JPS6360282A - Method for coating substrate surface by plasma vapor deposition - Google Patents

Method for coating substrate surface by plasma vapor deposition

Info

Publication number
JPS6360282A
JPS6360282A JP20294386A JP20294386A JPS6360282A JP S6360282 A JPS6360282 A JP S6360282A JP 20294386 A JP20294386 A JP 20294386A JP 20294386 A JP20294386 A JP 20294386A JP S6360282 A JPS6360282 A JP S6360282A
Authority
JP
Japan
Prior art keywords
reaction vessel
substrate
plasma
metals
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20294386A
Other languages
Japanese (ja)
Other versions
JPH0119469B2 (en
Inventor
Kazuyoshi Kawada
一喜 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Engineering Co Ltd
Original Assignee
Oriental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Engineering Co Ltd filed Critical Oriental Engineering Co Ltd
Priority to JP20294386A priority Critical patent/JPS6360282A/en
Publication of JPS6360282A publication Critical patent/JPS6360282A/en
Publication of JPH0119469B2 publication Critical patent/JPH0119469B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form highly adhesive oxycarbonitride on a substrate by introducing a specified source gas into a reaction vessel along with H2, N2, and CO, heating the mixture under specified conditions, and generating plasma. CONSTITUTION:One kind (source gas) among the compds. of Si, B, Al, and groups 4A, 5A, and 6A metals of the periodic table and a gas consisting essentially of H2 and N2, NH3, N2 and NH3, and CO or CO2 are introduced into the reaction vessel along with Ar, as required. At this time, the molar ratio of source gas/H2/N2 or NH3/CO or CO2 is controlled to about 1/5-200/1-100/0.25-50. The internal pressure of the reaction vessel is adjusted to 0.01-10Torr, a material to be treated (metals, ceramics, etc.) is heated to 100-1,000 deg.C, plasma is generated in the reaction vessel by a DC voltage, high-frequency waves, microwaves, etc., and a plasma reaction is caused. As a result, the coated film of the oxycarbonitride of the metals is densely and uniformly formed on the substrate to be treated with good adhesion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、プラズマ化学反応により、被処理基体の表
面部に、耐摩耗性を向上させる酸炭窒化物を被覆形成す
る、プラズマ蒸着式基体表面被覆方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a plasma-deposited substrate in which an oxycarbonitride that improves wear resistance is coated on the surface of the substrate by a plasma chemical reaction. This invention relates to a surface coating method.

〔従来の技術とその問題点〕[Conventional technology and its problems]

金属、セラミックス等の基体表面に、耐摩耗性に優れた
高融点化合物の被覆を形成する方法としては、従来、化
学的蒸着法(以下CVD法という。
Chemical vapor deposition (hereinafter referred to as CVD) is a conventional method for forming a coating of a high melting point compound with excellent wear resistance on the surface of a substrate such as metal or ceramic.

)及び物理的蒸着法(以下PVD法という。)が知られ
ている。
) and physical vapor deposition method (hereinafter referred to as PVD method) are known.

CVD法では、高融点化合物の被覆の形成が、900〜
1200°Cで行われるため、基体が薄物あるいは絹物
等のように変形を起こし易い形状のものである場合とか
、融点の低い材質のものである場合とかには、適用でき
ないという制限があった。また、このCVD法を工具鋼
に適用するときは、その処理温度が高いので、基体の硬
さが低下し、真空炉等によって再焼入れ、焼戻しする必
要があり、処理コストが嵩むという問題点があった。
In the CVD method, the formation of a coating of a high melting point compound is
Because it is carried out at 1200°C, there are limitations in that it cannot be applied when the substrate is of a shape that easily deforms, such as thin or silk, or when it is made of a material with a low melting point. . Furthermore, when this CVD method is applied to tool steel, the processing temperature is high, which reduces the hardness of the base material and requires re-quenching and tempering in a vacuum furnace, which increases processing costs. there were.

