JPS5915983B2 - Formation method of boron film - Google Patents

Formation method of boron film

Info

Publication number
JPS5915983B2
JPS5915983B2 JP10131577A JP10131577A JPS5915983B2 JP S5915983 B2 JPS5915983 B2 JP S5915983B2 JP 10131577 A JP10131577 A JP 10131577A JP 10131577 A JP10131577 A JP 10131577A JP S5915983 B2 JPS5915983 B2 JP S5915983B2
Authority
JP
Japan
Prior art keywords
boron
substrate
gas
plasma
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10131577A
Other languages
Japanese (ja)
Other versions
JPS5435181A (en
Inventor
博司 山添
正樹 青木
雅浩 長沢
孝一 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10131577A priority Critical patent/JPS5915983B2/en
Publication of JPS5435181A publication Critical patent/JPS5435181A/en
Publication of JPS5915983B2 publication Critical patent/JPS5915983B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/28Deposition of only one other non-metal element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、ホウ素被膜の形成方法に係D)特に被膜の
膜質や機械的性質の向上を図ることを目的とするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a boron coating, and particularly aims at improving the film quality and mechanical properties of the coating.

ホウ素は硬度が高く、質量が小さい故に、耐摩耗被覆
材料として、あるいは音響材料として注目されておわ、
これらの分野で研究開発がなされてきた。
Boron has high hardness and small mass, so it has attracted attention as a wear-resistant coating material and as an acoustic material.
Research and development has been carried out in these fields.

しかしながら、ホウ素は融点が高く2000℃以上、高
温では化学的に活性な元素であるため、ホウ素被覆また
はホウ素薄板を得る方法は電子ビーム加熱蒸着、スパッ
タリング法等による物理的蒸着法または化学蒸着法(C
VD法)に限られている。このような従来の方法によつ
て形成された被膜は機械的にもろかつたサ、割れがあつ
たヤ、空孔があつたシして、十分なものではなかつた。
上記物理的蒸着法においては、基体への析出速度が格
段に小さく、生産性に乏しい。また、得られた被膜は基
体への付着力、粒界の結合が弱いという欠点があつた。
また上記、従来のCVD法においては、塩化ホウ素(
BCI3)または臭化ホウ素(BBに3)と水素(H2
)の混合ガスを用いて、BCI3あるいはBBr3を熱
分解させ、基体上に析出させる方法が一般的である。
However, since boron has a high melting point of 2000°C or higher and is chemically active at high temperatures, the methods for obtaining boron coatings or boron thin plates are physical vapor deposition methods such as electron beam heating evaporation and sputtering methods, or chemical vapor deposition methods ( C
VD method). Coatings formed by such conventional methods were mechanically brittle, had cracks, and had pores, and were not satisfactory.
In the above-mentioned physical vapor deposition method, the rate of deposition onto the substrate is extremely low, resulting in poor productivity. In addition, the resulting coating had drawbacks such as weak adhesion to the substrate and weak bonding at grain boundaries.
In addition, in the conventional CVD method mentioned above, boron chloride (
BCI3) or boron bromide (BB3) and hydrogen (H2
) is used to thermally decompose BCI3 or BBr3 and deposit it on a substrate.

