偎容噚䞭には埮现な粉末よりなる圧媒
粒子が適量収玍されおおり、圧媒粒子はその内郚
に埋蚭された内偎容噚の党呚面ず倖偎容噚の内壁
ずの間隙を隅無く埋め、内偎容噚の䜍眮決めをも
行なう。
A suitable amount of pressure medium particles made of fine powder are stored in such an outer container, and the pressure medium particles completely fill the gap between the entire circumferential surface of the inner container buried therein and the inner wall of the outer container. , also positions the inner container.

䞊蚘の劂く金属粒子及び圧媒粒子を充填しお二
重に組合わされた容噚は内郚を脱気するか又は脱
気するこずなく、既述の通り密封し、予熱炉に装
入され加圧ガス雰囲気䞋で所定枩床に予熱される
のである。歀の堎合の雰囲気ガスの圧力は予熱枩
床によ぀お盞違するが、特に無脱気方匏の堎合、
箄1000℃の枩床に予熱されるずきは少なくずも玄
4.2Kgcm2、玄1100℃のずきは少なくずも4.6Kg
cm2皋床ずするこずが良い。脱気方匏の堎合は、よ
り少ない圧力も採甚し埗るが、䜕れの堎合でも曎
に良奜な加熱効率を達成し、予熱時間を短瞮する
ためには少なくずも100Kgcm2、奜たしくは200
Kgcm2皋床の圧力を䜜甚させるこずがよい。
The double-combined container filled with metal particles and pressure medium particles as described above is sealed as described above, with or without evacuating the inside, and then charged into a preheating furnace and filled with pressurized gas. It is preheated to a predetermined temperature in an atmosphere. The pressure of the atmospheric gas in this case varies depending on the preheating temperature, but especially in the case of a non-degassing method,
When preheated to a temperature of about 1000℃ at least about
4.2Kg/cm 2 , at least 4.6Kg/cm 2 at approximately 1100℃
It is best to set it to about cm 2 . In the case of degassing methods, lower pressures may be employed, but in any case at least 100 Kg/cm 2 , preferably 200 Kg/cm 2 to achieve better heating efficiency and shorten preheating times.
It is preferable to apply a pressure of about Kg/cm 2 .

即ち、第図に瀺すような密封容噚内に粉末
ずガスずが入぀おおり、充填時の枩床を300〓
27℃、圧力をKgcm2ずし、予熱枩床を䟋えば
1373〓1100℃ずする。加熱により粉末が焌結
しお䜓積が倉化しないず仮定すれば、ガスの熱膚
脹により容噚内圧は1373〓300〓≒4.6Kg
cm2ず なる。この倀自䜓はそれ皋倧きくないが、䟋えば
容噚内埄を300mmずすれば、䞊䞋蓋党䜓には、
倫々3.25トンの圧力がかゝ぀おいるこずになる。
そしお、たずえば、䞊蓋の堎合、断面でみれば、
のみで拘束されおいるので、この郚分に結
局、3.25トンの応力が集䞭し、䞊蓋は加熱により
図の点線のようにふくれ、぀いには郚で砎
壊しおしたうのである。このような、熱膚脹の防
止のために本発明方法における加圧予熱が極めお
有効ずなるのである。その時に必芁な圧力は、た
ずえば䞊蚘条件であれば、わずか4.6Kgcm2良い
のであるが、予熱時間の短瞮も考慮すれば、前述
のように、奜たしくは少なくずも100Kgcm2、特
に奜たしくは少なくずも200Kgcm2皋床が劥圓ず
思われる。
That is, powder 2 and gas are contained in a sealed container 1 as shown in FIG. 3, and the temperature at the time of filling is set to 300°
(27℃), the pressure is 1Kg/ cm2 , and the preheating temperature is e.g.
1373〓(1100℃). Assuming that the powder is sintered by heating and the volume does not change, the internal pressure of the container will be 1373 (〓) / 300 (〓) ≒ 4.6 (Kg /
cm2 ). Although this value itself is not that large, for example, if the inner diameter of the container is 300 mm, the entire upper and lower lids will have
This means that 3.25 tons of pressure is exerted on each.
For example, in the case of the upper lid, if you look at the cross section,
Since it is restrained only by A and B, 3.25 tons of stress is concentrated on this part, and the top cover bulges as shown by the dotted line in the figure due to heating, and eventually breaks at A and B parts. Pressure preheating in the method of the present invention is extremely effective in preventing such thermal expansion. The pressure required at that time is, for example, only 4.6 Kg/cm 2 under the above conditions, but if shortening of preheating time is taken into account, as mentioned above, it is preferably at least 100 Kg/cm 2 , particularly preferably At least 200Kg/cm 2 seems appropriate.