一方、PVD法では、高融点化合物の被覆を200〜s
oo’cという低温で行うことができるため、種々の用
途において実用化されている。しかしながら、PVD法
は、10”Torr以下という高真空の処理圧力である
から、蒸発した金属等が一定方向のみにしか飛散せず、
基体の一方向しか良好な被覆ができない。つまり、つき
まわりが悪い。そのため、基体を自公転させなければな
らず、コーティングコストが高くなり、応用範囲が狭い
という問題点があった。また、PVD法で形成した被覆
は、CVD法で形成した被覆より一般的に密着性が悪い
といわれている。
On the other hand, in the PVD method, coating with a high melting point compound is performed for 20~s.
Since it can be carried out at a low temperature of oo'c, it has been put to practical use in various applications. However, since the PVD method uses a high vacuum processing pressure of 10" Torr or less, evaporated metal etc. are only scattered in a certain direction.
Good coverage can only be achieved in one direction of the substrate. In other words, it's not easy to get around. Therefore, the substrate must be rotated around its axis, resulting in high coating costs and a narrow range of application. Furthermore, it is said that coatings formed by PVD methods generally have poorer adhesion than coatings formed by CVD methods.

そこで、CVD法とPVD法の長所だけを取り入れたプ
ラズマCVD法が開発されている(特公昭59−135
86号公報参照)。これは、従来より多く使われている
イオン窒化法と同じ原理によるものであり、反応容器に
流すガスの中に金属ハロゲン化物等を存在せしめるだけ
で、低温でつきまわりが優れている被覆が形成できるこ
とを特徴としている。
Therefore, a plasma CVD method has been developed that incorporates only the advantages of CVD and PVD methods (Japanese Patent Publication No. 59-135
(See Publication No. 86). This is based on the same principle as the ion nitriding method, which has been widely used in the past. By simply allowing metal halides, etc. to be present in the gas flowing into the reaction vessel, a coating with excellent throwing power at low temperatures is formed. It is characterized by what it can do.

このプラズマCVD法により基体にTiCN(T i 
C1Ny  ; X + Y≦1)等の炭窒化物で被覆
する場合は、窒素の供給源として窒素ガスあるいはアン
モニアガスが用いられており、プラズマ化学反応上には
問題はない。一方、炭素の供給源としてはCHa 、C
z Ha等の炭化水素系ガスが用いられる。この炭化水
素系ガスは、CVD法のような高温域ではよく反応し、
基体と炭化物被覆の密着性は良好であり、煤の発生も殆
どない。しかしながら、プラズマCVD法のような低温
域では、この炭化水素系ガスガ十分に反応しなかったり
、煤を発生するため、基体と炭窒化物被覆膜の密着性は
悪(、反応容器内を煤で汚すこともあり、実用化には問
題があった。
By this plasma CVD method, TiCN (Ti
When coating with a carbonitride such as C1Ny; On the other hand, carbon sources include CHa, C
A hydrocarbon gas such as zHa is used. This hydrocarbon gas reacts well in high temperature ranges such as in CVD methods,
The adhesion between the substrate and the carbide coating is good, and there is almost no soot generation. However, in low-temperature ranges such as plasma CVD, this hydrocarbon gas does not react sufficiently or generates soot, resulting in poor adhesion between the substrate and the carbonitride coating (and soot inside the reaction vessel). There was a problem with practical use as it could get dirty.

この発明は、プラズマ化学反応により、密着性の優れた
酸炭窒化物を基体表面に形成する方法を提供して、かか
る問題を解決することを目的とする。
An object of the present invention is to provide a method for forming an oxycarbonitride with excellent adhesion on the surface of a substrate by a plasma chemical reaction, thereby solving this problem.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記の目的を達成するために、プラズマC
VD法の炭素供給源として、炭化水素系ガスの代わりに
、−酸化炭素又は二酸化炭素を用いることによって、基
体との密着性の優れた被覆を形成する方法を提供する。
In order to achieve the above object, this invention
A method of forming a coating with excellent adhesion to a substrate is provided by using -carbon oxide or carbon dioxide instead of a hydrocarbon gas as a carbon source in the VD method.