この場合は通常900℃以上の基体温度を必要とし、こ
の点から、使用し得る基体は限られる。このような高温
ではホウ素の析出と同時に、すでに析出したホウ素の基
体への拡散が進行し、基体と析出ホウ素層との間にボラ
イド(基体元素とホウ素との化合物)層の形成が進む。
このボライド層と、ホウ素層との密度が一般には異なる
ため、また熱膨張係数の差のためのボライド層の成長と
ともに、このボライド層に空孔が生じたヤ、ひずみが生
じる。基体と析出ホウ素層の密着度を大とするためには
両者の間に適当な厚さのボライド層が必要と思われるが
、しかしながら、従来からのCVD法では、その基体温
が高い故に、上記適当な厚さ以上のボライド層が成長し
、このことが逆に析出ホウ素層が基体との密着性を欠い
たり、ホウ素層にわれが生じたク、また非常にもろいと
いう欠点につながつた。 本発明はホウ素被膜形成法に
おける上記欠点を克服し、生産性があり、しかも膜質や
機械的性質の優れたホウ素被膜を得るための方法を提供
するものである。本発明の最大の特徴はプラズマ化学蒸
着法(以下ブラズマCVD法と称する)、すなわち、少
なくとも−カー状化合物はホウ素のハロゲン化物又はジ
ポラン混合されたガス状化合物を反応せしめて、基体上
にホウ素被膜を形成する過程が、このガス状化合物から
なる混合物の少なくとも一部をプラズマ化する第1過程
と、ホウ素が基体上に析出する第2過程からな虱しかも
、第1過程と第2過程が同時に進行するか、あるいは第
1過程が第2過程に先行して進行することである。
In this case, a substrate temperature of 900° C. or higher is usually required, and from this point of view, the types of substrates that can be used are limited. At such high temperatures, at the same time as boron is precipitated, the already precipitated boron diffuses into the substrate, and a boride (a compound of a substrate element and boron) layer is formed between the substrate and the precipitated boron layer.
Since the densities of the boride layer and the boron layer are generally different, and due to the difference in coefficient of thermal expansion, as the boride layer grows, holes are created in the boride layer, causing distortion. In order to increase the degree of adhesion between the substrate and the precipitated boron layer, it seems necessary to provide a boride layer with an appropriate thickness between the two.However, in the conventional CVD method, because the substrate temperature is high, the above-mentioned A boride layer of more than an appropriate thickness grew, which resulted in the deposited boron layer lacking adhesion to the substrate, cracking in the boron layer, and being extremely brittle. The present invention overcomes the above-mentioned drawbacks of the boron film forming method and provides a method for obtaining a boron film that is productive and has excellent film quality and mechanical properties. The most important feature of the present invention is the plasma chemical vapor deposition method (hereinafter referred to as plasma CVD method), in which at least the car-like compound is reacted with a gaseous compound mixed with a boron halide or diporane to form a boron coating on the substrate. The process of forming this gaseous compound consists of a first process in which at least a part of the mixture of gaseous compounds is turned into plasma, and a second process in which boron is deposited on the substrate. or the first step precedes the second step.

ち密な基体への付着力が大きく、機械的性質の優れたホ
ウ素被膜形成のための、しかも生産性ある被膜形成法を
得るために、基体と析出ホウ素との反応に着目し、上記
ブラズマCVD法が有用であることを見い出した。
In order to form a boron film with strong adhesion to a dense substrate and excellent mechanical properties, and to obtain a productive film formation method, we focused on the reaction between the substrate and precipitated boron, and developed the above-mentioned plasma CVD method. was found to be useful.

本発明を具体的に述べる前に、CVD法とプラズマCV
D法と説明する。
Before specifically describing the present invention, the CVD method and plasma CV
This is explained as method D.

CVD法は一般的には原料ガスとして、BCI3あるい
はBBr3と、H2の混合ガスを用いて、基体上に熱エ
ネルギーのみの励起でBCI3あるいはBBr3を分解
させ、ホウ素を析出させる方法であわ、純粋に化学的反
応である。
Generally, the CVD method uses a mixed gas of BCI3 or BBr3 and H2 as a raw material gas, and decomposes BCI3 or BBr3 on a substrate by excitation using only thermal energy to precipitate boron. It is a chemical reaction.

本発明が関係するプラズマCVD法は原料ガスとしては
、上記CVD法のそれと同一でもよいが(一般にはホウ
素化合物を含むガスが使用される)原料ガス中でグロー
放電を起し、原料ガスをプラズマ化し、これにより1原
料ガス中の少なくとも一部の分子あるいは原子を励起状
態に訃く。
In the plasma CVD method to which the present invention relates, the raw material gas may be the same as that of the CVD method described above (generally, a gas containing a boron compound is used), but glow discharge is caused in the raw material gas to transform the raw material gas into a plasma. , thereby bringing at least some molecules or atoms in one source gas into an excited state.