本発明方法を適甚すれば、容噚内郚を脱気する
こずなく、予熱しおHIP凊理するこずが可胜ずな
るこずは倧きな利点である。぀たり、容噚内郚に
空気あるいは眮換甚のN2ガスが残留しおいおも、
加圧予熱を行なうこずによ぀お、加熱䞭の容噚の
膚脹による砎壊は抑えられ、内郚の粉末が高枩に
な぀た時点では、内郚残留ガスを吞収しおしたう
ので、その埌、たずえばHIP装眮に挿入するため
に、枛圧しおも、もはや容噚が内圧で砎壊するず
いう珟象は起らない。たた、もし粉末がN2O2
を吞収しない材料の堎合には、容噚内郚の䞀端に
N2O2吞収剀たずえば、チタン粉末、アルミ
ニりム粉末等を挿入しおおくこずによ぀お、同
様の効果が埗られる。
If the method of the present invention is applied, it is a great advantage that HIP treatment can be performed by preheating the container without deaerating the inside of the container. In other words, even if air or replacement N2 gas remains inside the container,
By pressurizing and preheating, the destruction of the container due to expansion during heating is suppressed, and once the powder inside reaches a high temperature, it absorbs the residual gas inside, so it cannot be inserted into, for example, a HIP device. Therefore, even if the pressure is reduced, the phenomenon of the container breaking due to internal pressure no longer occurs. Also, if the powder is N 2 , O 2
For materials that do not absorb
A similar effect can be obtained by inserting an N 2 and O 2 absorbent (eg, titanium powder, aluminum powder, etc.).

次に本発明方法による具䜓的実斜䟋を掲げる。 Next, specific examples of the method of the present invention will be listed.

実斜䟋  1.57 Cr4.21 12.50 4.71 Co4.97 Fe残郚 䞊蚘組成の高速床鋌粉末を窒玠ガスアトマむズ
法によ぀お補造した。そしおこの粉末を内埄200
mm高さ250mmのアルミナず゜ヌダヌ鉛ガラスず
の混合物で圢成した内偎円筒容噚に倧気䞭で撹拌
し぀぀充填し、充填埌容噚の開口郚に、通気ノズ
ルを備えた同材質の蓋を装着した。このものを内
埄310mm、高さ350mmの軟鋌補薄肉倖偎容噚に装入
した。軟鋌補容噚䞭にはシリカ粒子ず゜ヌダヌ鉛
ガラス粉末の混合粉が入れられ、内偎容噚の呚囲
を取巻く様に軟鋌補容噚の内壁ずの間隙に隅なく
充填された。
(Example 1) C: 1.57% Cr: 4.21% W: 12.50% V: 4.71% Co: 4.97% Fe: balance High speed steel powder having the above composition was produced by a nitrogen gas atomization method. And this powder has an inner diameter of 200
An inner cylindrical container made of a mixture of alumina and soda-lead glass with a height of 250 mm was filled with stirring in the atmosphere, and after filling, a lid made of the same material and equipped with a ventilation nozzle was attached to the opening of the container. . This material was charged into a thin-walled outer mild steel container with an inner diameter of 310 mm and a height of 350 mm. A mixed powder of silica particles and soda-lead glass powder was placed in a mild steel container, and was filled in all the gaps between the inner wall and the inner wall of the mild steel container so as to surround the inner container.