すなわち、この発明は、Si、B、An!、周期律表の
4A、5A、6A族金属の化合物のうちの1種と水素と
窒素又はアンモニアあるいは窒素及びアンモニアと一酸
化炭素又は二酸化炭素とを主成分とするガスを反応容器
に導入し、その反応容器の内圧力を0.01〜10To
rrにし、被処理基体を100〜1000°Cに加熱す
るとともに、反応容器内にプラズマを発生させ、プラズ
マ化学反応させることによって、被処理基体表面に、S
i、 B、 A1+周期律表の4A、5A、6A族金属
の1種の酸炭窒化物を形成することを特徴とするプラズ
マ蒸着式基体表面被覆方法に係る。
That is, this invention provides Si, B, An! , introducing into a reaction vessel a gas whose main components are one of the compounds of metals of groups 4A, 5A, and 6A of the periodic table, hydrogen, nitrogen or ammonia, or nitrogen and ammonia, and carbon monoxide or carbon dioxide; The internal pressure of the reaction vessel is 0.01 to 10To
rr, and heat the substrate to 100 to 1000°C, generate plasma in the reaction vessel, and cause a plasma chemical reaction to inject S onto the surface of the substrate.
The present invention relates to a plasma deposition substrate surface coating method characterized by forming an oxycarbonitride of metals of groups 4A, 5A, and 6A of the periodic table.

〔作用〕[Effect]

ここで、形成される被覆膜の特性に影響する各因子につ
いて、それぞれ説明する。
Here, each factor that influences the characteristics of the coating film to be formed will be explained.

(イ)反応ガスについて まず、反応容器に導入するガスは、Si、B。(b) Regarding reaction gas First, the gases introduced into the reaction vessel are Si and B.

Al、周期律表の4A、5A、6A族金属の化合物(以
下ソースガスという。)のうちの1種と水素と窒素又は
アンモニアあるいは窒素及びアンモニアと一酸化炭素又
は二酸化炭素とを主成分とする。これらの混合ガスは、
モル比で、ソースガス:水素:窒素又はアンモニアニー
酸化炭素二酸化炭素=1:5〜200 : 1〜100
:0.25〜50に制御するのがよい。
The main components are Al, one of the compounds of metals in groups 4A, 5A, and 6A of the periodic table (hereinafter referred to as source gas), hydrogen, nitrogen or ammonia, or nitrogen and ammonia, and carbon monoxide or carbon dioxide. . These mixed gases are
In molar ratio, source gas: hydrogen: nitrogen or ammonia annealed carbon carbon dioxide = 1:5-200: 1-100
: It is good to control it to 0.25-50.

その理由は、この値をはずすと、密着性及び均一性が悪
く、しかも硬さ9色の良好な被覆膜は得られないことに
ある。
The reason is that if this value is exceeded, adhesion and uniformity are poor, and a good coating film with a hardness of 9 colors cannot be obtained.

この場合、放電安定化あるいは反応制御用として、Ar
、He、Ne等を導入してもよい。
In this case, Ar is used for discharge stabilization or reaction control.
, He, Ne, etc. may be introduced.

(ロ)処理圧力について 処理圧力が0.01未満では、複雑な形状の基体表面に
微細で緻密な組織を有する被覆膜を均一に形成すること
ができず、また、プラズマを直流電圧により発生する場
合に、その発生が困難となる。
(b) Processing pressure If the processing pressure is less than 0.01, it will not be possible to uniformly form a coating film with a fine and dense structure on the complex-shaped substrate surface, and plasma will be generated by direct current voltage. When this happens, it becomes difficult for it to occur.