この過程は上記CVD法の場合とちがつて、物理的過程
である。また、この過程に}いてはしばしぱささらにラ
ジカルの形成等、半ば化学的過程も起る。つぎに、プラ
ズマ化された原料ガスは必要とあれば熱エネルギーの助
けをかりて反応し、ホウ素を析出させる。現実に、上記
CVD法におけるよ虱低温の基体上にホウ素を析出させ
うるものであつた。この過程は化学的な反応過程である
が、反応にはラジカル等も関与する可能性があV1上記
CVD法に}けるよりも複雑な過程であると思われる。
以上述べたように、上記CVD法とプラズマCVD法は
内容において、本質的に差異がある。
This process is different from the above-mentioned CVD method in that it is a physical process. Additionally, semi-chemical processes such as the formation of radicals often occur during this process. Next, the raw material gas turned into plasma reacts with the help of thermal energy, if necessary, to precipitate boron. In reality, boron could be deposited on a substrate at a lower temperature than in the above CVD method. Although this process is a chemical reaction process, radicals and the like may also be involved in the reaction, so it is considered to be a more complicated process than the above-mentioned CVD method.
As described above, the CVD method and the plasma CVD method are essentially different in content.

つぎに本発明を具体的に説明する。プラズマCVD装置
はグロー放電部およびホウ素析出部が反応室の主要な構
成要素であジ、前記両部は位置的に同一の場合もあり1
別々である場合もある。
Next, the present invention will be specifically explained. In a plasma CVD apparatus, a glow discharge section and a boron deposition section are the main components of the reaction chamber, and these two sections may be located in the same position.
Sometimes they are separate.

反応室の構成の例を示す。第1図において、1は原料ガ
スの反応室への導入部、2は排気口、3は基体加熱用ヒ
ーター、4は高周波コイル、5は反応容器、6はホウ素
析出用基体である。高周波コイルに高周波電力を供給す
ると、反応室の7の近傍で原料ガスがブラズマ化し、プ
ラズマ化した原料ガスは6の基体にホウ素を析出させる
。そののちガスは排気口2から排出される。第2図は他
の例であう、9は原料ガス導入部、10は排気口、11
は基体加熱用ヒーター、12は高周波電力導入部、13
はグロー放電を起すための第1電極、14はグロー放電
を起すための第2電極兼基体のサセプター、15は反応
容器、16は基体である。第2図の場合、高周波電圧は
電極13と14の間にかかジ、プラズマは電極13と1
4の間に発生し、基体16にホウ素が析出する。プラズ
マCVD装置としては、上記反応室以外に原料ガスを反
応室に送)こむためのガス系、基体加熱機構、反応室を
減圧し、排気するための減圧系、グロー放電を起すため
の電源必要とあれば冷却トラツプ等から構成される。グ
ロー放電は交流高周波による方法が大容量で均一性のよ
いプラズマが発生できる等、好都合である(第1図、第
2図とも交流高周波による場合である)が、本発明はこ
れに限定されるものでない。
An example of the configuration of a reaction chamber is shown. In FIG. 1, reference numeral 1 denotes an introduction part for raw material gas into the reaction chamber, 2 an exhaust port, 3 a heater for heating the substrate, 4 a high frequency coil, 5 a reaction vessel, and 6 a substrate for boron deposition. When high frequency power is supplied to the high frequency coil, the source gas is turned into plasma near 7 in the reaction chamber, and the plasma source gas deposits boron on the substrate 6. The gas is then exhausted from the exhaust port 2. Figure 2 shows another example, where 9 is the raw material gas introduction part, 10 is the exhaust port, and 11
12 is a heater for heating the substrate, 12 is a high-frequency power introduction part, and 13 is a heater for heating the substrate.
14 is a susceptor serving as a second electrode and a substrate for generating glow discharge, 15 is a reaction vessel, and 16 is a substrate. In the case of Fig. 2, the high frequency voltage is applied between the electrodes 13 and 14, and the plasma is generated between the electrodes 13 and 14.
4, and boron is deposited on the substrate 16. In addition to the above-mentioned reaction chamber, a plasma CVD apparatus requires a gas system to send raw material gas to the reaction chamber, a substrate heating mechanism, a depressurization system to depressurize and exhaust the reaction chamber, and a power source to generate glow discharge. If so, it consists of cooling traps, etc. For glow discharge, a method using AC high frequency is advantageous as it can generate plasma with a large capacity and good uniformity (both Figures 1 and 2 are cases using AC high frequency), but the present invention is limited to this method. It's not something.