次いで、軟鋌補容噚内郚を脱気するこずなく、
空気が残留した状態で䞊方開口郚に、軟鋌補の䞊
蓋を溶接し密封した。このものを予め1100℃に加
熱されおいる予熱炉に装入し、200Kgcm2のArガ
ス加圧しながら加熱した。このような状態で時
間保持したのちこの時点では、予備実隓の結
果、粉末充填容噚の䞭心郚は予熱炉の保持枩床に
察しお95以䞊の枩床に䞊昇しおいる、ただち
に圧力を枛圧したが、枛圧により容噚が砎損する
こずはなか぀た。そしお、この予熱された容噚
を、これも1100℃に予熱されおいるHIP装眮内に
盎ちに装入し1100℃、800気圧、30分の保持で
HIP凊理を行な぀た。
Next, without evacuating the inside of the mild steel container,
While air remained, a mild steel top cover was welded to the upper opening to seal it. This product was placed in a preheating furnace that had been previously heated to 1100°C, and heated while pressurizing Ar gas at 200 kg/cm 2 . After maintaining this state for 2 hours (at this point, as a result of preliminary experiments, the temperature at the center of the powder-filled container has risen to 95% or more of the holding temperature of the preheating furnace), the pressure is immediately increased. Although the pressure was reduced, the container was not damaged by the reduced pressure. This preheated container was then immediately placed into the HIP device, which was also preheated to 1100℃, and held at 1100℃ and 800 atm for 30 minutes.
Performed HIP processing.

このようにしお補造した高速床鋌焌結䜓の組織
を顕埮鏡写真で芳察したずころ、残留空孔、残留
ガスずの反応による介圚物等の欠陥は党く認めら
れず、粉末治金補品の特城である均䞀埮现な健党
組織を呈しおいる。
When the structure of the high-speed steel sintered body manufactured in this way was observed using a microscopic photograph, no defects such as residual pores or inclusions caused by reaction with residual gas were observed, which is a characteristic of powder metallurgy products. It exhibits a certain uniform fine healthy structure.

぀ぎに、この材料から所定の工皋により、工具
を補䜜し、1210℃×分OQ油急冷の焌入
れ、560℃×1.5時間×回の焌戻し熱凊理を斜し
たのち、バむト取付角−15−−−15−
R0.4バむト突出し量34mm切蟌み量1.5mm送
り量0.2mm被削材SNCM8HRC32本溝付
きで断続切削を行な぀た。同䞀鋌皮による埓来
溶解材工具ずの切削性胜結果を第図に瀺す。第
図の暪軞には衝撃回数を、瞊軞には工具の逃げ
面最倧磚耗量をずり、曲線は本発明方法によ぀
お埗られた工具を、又曲線は埓来の溶解材工具
を倫々瀺すものである。同図で明らかな通り、本
発明方法によ぀お補䜜された工具の優䜍性は顕著
である。
Next, a tool was manufactured from this material through a predetermined process and heated at 1210°C for 3 minutes. After OQ (oil quenching) quenching and tempering heat treatment at 560℃ x 1.5 hours x 3 times, the cutting tool mounting angle is 0-15-6-6-15-
Intermittent cutting was performed with R0.4, tool overhang 34 mm, depth of cut 1.5 mm, feed rate 0.2 mm, and workpiece material SNCM8 (H R C32) (with 4 grooves). Fig. 4 shows the cutting performance results with a conventional melt-metal tool made of the same steel type. In Fig. 4, the horizontal axis represents the number of impacts, and the vertical axis represents the maximum amount of wear on the flank surface of the tool.Curve A represents the tool obtained by the method of the present invention, and curve B represents the conventional melted material tool. are shown respectively. As is clear from the figure, the superiority of the tool manufactured by the method of the present invention is remarkable.