一方、処理圧力が10Torrを越えると、被覆膜は、
粗雑で密度の低い組織や柱状組織になり易い。
On the other hand, when the processing pressure exceeds 10 Torr, the coating film becomes
It tends to become a coarse, low-density structure or a columnar structure.

そのため、この発明では、処理圧力を0.01〜1QT
orrの範囲とした。
Therefore, in this invention, the processing pressure is 0.01 to 1QT.
The range was set as orr.

(ハ)処理温度について 基体温度が100”C未満では、微細で緻密な被覆膜が
形成されず、基体と被覆膜との密着性が悪い。
(c) Processing temperature If the substrate temperature is less than 100''C, a fine and dense coating film will not be formed and the adhesion between the substrate and the coating film will be poor.

一方、基体温度が1000°Cを越えると、被覆膜は粗
雑な密度の低い組織や柱状組織になり、しかも基体の変
形が生じる。
On the other hand, when the substrate temperature exceeds 1000° C., the coating film becomes a coarse structure with low density or a columnar structure, and the substrate is deformed.

そのため、この発明では、基体の温度を100〜100
0”Cの範囲とした。
Therefore, in this invention, the temperature of the substrate is set at 100 to 100.
The range was 0"C.

(ニ)プラズマ発生について プラズマ発生方法としては、直流電圧、高周波、マイク
ロ波等を用いればよい。それぞれの出力は、反応装置の
大きさ、基体表面積等によって変える必要がある。
(d) Plasma generation As a plasma generation method, direct current voltage, high frequency, microwave, etc. may be used. Each output needs to be changed depending on the size of the reactor, the surface area of the substrate, etc.

この場合、プラズマは、化学反応を促進することと、基
体を加熱することの両方の役目をなす。
In this case, the plasma serves both to promote the chemical reaction and to heat the substrate.

ただし、基体の加熱は、他にヒータを設けて行なうこと
とし、プラズマばあ(まで化学反応促進のために使う方
が、被覆膜の厚さ、密着性、物性をうまく制御すること
ができる。
However, it is better to heat the substrate by installing an additional heater and using it to promote the chemical reaction using a plasma bath, which allows better control of the thickness, adhesion, and physical properties of the coating film. .

このように、プラズマCVD法の低温域処理でも、−酸
化炭素又は二酸化炭素は十分に反応し、煤を発生させる
ことはない。
In this way, even in the low-temperature region treatment of the plasma CVD method, -carbon oxide or carbon dioxide reacts sufficiently and no soot is generated.

〔実施例〕〔Example〕

第1図に、この発明の方法で、T1CN○の被覆膜を基
体表面に形成するための装置の概略を示しである。
FIG. 1 schematically shows an apparatus for forming a coating film of T1CN◯ on the surface of a substrate by the method of the present invention.

この方法によれば、金属チタン源としてTiC1,を用
い、そのT iC1aを入れたソースタンク7を、ソー
スタンク加熱用ヒータ8により加熱し、気体の状態のT
 z CI 4をソースガス用流量計5を通して反応容
器13に供給する。その場合、ソースタンク7、ソース
タンク加熱用ヒータ8、及びソースガス用流量計5は、
一定の温度に保持された恒温槽6に収納されている。こ
の恒温槽5は、−旦気体になったT iC1<を液化さ
せないためのものである。
According to this method, TiC1 is used as a source of metallic titanium, a source tank 7 containing TiC1a is heated by a source tank heating heater 8, and T in a gaseous state is heated.
z CI 4 is supplied to the reaction vessel 13 through the source gas flow meter 5. In that case, the source tank 7, the source tank heater 8, and the source gas flow meter 5 are
It is housed in a constant temperature bath 6 maintained at a constant temperature. This constant temperature bath 5 is provided to prevent T iC1<, which has become a gas, from being liquefied.

上記TiCLガスは、Hz 、Nt又はNH。The above TiCL gas is Hz, Nt or NH.

