JPS6358106A - Straightness measuring apparatus for feed table - Google Patents

Straightness measuring apparatus for feed table

Info

Publication number
JPS6358106A
JPS6358106A JP61201412A JP20141286A JPS6358106A JP S6358106 A JPS6358106 A JP S6358106A JP 61201412 A JP61201412 A JP 61201412A JP 20141286 A JP20141286 A JP 20141286A JP S6358106 A JPS6358106 A JP S6358106A
Authority
JP
Japan
Prior art keywords
interference fringe
fringe pattern
feed table
beam splitter
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61201412A
Other languages
Japanese (ja)
Inventor
Koji Nakazawa
中澤 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61201412A priority Critical patent/JPS6358106A/en
Publication of JPS6358106A publication Critical patent/JPS6358106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable simultaneous measurement of straightness, pitching, yawing, and the like, by determining the interference fringe pattern of a feed table surface two-dimensionally and analyzing the deformation of the interference fringe pattern following the movement of the table. CONSTITUTION:An objective lens 4-1 is provided apart above a feed table 11 and light leaving a light source 1 is made incident on the surface of the table 11 through a lighting lens 2, a beam splitter 3 and the lens 4-1. On the other hand, light transmitted through the beam splitter 3 is incident on a reference mirror 5 via an objective lens 4-2. Then, the reflected light from the surface of the table 11 and the reflected light from a mirror 5 are combined in the beam splitter 3 again to form an interference fringe pattern on a TV camera 7 with an image forming lens 6. The interference fringe pattern or the brightness signal waveform thereof can be displayed on a monitor TV 9 with a signal processing circuit 8 and moving accuracy of the table 11 as computed with the circuit 8 can be outputted on a printer 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光干渉を利用した変位測定法に関し、特に送り
テーブルの真直度、ピッチング、ヨーイング等の非接触
測定に適した測定手段である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a displacement measurement method using optical interference, and is a measuring means particularly suitable for non-contact measurement of straightness, pitching, yawing, etc. of a feed table.

〔従来の技術〕[Conventional technology]

・ 1 ・ 従来のレーザ光干渉を利用したテーブルのピッチング測
定法の一例を第8図に示す。精機学会;光技術応用シス
テム、昭晃堂(昭58.3.20)P P 135〜1
36にも述べられているように、第7図の送りテーブル
上のコーナキューブ17の移動距離はドツプラ周波数を
積分して測定することが可能である。この測定法を応用
した送りテーブルのピッチング測定法が第8図で、6方
向の傾きを検出できるものである。
・ 1 ・ An example of a conventional table pitching measurement method using laser light interference is shown in Fig. 8. Japan Society of Precision Machinery; Optical Technology Application Systems, Shokodo (March 20, 1982) P P 135-1
36, the moving distance of the corner cube 17 on the feed table shown in FIG. 7 can be measured by integrating the Doppler frequency. FIG. 8 shows a method for measuring the pitching of a feed table by applying this measuring method, and is capable of detecting inclinations in six directions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこの測定法は同時にテーブルの真直度やヨーイン
グ、ローリングを測定することができず、それぞれ測定
の段取りを変えなければならないので、測定作業がわず
られしいという問題があった。
However, this measurement method cannot simultaneously measure the straightness, yawing, and rolling of the table, and requires different measurement setups for each measurement, making the measurement work cumbersome.

まf=コーナキューブ20は重量が無視できないため、
剛性の弱い送りテーブルでは、コーナキューブをのせた
ことにより運動精度が変化してしまい、せっかく光干渉
により非接触測定しようとしても、そのメリットが生か
されないという問題が生ずる。
Maf = Since the weight of the corner cube 20 cannot be ignored,
In a feed table with low rigidity, the movement accuracy changes due to the placement of a corner cube, and even if non-contact measurement is attempted using optical interference, the problem arises that the benefits are not utilized.

本発明の目的は、送りテーブルの運動精度である、真直
度、ピッチング、ヨーイング、ローリング等を同時に測
定することにある。
An object of the present invention is to simultaneously measure the motion accuracy of a feed table, such as straightness, pitching, yawing, and rolling.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、送りテーブル面の干渉縞パターンを2次元
的に把握し、テーブルの移動に伴なうこの2次元的干渉
縞パータンの変形状態を解析することにより達成される
The above object is achieved by two-dimensionally understanding the interference fringe pattern on the feed table surface and analyzing the deformation state of this two-dimensional interference fringe pattern as the table moves.