プラズマの励起法、すなわちグロー放電を起す方法につ
いても、周波数等によつて、マイクロ波の場合キヤビテ
イ一による方法、誘導負荷方式、容量負荷方式等が使わ
れうる。
Regarding the plasma excitation method, that is, the method of causing glow discharge, depending on the frequency etc., in the case of microwaves, a cavity method, an inductive load method, a capacitive load method, etc. can be used.

基体加熱機構としては、ヒーターのジユール熱による加
熱、赤外線ランプによる加熱、高周波誘導加熱、基体が
導体の場合、電流を基体に通じ自已のジユール熱による
加熱方式等が使われた。
The substrate heating mechanisms used included heating using Joule heat from a heater, heating using an infrared lamp, high-frequency induction heating, and, if the substrate was a conductor, a heating method using its own Joule heat by passing an electric current through the substrate.

また温度プロワイルとし5て、ホウ素の析出が始まつた
段階に}いて、ボライド層が成長しうる程度に高温し、
適当な厚さのボライド層の析出ののち、ホウ素の基体へ
の拡散を抑制しうる程、低温でホウ素を析出させた場合
、基体の付着力に関してはよジ強固になつた。原量ガス
としては、BCI3とH2の混合ガス、BBr3蒸気と
H2の混合ガス、BBr3蒸気とキヤリアガスとしての
アルゴン(Ar)等との混合ガス、BC3の単一ガスあ
るいはジボラン等の水素化物とキヤリアガスとしてのA
rの混合ガス等が使用しうるが、膜質、付着力さらにガ
スの扱いやすさの点ではBCI3とH2の混合ガス、B
Br3蒸気とH2の混合ガスが好結果をもたらし、最も
低温でホウ素が得られたのはジボランとキヤリアガスと
してのArの混合ガス、BBr3蒸気とH,の混合ガス
、BBr3蒸気とキヤリアガスとしてのAr等との混合
ガスを使用した場合であつた。
In addition, as a temperature profile 5, at the stage when boron precipitation has started, the temperature is raised to such an extent that a boride layer can grow.
After the deposition of a boride layer of appropriate thickness, the adhesion to the substrate became much stronger when the boron was deposited at a low enough temperature to suppress the diffusion of boron into the substrate. Raw gases include a mixed gas of BCI3 and H2, a mixed gas of BBr3 vapor and H2, a mixed gas of BBr3 vapor and argon (Ar) as a carrier gas, a single gas of BC3 or a hydride such as diborane and a carrier gas. A as
A mixed gas of BCI3 and H2, etc. can be used, but in terms of film quality, adhesion, and ease of handling the gas, a mixed gas of BCI3 and H2, BCI3 and H2, etc.
A mixed gas of Br3 vapor and H2 gave good results, and boron was obtained at the lowest temperature using a mixed gas of diborane and Ar as a carrier gas, a mixed gas of BBr3 vapor and H, a mixed gas of BBr3 vapor and Ar as a carrier gas, etc. This was the case when a mixed gas with

反応室内の真空度は0.1〜10T0rrに保持された
The degree of vacuum in the reaction chamber was maintained at 0.1 to 10T0rr.

ホウ素の析出速度を大とするためには、真空度はある程
度大なる方がよく、膜質、基体への付着力に関しては、
ある程度小なる方がよかつた。
In order to increase the rate of boron precipitation, it is better to have a certain degree of vacuum, and with regard to film quality and adhesion to the substrate,
It would have been better if it was smaller to some extent.