あるいは窒素及びN H3、COとともに反応容器に送
られるようになっている。この際、必要に応じて、A 
r r He + N e等を添加してもよい。
Alternatively, it is sent to the reaction vessel together with nitrogen, NH3, and CO. At this time, if necessary,
r r He + Ne, etc. may be added.

C源としてCOを用いる主たる理由は、CH。The main reason for using CO as a C source is CH.

、CzHt等の炭化水素系ガスに比べて煤の発生が殆ど
なく、その添加量を多くできることにある。
Compared to hydrocarbon gases such as , CzHt, etc., soot is hardly generated, and the amount of soot added can be increased.

そのことにより、密着性の良好な被覆膜ができるととも
に、蒸着速度も増すことができる。また、COを用いる
理由は、その分子式より理解できるように、分子の中に
Oを持っているので、その添加量、処理条件等によって
は、形成される被覆膜中にOが入り、酸炭窒化物被覆膜
ができる。実際には、少量の炭窒化物を生成する。なお
、炭素供給源として二酸化炭素の使用も可能である。
As a result, a coating film with good adhesion can be obtained, and the deposition rate can also be increased. In addition, the reason for using CO is that, as can be understood from its molecular formula, it has O in its molecules, so depending on the amount added, processing conditions, etc., O may enter the coating film that is formed. A carbonitride coating is formed. In fact, it produces small amounts of carbonitrides. Note that carbon dioxide can also be used as a carbon supply source.

反応容器13内には、導入ガスを一定流量として流し、
真空ポンプ9によって排気する場合、図中のコンダクタ
ンスパルプ14を調節することによって、反応容器13
内は0. 01〜10Torrの適当な値に保つ。
Introduced gas is flowed into the reaction vessel 13 at a constant flow rate,
When evacuating with the vacuum pump 9, the reaction vessel 13 can be evacuated by adjusting the conductance pulp 14 in the figure.
Inside is 0. Keep it at an appropriate value of 01 to 10 Torr.

前記Ti CI4+ Hz 、Nz又はN H3あるい
はNt及びNH,J、Coを主成分とするガスは、反応
容器13内でプラズマとなり、そのプラズマ内で基体1
0の表面にT i CN Oの被覆膜を形成させる。
The gas whose main components are TiCI4+ Hz, Nz, NH3, or Nt and NH, J, and Co becomes plasma in the reaction vessel 13, and the substrate 1 is heated within the plasma.
A coating film of T i CN O is formed on the surface of the substrate.

この場合、基体10を陰極とし、反応容器13を陽極と
し、直流電圧を印加することによりプラズマが発生する
。ここで、基体(陰極)10と反応容器(陽極)13と
は、絶縁材12によって電気的に絶縁されている。この
場合、プラズマの発生だけで被覆膜を形成すると、プラ
ズマによるスパッタリング効果により、蒸着速度が小さ
くなるため、反応容器13外側にヒータ11を設けて基
体10の加熱をすることにより、プラズマ出力を押さえ
ることができるので、蒸着速度を増すことができるとと
もに、均一な被覆もできる。
In this case, plasma is generated by applying a DC voltage to the substrate 10 as a cathode and the reaction vessel 13 as an anode. Here, the base body (cathode) 10 and the reaction vessel (anode) 13 are electrically insulated by an insulating material 12. In this case, if a coating film is formed only by generating plasma, the deposition rate will be reduced due to the sputtering effect of the plasma. Therefore, by providing a heater 11 outside the reaction vessel 13 to heat the substrate 10, the plasma output can be reduced. Since it can be held down, the deposition rate can be increased and uniform coating can be achieved.

ここでは、プラズマの発生手段としては、直流電圧以外
に、高周波、マイクロ波等を利用してもよく、また、ヒ
ータを反応容器の内側に設置するようにしてもよい。
Here, as a means for generating plasma, in addition to direct current voltage, high frequency waves, microwaves, etc. may be used, and a heater may be installed inside the reaction vessel.