〔作用〕[Effect]

送りテーブル面の干渉縞パターンをTVカメラに結像さ
せ、輝度信号波形により干渉縞明暗の2次元的な位相の
ずれを検出し、これをテーブルの移動に伴い逐次比較す
ることにより、テーブルの総合的な運動精度が把握でき
る。
The interference fringe pattern on the feed table surface is imaged on a TV camera, the two-dimensional phase shift of the brightness and darkness of the interference fringe is detected from the luminance signal waveform, and this is successively compared as the table moves. The accuracy of movement can be grasped.

〔実施例〕 本発明の実施例を第1図〜第6図により説明する。第1
図では送りテーブルに非接触で対物レンズ4−1を設け
、光源1から出た光を照明レンズ2、ビームスプリッタ
3.対物レンズ4−1を通して送りテーブル11の表面
に入射させる。一方ビームスプリッタ3を透過した光は
対物レンズ4−2を経て参照ミラ5に入射する。送りテ
ーブル面からの反射光と参照ミラからの反射光は再びビ
ームスプリッタ3で合成され、結像レンズ6によりTV
カメラ7上に干渉縞パターンを形成する。
[Example] An example of the present invention will be described with reference to FIGS. 1 to 6. 1st
In the figure, an objective lens 4-1 is provided in a non-contact manner on the feed table, and the light emitted from the light source 1 is transmitted to the illumination lens 2, beam splitter 3. The light is made incident on the surface of the feed table 11 through the objective lens 4-1. On the other hand, the light transmitted through the beam splitter 3 passes through the objective lens 4-2 and enters the reference mirror 5. The reflected light from the feeding table surface and the reflected light from the reference mirror are combined again by the beam splitter 3, and then sent to the TV by the imaging lens 6.
An interference fringe pattern is formed on the camera 7.

信号処理回路8により干渉縞パターンまたはその輝度信
号波形をモニタTVQ上にディスプレイすることができ
、また信号処理回路8で演算されたテーブルの運動精度
をプリンタ10に出力することができる。
The signal processing circuit 8 can display the interference fringe pattern or its luminance signal waveform on the monitor TVQ, and the motion accuracy of the table calculated by the signal processing circuit 8 can be output to the printer 10.

モニタTV画面の例を第2〜3図に示す。光軸に対する
テーブル面11と参照ミラ面5のなす角度を相対的に微
小角傾けておくことにより、送りテーブルのX軸方向移
動前後における干渉縞パターンは第2図のようになる。
Examples of monitor TV screens are shown in FIGS. 2 and 3. By tilting the angle between the table surface 11 and the reference mirror surface 5 relative to the optical axis by a small angle, the interference fringe pattern before and after the movement of the feed table in the X-axis direction becomes as shown in FIG.

ここで光の波長を入ピッチング=2 (P2−Pi) だたしP□ p2はそれぞれテーブル移動前後におだだ
しQχ:画面のχ方向長さ。δχ1.δχ2は° 3 
Here, enter the wavelength of light Pitching = 2 (P2 - Pi) Pitching P□ p2 is pitching before and after table movement Qχ: Length of screen in χ direction. δχ1. δχ2 is ° 3
.

それぞれテーブル移動前後における干渉縞のY軸からの
ずれ量である。第2図ではδχ1キOであ真直度(Δ2
成分)=2・X2−X□ ただし、X、、 X、はそれぞれテーブル移動前後の座
標。またテーブル移動に伴なう干渉縞のシフト本数がn
十mで、n;整数9m;少数である。干渉縞のシフト本
数を求めるには、第2図の任意のQ点に着目して、その
点における干渉縞の明暗の変化をカウントすれば整数n
は容易に求まる。少として求まる。
These are the amounts of deviation of the interference fringes from the Y axis before and after the table movement, respectively. In Figure 2, δχ1kiO is the straightness (Δ2
component)=2・X2−X□ However, X, , X are the coordinates before and after the table movement, respectively. In addition, the number of interference fringes shifted due to table movement is n.
10m, n; integer 9m; small number. To find the number of shifts in the interference fringes, focus on an arbitrary point Q in Figure 2 and count the changes in brightness and darkness of the interference fringes at that point to obtain an integer n.
is easily found. It is determined as a small amount.