本発明に用いられる基体としては、ガラス(石英ガラス
を含む)、炭素繊維、アルミ (AI)、チタン(Ti
)、ニツケル(Ni)、クロム(Cr)タングステン(
W)、モリブデン(MO)、タンタル(Ta)等、特に
制限がない。特に本発明の方法は析出温度が下げられる
結果、従来6基体としての適性が不十分であつたAI等
が使用可能である。このようにして本発明により得られ
たホウ素膜はCVD法物理的蒸着法によるそれに比べて
、ちみつで、空孔、われがなかつた。
Substrates used in the present invention include glass (including quartz glass), carbon fiber, aluminum (AI), titanium (Ti
), nickel (Ni), chromium (Cr), tungsten (
W), molybdenum (MO), tantalum (Ta), etc., without particular limitation. In particular, in the method of the present invention, as a result of lowering the precipitation temperature, it is possible to use AI, etc., which conventionally had insufficient suitability as a substrate. The boron film thus obtained according to the present invention was honey-free and free of pores and cavities compared to that obtained by CVD or physical vapor deposition.

また、機械的性質に関しても、本発明によるものはCV
D法によるそれに比べて、同等かそれ以上であつた。
Furthermore, regarding mechanical properties, the one according to the present invention has CV
It was equivalent to or better than that obtained by method D.

たとえば、弾性係数については、CVD法によるものに
比べて、本発明によるものは約10%以上大きかつた。
本発明によるものはスパツタ一等物理的蒸着法によるも
のに比較して、約15%以上大きくなつた。認めうる程
、ホウ素の析出が見られる基体の温度の下限はCVD法
に比べて、本発明による方法は200℃以上下がつた。
For example, as for the elastic modulus, the material according to the present invention was approximately 10% larger than that obtained by the CVD method.
The size of the structure according to the present invention is about 15% larger than that of the structure formed by the sputter primary physical vapor deposition method. Appreciably, the lower limit of the temperature of the substrate at which boron precipitation can be observed is lowered by more than 200° C. in the method according to the invention compared to the CVD method.

ホウ素の析出速度はCVD法に比較して、やや小さくな
る。
The boron precipitation rate is slightly lower than that of the CVD method.

物理的蒸着法に比較して、析出速度は数倍〜数十倍大き
い。物理的蒸着法の場合、析出速度を大にすると、急激
な膜質の劣化が起る。基体への析出ホウ素の付着力は本
発明によるものがCVD法による場合より1同等か、そ
れ以上であつた。物理的蒸着法によるものは付着力がか
な勺劣つた。いままで、第1図にしたがつて説明してき
たが、本発明はこれによつて何らの限定もうけるもので
ない。
Compared to physical vapor deposition methods, the deposition rate is several times to several tens of times higher. In the case of physical vapor deposition, increasing the deposition rate causes rapid deterioration of film quality. The adhesion force of the deposited boron to the substrate by the present invention was equal to or greater than that by the CVD method. The adhesion force of the physical vapor deposition method was very poor. Although the explanation has been made so far with reference to FIG. 1, the present invention is not limited thereto in any way.