この実施例の実施手順は、凡そ次の通りである。The implementation procedure of this example is approximately as follows.

(i)被処理品を治具の上に載置し、反応容器内の適切
な位置に配置する。
(i) Place the item to be processed on the jig and place it at an appropriate position within the reaction vessel.

(ii )反応容器内を10−’Torr以下に排気す
る。
(ii) Evacuate the inside of the reaction vessel to 10-'Torr or less.

(iii) Hz、 A r又はHz+Arを0.01
〜10Torrの必要値になるように反応容器内に導入
する。
(iii) Hz, Ar or Hz+Ar 0.01
The required value of ~10 Torr is introduced into the reaction vessel.

(iv)直流電圧、高周波、マイクロ波等により反応容
器内にプラズマを発生させ、被処理品表面をスパッター
クリーニングし、その後、処理温度に加熱する。この場
合、加熱手段として、ヒータを併用すれば均一な加熱が
できるとともに、プラズマ出力を適正に制御し蒸着速度
を上げることができる。
(iv) Plasma is generated in the reaction vessel by direct current voltage, high frequency, microwave, etc. to perform sputter cleaning on the surface of the article to be treated, and then heated to a treatment temperature. In this case, if a heater is used as a heating means, uniform heating can be achieved, and the plasma output can be appropriately controlled to increase the deposition rate.

(V)S i、B、Al並びに周期律表の4A。(V) Si, B, Al and 4A of the periodic table.

5A及び6A族の金属化合物の10種のガス状物質とN
2又はNH,あるいはN2及びNH,とCO又はCO2
とを反応容器に導入し、それらのガスと、Hz、Arと
の比率を一定値に制御し、更に0.01〜10Torr
の処理圧力に保ち、必要時間プラズマ処理する。
10 gaseous substances of group 5A and 6A metal compounds and N
2 or NH, or N2 and NH, and CO or CO2
were introduced into the reaction vessel, and the ratios of these gases and Hz and Ar were controlled to constant values, and the temperature was further increased from 0.01 to 10 Torr.
Maintain the treatment pressure at 100 mL and perform plasma treatment for the required time.

(VI)その後、Hzを除いた他のガスの供給とプラズ
マ出力、ヒータ出力とを中止し、反応容器内圧力を0.
 01 = 10Torrに保って冷却する。
(VI) After that, the supply of other gases except Hz, the plasma output, and the heater output are stopped, and the pressure inside the reaction vessel is reduced to 0.
01 = Maintained at 10 Torr and cooled.

この発明を更に具体的に実施すると、次のようになる。A more specific implementation of this invention is as follows.

被処理品としては、直径15u、高さ50mの寸法の5
KDII、5KD61,5KH51゜5US304の鋼
材それぞれ用い、第1図に示した装置にT i CNO
の被覆膜を以下の手1ullで形成した。
The item to be processed is a 5 piece with a diameter of 15u and a height of 50m.
KDII, 5KD61, 5KH51゜5US304 steel materials were used, and T i CNO was installed in the equipment shown in Figure 1.
A coating film of 1 ull was formed in the following manner.

まず、被処理品を反応容器内治具に配置した後に、反応
容器内を10−”Torrに減圧し、その後、ガス成分
比でAr :Hz =1 : 1の混合ガスを、反応容
器内がI Torrになるように制御して導入した。
First, after placing the product to be treated in a jig inside the reaction vessel, the pressure inside the reaction vessel is reduced to 10-” Torr, and then a mixed gas with a gas component ratio of Ar:Hz = 1:1 is added to the inside of the reaction vessel. The temperature was controlled to be 1 Torr.

そして、被処理品を陰極とし反応容器を陽極として、6
00vの直流電圧を印加するとともに、外部ヒータによ
り、被処理品温度を400°Cに保持し、30分間被処
理品表面をプラズマによりスパッタークリーニングした
Then, with the product to be treated as a cathode and the reaction vessel as an anode, 6
While applying a DC voltage of 00 V, the temperature of the article to be treated was maintained at 400° C. using an external heater, and the surface of the article to be treated was sputter-cleaned using plasma for 30 minutes.