第3図は干渉縞パターンの測定ライン上の輝度信号波形
を示す。干渉縞パターンは第2図では簡略化して図示し
であるが、実際には正弦波的に明暗部が変化しているた
め、最明部と最暗部は第3図、第4図のごとく輝度信号
波形により求める必要がある。
FIG. 3 shows the luminance signal waveform on the measurement line of the interference fringe pattern. The interference fringe pattern is shown in a simplified manner in Figure 2, but in reality, the bright and dark areas change in a sinusoidal manner, so the brightest and darkest areas change in brightness as shown in Figures 3 and 4. It is necessary to find it from the signal waveform.

また干渉縞パターンを直線状に形成するために、° 4
 。
In addition, in order to form the interference fringe pattern in a straight line,
.

テーブル面は鏡面に仕上げておくことが望まれるが、そ
れが難しい場合にはオプチカル・フラット等をテーブル
面上にのせて測定すればよい。
It is desirable that the table surface be finished with a mirror finish, but if this is difficult, measurements can be taken by placing an optical flat or the like on the table surface.

ヨーイングを測定するには第1図でZ方向からではなく
Y方向から対物レンズで観察すればよい。
To measure yawing, it is sufficient to observe with an objective lens in FIG. 1 not from the Z direction but from the Y direction.

この場合、ヨーイング、ローリング、真直度(ΔY酸成
分が同時に求まる。
In this case, yawing, rolling, straightness (ΔY acid component) are determined at the same time.

以上はピッチング、ローリング、ヨーイングが比較的大
きい場合の測定法であるが、上記測定法では測定困難な
程これらの値が小さい場合には、第5図に示すようにテ
ーブル面上Lχだけ隔たった2点にそれぞれ対物レンズ
4.−1.4−2を設け、光源1からの光をビームスプ
リッタ3−1゜3−2により、それぞれ対物レンズへ導
き、測定点からの反射光をミラ13−1.13−2.1
3−3で導き、ハーフミラ14で合成して干渉縞パター
ンをTVカメラ7に結像することができる。
The above is a measurement method when pitching, rolling, and yawing are relatively large. However, when these values are so small that it is difficult to measure using the above measurement method, the distance between the pitching, rolling, and yawing is Lχ on the table surface as shown in Figure 5. 4. Objective lenses at each of the two points. -1.4-2, the light from the light source 1 is guided to the objective lens by the beam splitter 3-1 and 3-2, and the reflected light from the measurement point is reflected by the mirror 13-1.13-2.1.
3-3 and synthesized by the half mirror 14, the interference fringe pattern can be imaged on the TV camera 7.

この場合、対物レンズ4−1.4−2の光軸をテーブル
面に対して相対的に微小角傾けることにより、第6図の
ように干渉縞の平行直線群をモニタ・ 6 ・ 画面上に得ることができる。同図に示すととく副尺の目
盛ピッチを干渉縞ピッチ間隔と多少異ならしておくこと
により、干渉縞の移動量を、ノギスの測定原理と同様に
して高精度測定可能となる。
In this case, by tilting the optical axis of the objective lens 4-1, 4-2 by a small angle relative to the table surface, a group of parallel straight lines of interference fringes can be displayed on the monitor screen as shown in Figure 6. Obtainable. As shown in the figure, by making the scale pitch of the vernier slightly different from the pitch interval of the interference fringes, the amount of movement of the interference fringes can be measured with high precision in the same manner as the measurement principle of calipers.

例えばテーブル移動前に3の副尺目盛がハツチングで示
す暗パターンに一致し、テーブル移動後に8の副尺目盛
が明パターンに−″J1.(第6図はこのとして求まる
For example, before the table is moved, the vernier scale at 3 matches the dark pattern shown by hatching, and after the table is moved, the vernier scale at 8 matches the light pattern -''J1. (FIG. 6 is determined as such.

〔発明の効果〕〔Effect of the invention〕

本発明により、テーブル面に荷重を全く加えずに完全な
非接触測定が可能になり、また真直度。
The present invention allows completely non-contact measurement without applying any load to the table surface, and also allows for straightness measurement.