実斜䟋  0.86 Cr4.24 6.14 1.89 Mo5.01 Fe残郚 䞊蚘組成からなる高速床鋌粉末を窒玠ガスアト
マむズ法によ぀お補造した。この粉末は酞玠分析
の結果、その酞玠濃床65ppmであ぀た。次にこの
粉末を内埄140mm高さ260mmの軟鋌補内偎円筒容
噚に倧気䞭で充填率70迄充填し、充填埌、通気
ノズルを備えた軟鋌補蓋を溶接し、曎に通気ノズ
ルの途䞭を鍜圧しお第図に瀺す劂く、狭隘な間
隙を残しお閉塞した。次に歀の軟鋌補容噚を内埄
310mm高さ340mmの軟鋌補倖偎円筒容噚に装入
し、同時にシリカ粒子ず゜ヌダヌ鉛ガラスずの混
合粉末を充填しお内偎容噚が混合粉末䞭に完党に
埋蚭する様に䜍眮決めを行ない、曎に通気ノズル
を備えた軟鋌補蓋を軟鋌容噚の䞊郚開口郚を芆う
様に溶接した。又通気ノズルを導管により真空ポ
ンプに接続し、容噚内郚の空気を真空床0.02torr
たで脱気し、その真空床を維持した状態通気ノズ
ルを鍜圧法により鍜圧封止しお埌、鍜圧郚を切断
し曎に切断郚を溶接密封した。このものを予め
1100℃に加熱されおいる予熱炉に装入し、100
Kgcm2のArガスで加圧しながら加熱した。その
状態2.5時間保持した埌この時点では予備実隓
の結果、粉末充填容噚の䞭心郚は予熱炉の保持枩
床に察しお95以䞊の枩床に䞊昇しおいる、圧
力を倧気圧迄枛圧し、この予熱された容噚を、こ
れも1100℃に予熱されおいるHIP装眮内に盎ちに
装入し、1100℃800気圧、30分の保持でHIP凊
理を行な぀た。埗られた補品を取り出し酞玠分析
したずころ、その酞玠濃床は60ppmであ぀た。又
顕埮鏡によ぀お気孔は芳察されず、その密床は
8.12cm2ず理論密床に達しおいた。
(Example 2) C: 0.86% Cr: 4.24% W: 6.14% V: 1.89% Mo: 5.01% Fe: balance High speed steel powder having the above composition was produced by a nitrogen gas atomization method. As a result of oxygen analysis, this powder had an oxygen concentration of 65 ppm. Next, this powder is filled into an inner cylindrical container made of mild steel with an inner diameter of 140 mm and a height of 260 mm in the atmosphere to a filling rate of 70%. After filling, a mild steel lid equipped with a ventilation nozzle is welded, and the middle of the ventilation nozzle is It was sealed by applying pressure, leaving a narrow gap as shown in Figure 5. Next, adjust the inner diameter of this mild steel container.
The container is charged into an outer mild steel cylindrical container measuring 310 mm and 340 mm in height, and at the same time, a mixed powder of silica particles and soda-lead glass is filled, and the inner container is positioned so that it is completely buried in the mixed powder, and then ventilated. A mild steel lid with a nozzle was welded over the top opening of the mild steel container. In addition, the ventilation nozzle is connected to a vacuum pump through a conduit, and the air inside the container is reduced to a vacuum level of 0.02 torr.
The ventilation nozzle was sealed by the blow pressure method while maintaining the degree of vacuum, and then the blow pressure portion was cut and the cut portion was sealed by welding. this thing in advance
Charged into a preheating furnace heated to 1100℃, heated to 100℃
It was heated while being pressurized with Ar gas of Kg/cm 2 . After maintaining this state for 2.5 hours (at this point, as a result of preliminary experiments, the temperature at the center of the powder-filled container had risen to more than 95% of the holding temperature of the preheating furnace), the pressure was reduced to atmospheric pressure. This preheated container was immediately placed into a HIP device which had also been preheated to 1100°C, and HIP treatment was carried out at 1100°C, 800 atm, and held for 30 minutes. When the obtained product was taken out and analyzed for oxygen, its oxygen concentration was 60 ppm. Also, no pores were observed using a microscope, and their density was
The theoretical density was reached at 8.12 g/cm 2 .