次に、外部ヒータの出力を増して、被処理品を550”
Cに昇温し、その後、ガス成分比でTiCl4  :H
z  :Nz  :CO:Ar=1 : 83:4:4
:8の混合ガスを反応容器内が2 Torrになるよう
に導入し、3時間プラズマ処理を続行した。
Next, increase the output of the external heater and heat the product to 550”.
After that, the gas component ratio was increased to TiCl4:H
z:Nz:CO:Ar=1:83:4:4
A mixed gas of :8 was introduced so that the pressure inside the reaction vessel was 2 Torr, and the plasma treatment was continued for 3 hours.

この結果、厚さ6μmの均一なT i CNOと若干の
T1CNの被覆膜が、それぞれの被処理品表面に形成さ
れたことが確認された。
As a result, it was confirmed that a uniform coating film of 6 μm thick of T i CNO and a small amount of T1CN was formed on the surface of each processed article.

この実施例は、基体表面にTi CNOの被覆膜を形成
する場合であるが、Ti以外の例えばSi。
In this example, a coating film of Ti CNO is formed on the surface of the substrate, but a coating film other than Ti, such as Si, is used.

B、AI、周期律表の4A、5A、6A族金属の酸炭窒
化物の被覆膜を形成することも勿論可能である。
Of course, it is also possible to form a coating film of oxycarbonitrides of B, AI, and metals of groups 4A, 5A, and 6A of the periodic table.

〔効果〕〔effect〕

この発明によれば、低温でも煤を発生させることなく、
反応容器内で一酸化炭素又は二酸化炭素が十分に反応し
て、複雑な基体に酸炭化物の被覆膜を、緻密で均一にし
かも密着性よく形成することができる。
According to this invention, no soot is generated even at low temperatures,
Carbon monoxide or carbon dioxide reacts sufficiently in the reaction vessel, and a dense, uniform, and highly adhesive coating film of oxycarbide can be formed on a complex substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の実施に用いる装置の概略図で
あり、図中、1はH2流量計、2はAr流量計、3はN
2流量計、4はCO流量計、5はソースガス用流量計、
6は恒温槽、7はソースタンク、8はソースタンク加熱
用ヒータ、9は真空ポンプ、10は基体、11はヒータ
、12は絶縁材、13は反応容器、14はコンダクタン
スバルブである。
FIG. 1 is a schematic diagram of the apparatus used to carry out the method of the present invention, in which 1 is an H2 flowmeter, 2 is an Ar flowmeter, and 3 is an N2 flowmeter.
2 flowmeter, 4 CO flowmeter, 5 source gas flowmeter,
6 is a constant temperature bath, 7 is a source tank, 8 is a heater for heating the source tank, 9 is a vacuum pump, 10 is a substrate, 11 is a heater, 12 is an insulating material, 13 is a reaction vessel, and 14 is a conductance valve.

Claims (1)