ピッチング、ローリング、ヨーイング等の同時測定が可
能である。また副尺目盛測定法により、干渉縞変位量の
高精度測定が可能で、2=0.3μmの場合0.01μ
■オーダの変位測定が可能である。
Simultaneous measurement of pitching, rolling, yawing, etc. is possible. In addition, the vernier scale measurement method enables high-accuracy measurement of interference fringe displacement, which is 0.01 μm when 2 = 0.3 μm.
■It is possible to measure displacement on an order of magnitude.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る真直度測定装置の構成を示す説明
図、第2,3図はモニタ画面上の干渉縞の例を示す説明
図、第4図は干渉縞の変位量測定を説明するための説明
図、第5図は、本発明によるピッチングの高精度測定法
を説明するための説明図、第6図は、干渉縞変位量の高
精度測定法を説明するための説明図、第7図は、従来の
レーザ測長法を説明するための説明図、第8図は、従来
のレーザ測長法によるピッチング測定法を説明するため
の説明図である。 1・・・光源、2・・・照明光学系、3・・・ビームス
プリッタ、4−1.4−2・・・対物レンズ、5・・・
参照ミラ、6・・・結像レンズ、7・・・TVカメラ、
8・・・信号処理回路、9・・・モニタTV、10・・
・プリンタ。 11・・・送りテーブル、12・・・駆動モータ、13
−1〜13−3・・・ミラ、14・・・ハーフミラ、1
5・・・レーザ光源、16.19・・・偏光ビームスプ
リッタ。 17.18.20・・コーナキューブ。
Fig. 1 is an explanatory diagram showing the configuration of the straightness measuring device according to the present invention, Figs. 2 and 3 are explanatory diagrams showing examples of interference fringes on a monitor screen, and Fig. 4 is an explanatory diagram showing displacement amount measurement of interference fringes. FIG. 5 is an explanatory diagram for explaining a highly accurate measuring method for pitching according to the present invention; FIG. 6 is an explanatory diagram for explaining a highly accurate measuring method for interference fringe displacement; FIG. 7 is an explanatory diagram for explaining the conventional laser length measurement method, and FIG. 8 is an explanatory diagram for explaining the pitching measurement method using the conventional laser length measurement method. DESCRIPTION OF SYMBOLS 1... Light source, 2... Illumination optical system, 3... Beam splitter, 4-1.4-2... Objective lens, 5...
Reference Mira, 6... Imaging lens, 7... TV camera,
8... Signal processing circuit, 9... Monitor TV, 10...
・Printer. 11... Feeding table, 12... Drive motor, 13
-1~13-3...Mira, 14...Half Mira, 1
5... Laser light source, 16.19... Polarizing beam splitter. 17.18.20... Corner cube.

Claims (1)

【特許請求の範囲】[Claims] 1、送りテーブルの移動方向に対して直角方向からテー
ブル測定面を照明し、別に設けられている参照面を光軸
に対して相対的に微小角傾けておくことにより干渉縞パ
ターンを形成させ、これをTV画面上の輝度信号波形に
より2次元的にモニタ可能とし、テーブル移動に伴なう
干渉縞パターンの2次元的な位相のずれを検出し、また
テーブル移動に伴なう干渉縞パターンの時間による位相
の変化を検出することを特徴とする送りテーブルの真直
度測定装置。
1. Form an interference fringe pattern by illuminating the table measurement surface from a direction perpendicular to the direction of movement of the feed table and tilting a separately provided reference surface at a small angle relative to the optical axis; This can be monitored two-dimensionally using the luminance signal waveform on the TV screen, detecting the two-dimensional phase shift of the interference fringe pattern as the table moves, and detecting the two-dimensional phase shift of the interference fringe pattern as the table moves. A feed table straightness measuring device characterized by detecting changes in phase over time.
JP61201412A 1986-08-29 1986-08-29 Straightness measuring apparatus for feed table Pending JPS6358106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201412A JPS6358106A (en) 1986-08-29 1986-08-29 Straightness measuring apparatus for feed table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201412A JPS6358106A (en) 1986-08-29 1986-08-29 Straightness measuring apparatus for feed table

Publications (1)

Publication Number Publication Date
JPS6358106A true JPS6358106A (en) 1988-03-12

Family

ID=16440652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201412A Pending JPS6358106A (en) 1986-08-29 1986-08-29 Straightness measuring apparatus for feed table

Country Status (1)