本発明方法は䞊述のように、容噚内脱気工皋の
有無に拘らず、予熱効率を倧幅に向䞊せしめ、予
熱時間を著しく短瞮し、曎にそれに䌎ないHIP凊
理時間をも短瞮し、高䟡なHIP装眮の皌働率を高
めお高胜率化を達成するこずができるず共に、埗
られた補品に぀いおも埓来のものず范べお優るず
も劣らない品質のものが埗られる等、工業的に極
めお有利な方法である。ずりわけ本発明方法は、
その内偎容噚ず倖偎容噚の玠材に着目し、内偎容
噚を内郚に充填される金属粉末に察し䞍掻性の玠
材ずし、倖偎容噚をガス䞍透過性材料をも぀お䜜
補したこずにより内偎容噚に波及するガス圧は内
偎容噚ず倖偎容噚間の圧媒粒子を介しおきわめお
均等に内偎容噚に波及し、しかも確実に䜍眮決め
状態ずしお良奜なHIP凊理を加え、内偎容噚内の
金属粉末の緻密化焌結を促すず共に、内偎容噚
ず、内郚の金属粉末ずは互いに圱響し合うこずが
なく、埓぀お、前蚘緻密化焌結をより安定ならし
め、HIP凊理の効果を頗る有効に発揮するこずが
できる。
As mentioned above, the method of the present invention greatly improves preheating efficiency and significantly shortens preheating time, regardless of the presence or absence of a degassing process inside the container, and also reduces the HIP processing time associated with it. It is an industrially extremely advantageous method, as it is possible to increase the operating rate of the equipment and achieve high efficiency, and the resulting product is of a quality that is at least as good as that of conventional methods. be. In particular, the method of the invention
Focusing on the materials of the inner and outer containers, the inner container was made of a material that is inert to the metal powder filled inside, and the outer container was made of a gas-impermeable material, which spreads to the inner container. The gas pressure spreads to the inner container extremely evenly through the pressure medium particles between the inner container and the outer container, and a good HIP treatment is applied to ensure positioning, which allows the metal powder in the inner container to be densified and sintered. In addition, the inner container and the metal powder inside do not affect each other, so that the densification sintering can be made more stable and the effects of the HIP treatment can be exhibited more effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第図は予熱炉内で加熱する堎合における被凊
理䜓䞭心枩床の時間的倉化を瀺す線図、第図は
高速床鋌粉末を予熱する堎合の雰囲気ガス圧力ず
粉末の密床ずの関係を瀺す線図、第図は粉末充
填カプセルを無加圧予熱した堎合のカプセル膚脹
の状態を瀺す抂略説明図、第図は本発明方法に
よ぀お埗られた冶金補品を以぀お䜜補された工具
ず埓来法による工具ずの切削性胜を倫々瀺す線
図、又第図は本発明方法に奜適に適甚される内
偎容噚の通気ノズルの䞀䟋を瀺す抂略図である。
Figure 1 is a diagram showing the temporal change in the center temperature of the workpiece when heated in a preheating furnace, and Figure 2 is a diagram showing the relationship between atmospheric gas pressure and powder density when preheating high-speed steel powder. Fig. 3 is a schematic explanatory diagram showing the state of capsule expansion when a powder-filled capsule is preheated without pressure, and Fig. 4 is a diagram showing the state of capsule expansion when a powder-filled capsule is preheated without pressure. FIG. 5 is a diagram showing the cutting performance of a tool and a conventional tool, respectively, and FIG. 5 is a schematic diagram showing an example of a ventilation nozzle for the inner container suitably applied to the method of the present invention.

Claims (1)