以上、本発明は説明してきたように基体への付着力が大
きく、弾性係数等機械的性質が優れた、空孔のない膜質
の優れたホウ素被膜を得ることが出来、かつ、生産性あ
るホウ素被膜形成法を提供するものであ楓耐摩耗性被覆
や、音響製品等の分野において、本発明は大なる貢献を
なすものである。
As described above, the present invention is capable of producing a boron film with high adhesion to a substrate, excellent mechanical properties such as elastic modulus, and excellent film quality without pores, and which is highly productive. The present invention provides a method for forming a coating, and thus makes a significant contribution in the fields of maple abrasion-resistant coatings, acoustic products, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明のホウ素被膜の形成方法を実施
した装置の主要構成要素たる反応室の概略構成図である
。 1、9・・・・・・導入部、2、10・・・・・・排気
孔、3、11・・・・・・加熱ヒーター、4・・・・・
・高周波コイル、5、15・・・・・・反応容器、6、
16・・・・・・基体。
FIGS. 1 and 2 are schematic diagrams of a reaction chamber which is a main component of an apparatus in which the method for forming a boron film of the present invention is implemented. 1, 9...Introduction part, 2, 10...Exhaust hole, 3, 11...Heating heater, 4...
・High frequency coil, 5, 15...Reaction container, 6,
16...Base.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも、ホウ素のハロゲン化物、またはジボラ
ンを含む混合されたガス状化合物を反応せしめて、基体
上にホウ素被膜を形成する過程が、このガス状化合物か
らなる混合物の少なくとも一部をプラズマ化する第1過
程と、ホウ素が基体上に生成する第2過程からなり、し
かも、第1過程と第2過程が同時に進行するかあるいは
第1過程が第2過程に先行して進行することを特徴とす
るホウ素被膜の形成方法。
1. The process of forming a boron film on a substrate by reacting a mixed gaseous compound containing at least a boron halide or diborane is a step in which at least a portion of the mixture of the gaseous compounds is turned into plasma. It consists of a first process and a second process in which boron is generated on the substrate, and is characterized in that the first process and the second process proceed simultaneously or the first process proceeds before the second process. Method of forming a boron film.
JP10131577A 1977-08-23 1977-08-23 Formation method of boron film Expired JPS5915983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10131577A JPS5915983B2 (en) 1977-08-23 1977-08-23 Formation method of boron film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10131577A JPS5915983B2 (en) 1977-08-23 1977-08-23 Formation method of boron film

Publications (2)

Publication Number Publication Date
JPS5435181A JPS5435181A (en) 1979-03-15
JPS5915983B2 true JPS5915983B2 (en) 1984-04-12

Family

ID=14297371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10131577A Expired JPS5915983B2 (en) 1977-08-23 1977-08-23 Formation method of boron film

Country Status (1)

Country Link
JP (1) JPS5915983B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109385A (en) * 1986-10-27 1988-05-14 Shipbuild Res Assoc Japan Front monitoring ultrasonic sonar apparatus
JPH0467636B2 (en) * 1984-09-28 1992-10-28 Furuno Electric Co

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141869A (en) * 1982-02-18 1983-08-23 Daido Steel Co Ltd Gas shielded arc welding method
JPS63171881A (en) * 1987-09-12 1988-07-15 Shunpei Yamazaki Thin film forming device
JP7049883B2 (en) * 2018-03-28 2022-04-07 東京エレクトロン株式会社 Boron-based film film forming method and film forming equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467636B2 (en) * 1984-09-28 1992-10-28 Furuno Electric Co
JPS63109385A (en) * 1986-10-27 1988-05-14 Shipbuild Res Assoc Japan Front monitoring ultrasonic sonar apparatus

Also Published As

Publication number Publication date
JPS5435181A (en) 1979-03-15

Similar Documents

Publication Publication Date Title
KR930003605B1 (en) Microwave enhanced cvd method for coating plastic articles with carbon films and its products
JP2002506786A (en) Apparatus and method for diamond nucleation and deposition using hot filament DC plasma
JPH04958B2 (en)
JPS5915983B2 (en) Formation method of boron film
US5624719A (en) Process for synthesizing diamond in a vapor phase
JPH059735A (en) Vapor synthesis of diamond
JP2002523331A (en) Method for producing an improved boron coating on graphite and articles obtained therefrom
JPH0361369A (en) Manufacture of diamond like carbon film
JPS5935092A (en) Vapor-phase synthesis of diamond
JPS6358798B2 (en)
JPH04124272A (en) Cubic boron nitride coating member and its production
JPS60186500A (en) Method for synthesizing diamond from vapor phase
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS58213872A (en) Formation of carbon film
JPS59177919A (en) Selective growth of thin film
JPH01201098A (en) Synthesis of diamond
JPH0280556A (en) Manufacture of film of composite material
JPH01298093A (en) Production of diamond film
JPH04325685A (en) Production of thin film
JPH06158323A (en) Method for synthesizing hard carbon coating film in vapor phase
JPH0247252A (en) Production of composite material film
JPH04116155A (en) Formation of thin film
JPH10259482A (en) Formation of hard carbon coating
JPS5917190B2 (en) Formation method of boron film
JPS6261108B2 (en)