Country Link
JP (1) JPS6358106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500615A (en) * 1987-08-25 1990-03-01 レニショウ パブリック リミテッド カンパニー Straightness interferometer systems and optics
WO2011004692A1 (en) * 2009-07-08 2011-01-13 太陽誘電株式会社 Displacement measurement device using optical interferometer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159483A (en) * 1997-08-20 1999-03-02 Toyota Motor Corp Connection structure of car frame and body
JPH11240464A (en) * 1998-02-23 1999-09-07 Daihatsu Motor Co Ltd Front structure of vehicle body for automobile
JP2004322902A (en) * 2003-04-25 2004-11-18 Toyota Motor Corp Underbody structure of vehicle having frame
JP2005319830A (en) * 2004-05-06 2005-11-17 Nissan Motor Co Ltd Vehicle body floor structure
JP2013159223A (en) * 2012-02-06 2013-08-19 Mazda Motor Corp Lower part vehicle body structure for vehicle
JP2013248982A (en) * 2012-05-31 2013-12-12 Honda Motor Co Ltd Vehicle body frame structure
JP2014000837A (en) * 2012-06-15 2014-01-09 Honda Motor Co Ltd Frp cabin for automobile
JP2014004990A (en) * 2012-05-31 2014-01-16 Honda Motor Co Ltd Vehicle body frame structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159483A (en) * 1997-08-20 1999-03-02 Toyota Motor Corp Connection structure of car frame and body
JPH11240464A (en) * 1998-02-23 1999-09-07 Daihatsu Motor Co Ltd Front structure of vehicle body for automobile
JP2004322902A (en) * 2003-04-25 2004-11-18 Toyota Motor Corp Underbody structure of vehicle having frame
JP2005319830A (en) * 2004-05-06 2005-11-17 Nissan Motor Co Ltd Vehicle body floor structure
JP2013159223A (en) * 2012-02-06 2013-08-19 Mazda Motor Corp Lower part vehicle body structure for vehicle
JP2013248982A (en) * 2012-05-31 2013-12-12 Honda Motor Co Ltd Vehicle body frame structure
JP2014004990A (en) * 2012-05-31 2014-01-16 Honda Motor Co Ltd Vehicle body frame structure
JP2014000837A (en) * 2012-06-15 2014-01-09 Honda Motor Co Ltd Frp cabin for automobile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500615A (en) * 1987-08-25 1990-03-01 レニショウ パブリック リミテッド カンパニー Straightness interferometer systems and optics
WO2011004692A1 (en) * 2009-07-08 2011-01-13 太陽誘電株式会社 Displacement measurement device using optical interferometer
JP2011017582A (en) * 2009-07-08 2011-01-27 Taiyo Yuden Co Ltd Displacement measurement device using optical interferometer

Similar Documents

Publication Publication Date Title
US5307151A (en) Method and apparatus for three-dimensional optical measurement of object surfaces
US5175601A (en) High-speed 3-D surface measurement surface inspection and reverse-CAD system
CN100395517C (en) Senser for measuring three dimension shape and its measuring method
US6674531B2 (en) Method and apparatus for testing objects
Windecker et al. Three-dimensional topometry with stereo microscopes
US20030072011A1 (en) Method and apparatus for combining views in three-dimensional surface profiling
US9958251B1 (en) Single snap-shot fringe projection system
US4139304A (en) Methods and apparatus for measuring variations in distance to a surface
JPH05203414A (en) Method and apparatus for detecting abso- lute coordinate of object
CN103727891A (en) Synchronous three-dimensional speckle interferometric measurement system and method
CN106197257A (en) Amplitude and phase combined modulation super-resolution three-dimensional micro-nano structure morphology measuring device
JPH0426681B2 (en)
US3856400A (en) Apparatus for no-contact measurement having a multi-colored grating
CN106441152A (en) Asymmetric optical interference measurement method and device
US20060232788A1 (en) Method and a device for measuring the three dimension surface shape by projecting moire interference fringe
JP2003042734A (en) Method and apparatus for measurement of surface shape
JPS6358106A (en) Straightness measuring apparatus for feed table
JP2006170744A (en) Three-dimensional distance measuring instrument
TWI232923B (en) Optical real-time measurement method and system with single-axis, 6 degrees of freedom
JP4402849B2 (en) Surface shape measuring method and surface shape measuring apparatus
JPH0587541A (en) Two-dimensional information measuring device
Rana et al. A Non-contact Method for Rod Straightness Measurement Based on Quadrant Laser Sensor
Docchio et al. A combined distance and surface profile measurement system for industrial applications: a European project
RU2191348C2 (en) Contactless three-coordinate meter
Han et al. Reasearch on comparison and analysis of the projector calibration