【特蚱請求の範囲】  金属粉末を充填した内偎容噚を、圧媒粒子を
充填した倖偎容噚内に埋蚭し、これを予熱した
埌、熱間静氎圧プレス凊理を行なう方法におい
お、内偎容噚を充填すべき金属粉末に察しお䞍掻
性な玠材で䜜補し、䞀方、倖偎容噚をガス䞍透過
性材料をも぀お䜜補しお前蚘内偎容噚に被凊理金
属粉末を充填し、これを倖偎容噚内に埋蚭した
埌、該倖偎容噚を密封しおこれを予熱炉内にお加
圧ガス雰囲気䞋で所定枩床に予熱し、しかる埌、
高圧炉にお高枩高圧ガス雰囲気䞋で熱間静氎圧プ
レス凊理を行なうこずにより前蚘内偎容噚内の金
属粉末の緻密化焌結を行なうこずを特城ずする熱
間静氎圧プレス方法。  倧気䞭若しくは窒玠ガス雰囲気䞋で内偎容噚
ぞの金属粉末の充填及びこの内偎容噚の倖偎容噚
ぞの埋蚭を行ない、䞡容噚を脱気するこずなく倖
偎容噚を密封する前蚘特蚱請求の範囲第項蚘茉
の熱間静氎圧プレス方法。  倧気䞭若しくは窒玠ガス雰囲気䞋で内偎容噚
ぞの金属粉末の充填及びこの内偎容噚の倖偎容噚
ぞの埋蚭を行ない、䞡容噚を脱気した埌、倖偎容
噚を密封する前蚘特蚱請求の範囲第項蚘茉の熱
間静氎圧プレス方法。  倧気䞭若しくは窒玠ガス雰囲気䞋で内偎容噚
ぞの金属粉末の充填を行ない、これを脱気密封し
た埌、倖偎容噚に埋蚭し該倖偎容噚を密封する前
蚘特蚱請求の範囲第項蚘茉の熱間静氎圧プレス
方法。
[Scope of Claims] 1. In a method in which an inner container filled with metal powder is buried in an outer container filled with pressure medium particles, the inner container is preheated, and then hot isostatic pressing is performed, the inner container is filled. The inner container is made of a material that is inert to the metal powder to be treated, while the outer container is made of a gas-impermeable material, the inner container is filled with the metal powder to be treated, and this is buried in the outer container. After that, the outer container is sealed and preheated to a predetermined temperature in a pressurized gas atmosphere in a preheating furnace, and then,
A hot isostatic pressing method, characterized in that the metal powder in the inner container is densified and sintered by hot isostatic pressing in a high-pressure furnace in a high-temperature, high-pressure gas atmosphere. 2. Claim 1, wherein the inner container is filled with metal powder and the inner container is buried in the outer container in the air or a nitrogen gas atmosphere, and the outer container is sealed without evacuating both containers. The hot isostatic pressing method described in . 3. Claim 1, wherein the inner container is filled with metal powder and the inner container is buried in the outer container in the air or a nitrogen gas atmosphere, and after both containers are degassed, the outer container is sealed. The hot isostatic pressing method described in . 4. The heating method according to claim 1, wherein the inner container is filled with metal powder in the air or a nitrogen gas atmosphere, the metal powder is degassed and sealed, and then the metal powder is buried in the outer container and the outer container is sealed. isostatic pressing method.
JP2916480A 1980-03-10 1980-03-10 Hot hydrostatic pressing method Granted JPS56126031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2916480A JPS56126031A (en) 1980-03-10 1980-03-10 Hot hydrostatic pressing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2916480A JPS56126031A (en) 1980-03-10 1980-03-10 Hot hydrostatic pressing method

Publications (2)

Publication Number Publication Date
JPS56126031A JPS56126031A (en) 1981-10-02
JPS6361096B2 true JPS6361096B2 (en) 1988-11-28

Family

ID=12268600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2916480A Granted JPS56126031A (en) 1980-03-10 1980-03-10 Hot hydrostatic pressing method

Country Status (1)

Country Link
JP (1) JPS56126031A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683341B2 (en) * 2006-08-30 2011-05-18 日立金属株匏䌚瀟 Degassing and sealing method for powder pressure sintering container

Also Published As

Publication number Publication date
JPS56126031A (en) 1981-10-02

Similar Documents

Publication Publication Date Title
US4693863A (en) Process and apparatus to simultaneously consolidate and reduce metal powders
US3992200A (en) Method of hot pressing using a getter
US4142888A (en) Container for hot consolidating powder
US3700435A (en) Method for making powder metallurgy shapes
US4341557A (en) Method of hot consolidating powder with a recyclable container material
US4446100A (en) Method of manufacturing an object of metallic or ceramic material
US3689259A (en) Method of consolidating metallic bodies
JP5001159B2 (en) Method for controlling the oxygen content of a powder
US3893852A (en) Method of manufacturing billets from powder
US3824097A (en) Process for compacting metal powder
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US4478789A (en) Method of manufacturing an object of metallic or ceramic material
EP0707910A2 (en) Porous metal body and process for producing same
USRE31355E (en) Method for hot consolidating powder
NO129807B (en)
US3728111A (en) Method of manufacturing billets from powder
US4178178A (en) Method of sealing hot isostatic containers
GB2048952A (en) Isostatic Hot Pressing Metal or Ceramic
JPH06226428A (en) Method and device for producing high-density article
JPS6361096B2 (en)
GB1585583A (en) Container for hot consolidating powder
US4505871A (en) Method for manufacturing an object of silicon nitride
CN111283203B (en) Method for promoting blank densification by utilizing hydrogen absorption expansion of titanium-containing material
JPS6250521B2 (en)
JPS61284697A (en) Method and apparatus for processing fusable tritium converted solid waste