【特許請求の範囲】[Claims] (1)Si、B、Al、周期律表の4A、5A、6A族
金属の化合物のうちの1種と水素と窒素又はアンモニア
あるいは窒素及びアンモニアと一酸化炭素又は二酸化炭
素とを主成分とするガスを反応容器に導入し、その反応
容器の内圧力を0.01〜10Torrにし、被処理基
体を100〜1000゜Cに加熱するとともに、反応容
器内にプラズマを発生させ、プラズマ化学反応させるこ
とによって、被処理基体表面に、Si、B、Al、周期
律表の4A、5A、6A族金属の1種の酸炭窒化物を形
成することを特徴とするプラズマ蒸着式基体表面被覆方
法。
(1) The main components are Si, B, Al, one of the compounds of group 4A, 5A, and 6A metals of the periodic table, hydrogen, nitrogen or ammonia, or nitrogen and ammonia, and carbon monoxide or carbon dioxide. Introducing gas into a reaction vessel, setting the internal pressure of the reaction vessel to 0.01 to 10 Torr, heating the substrate to be processed to 100 to 1000°C, and generating plasma in the reaction vessel to cause a plasma chemical reaction. A method for coating a surface of a substrate by plasma deposition, characterized in that an oxycarbonitride of Si, B, Al, or one of the metals of groups 4A, 5A, and 6A of the periodic table is formed on the surface of a substrate to be treated.
JP20294386A 1986-08-29 1986-08-29 Method for coating substrate surface by plasma vapor deposition Granted JPS6360282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20294386A JPS6360282A (en) 1986-08-29 1986-08-29 Method for coating substrate surface by plasma vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20294386A JPS6360282A (en) 1986-08-29 1986-08-29 Method for coating substrate surface by plasma vapor deposition

Publications (2)

Publication Number Publication Date
JPS6360282A true JPS6360282A (en) 1988-03-16
JPH0119469B2 JPH0119469B2 (en) 1989-04-11

Family

ID=16465729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20294386A Granted JPS6360282A (en) 1986-08-29 1986-08-29 Method for coating substrate surface by plasma vapor deposition

Country Status (1)

Country Link
JP (1) JPS6360282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264668B2 (en) * 2001-10-16 2007-09-04 The Chinese University Of Hong Kong Decorative hard coating and method for manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389804A (en) * 1977-01-19 1978-08-08 Mitsubishi Metal Corp Covered supethard alloy product and its preparation
JPS6036665A (en) * 1984-04-13 1985-02-25 Mitsubishi Metal Corp Method for coating surface of substrate with metallic nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389804A (en) * 1977-01-19 1978-08-08 Mitsubishi Metal Corp Covered supethard alloy product and its preparation
JPS6036665A (en) * 1984-04-13 1985-02-25 Mitsubishi Metal Corp Method for coating surface of substrate with metallic nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264668B2 (en) * 2001-10-16 2007-09-04 The Chinese University Of Hong Kong Decorative hard coating and method for manufacture

Also Published As

Publication number Publication date
JPH0119469B2 (en) 1989-04-11

Similar Documents

Publication Publication Date Title
US5302422A (en) Deposition process of a ceramic coating on a metallic substrate
US4803127A (en) Vapor deposition of metal compound coating utilizing metal sub-halides and coated metal article
US3771976A (en) Metal carbonitride-coated article and method of producing same
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
IL144500A0 (en) A method for coating a substrate using a medium temperature chemical vapor deposition process
JP2002538308A5 (en)
Rie et al. Plasma-assisted chemical vapour deposition of hard coatings with metallo-organic compounds
Hilton et al. TiN coatings on M2 steel produced by plasma-assisted chemical vapor deposition
JPH02213474A (en) Manufacture of thin molybdenum sulfide film, manufacture of molybdenum sulfide film and self-lubricating layer, electro-optical layer, and catalytically acting layer
JPS6360282A (en) Method for coating substrate surface by plasma vapor deposition
JPH0119468B2 (en)
JPH03240959A (en) Method for synthesizing carbon nitride thin film
JPS6242029B2 (en)
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JP2569423B2 (en) Gas phase synthesis of boron nitride
US20200083520A1 (en) Method for producing yttrium oxide-containing thin film by atomic layer deposition
JPH04301084A (en) Wear-resistant member and its manufacture
JPS5915983B2 (en) Formation method of boron film
JPS58174568A (en) Formation of film of metal compound
JPH03267361A (en) Hard film and its production
JPS6369973A (en) Production of cubic boron nitride film
JPS6240376A (en) Method for synthesizing cubic boron nitride
JPH05132778A (en) Formation of metallic nitride film
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JP2761431B2 (en) Film forming method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees