JPS6357764A - Magnetron sputtering device - Google Patents

Magnetron sputtering device

Info

Publication number
JPS6357764A
JPS6357764A JP19914986A JP19914986A JPS6357764A JP S6357764 A JPS6357764 A JP S6357764A JP 19914986 A JP19914986 A JP 19914986A JP 19914986 A JP19914986 A JP 19914986A JP S6357764 A JPS6357764 A JP S6357764A
Authority
JP
Japan
Prior art keywords
target
substrate
film
frequency electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19914986A
Other languages
Japanese (ja)
Inventor
Masato Sugiyama
杉山 征人
Shinji Arai
進二 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP19914986A priority Critical patent/JPS6357764A/en
Publication of JPS6357764A publication Critical patent/JPS6357764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film having a good film thickness distribution and excellent film quality at a high speed with a decreased rise of a substrate temp. by providing gas blow ports which can be respectively independently set in conditions near the surface of a target and near a high-frequency electrode. CONSTITUTION:The metallic target 32 is mounted on a cathode part 30 disposed to face the substrate 41 which is moved in an arrow A direction by a substrate transfer system 40 in a vacuum vessel 10, the inside of which is maintained at a prescribed vacuum degree by a vacuum evacuation system 20. A closed magnetic field is formed on the surface of the target 32 by a magnet built in the cathode part 30 to confine the plasma formed between said target and an anode 31, by which the target 32 is sputtered. Sputter particles 33 formed in such a manner are ionized and accelerated by the high-frequency electrode 34 to form the thin film on the surface of the substrate 41. An inert gas is introduced through the gas blow port 42 provided near the target 32 to prevent the oxidation of the target 32 of a magnetron sputtering device constituted in the above-mentioned manner. Nitrogen or the like introduced from the other gas blow port 51 is excited by the high-frequency electrode 34 and is brought into reaction with the sputter particles 33.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はマグネトロンスパッタ装置の改良に関するもの
である。さらに詳しくはアノードと基板との間に第3の
電極を設置し、該電極を高周波を印加しつつスパッタリ
ングを行なうようになしたマグネトロンスパッタ装置に
おいてターゲット表面近傍と高周波電極近傍に各々独立
制御可能なガス吹出し口を設けることにより高速でかつ
基板温度の上昇が少なく、膜厚分布も良好で膜質のすぐ
れた金属、金属酸化物、金属窒化物などの薄膜を形成で
きるマグネトロンスパッタ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to improvements in magnetron sputtering equipment. More specifically, in a magnetron sputtering device in which a third electrode is installed between the anode and the substrate and sputtering is performed while applying high frequency to the third electrode, the areas near the target surface and near the high frequency electrode can be independently controlled. The present invention relates to a magnetron sputtering apparatus that is capable of forming thin films of metals, metal oxides, metal nitrides, etc. at high speed, with a small increase in substrate temperature, and with good film thickness distribution and excellent film quality by providing a gas outlet.

〈従来技術〉 従来真空蒸着、イオンブレーティング、スパッタリング
などの物理的堆積(PVD)法や化学反応、熱分解など
を伴なう化学的堆積(CVD)法など大気圧より減圧下
で目的の被膜を構成する物質(以下蒸着物質と呼ぶ)を
蒸発、スパッタリングなどの手段で原子状あるいは分子
状の形態で減圧下に放出し、基材表面に移送し、基材表
面で薄膜を形成する装@(以下真空蒸着装置と総称する
)において、被膜の特性を向上させる目的で基材近傍に
バイアス電位を与えることはよく知られている。かかる
バイアス電位は基材近傍に設置された電極によって与え
られる。
<Prior art> Conventional methods such as physical deposition (PVD) methods such as vacuum evaporation, ion blasting, and sputtering, and chemical deposition (CVD) methods that involve chemical reactions and thermal decomposition, etc., are used to form a desired film at a pressure lower than atmospheric pressure. A device that releases the constituent substances (hereinafter referred to as evaporation substances) in atomic or molecular form under reduced pressure by means such as evaporation or sputtering, transfers them to the surface of a substrate, and forms a thin film on the surface of the substrate. (hereinafter collectively referred to as a vacuum evaporation apparatus), it is well known that a bias potential is applied near a substrate for the purpose of improving the characteristics of a coating. Such a bias potential is provided by an electrode placed near the substrate.

かかる電極には通常のイオンブレーティングの如く、基
材と蒸発源の間で、ある一定の電位を与えて、飛来イオ
ンを加速して基材に衝撃力をもって膜形成するものや蒸
発粒子どうしあるいは雰囲気ガスとの反応を利用したり
、あるいは雰囲気を活性化して膜特性を向上させるもの
などがある。
Such electrodes include those that apply a certain potential between the base material and the evaporation source, such as ordinary ion blating, to accelerate the incoming ions and form a film on the base material with an impact force, and those that cause evaporation particles to interact with each other or There are methods that improve film properties by utilizing reactions with atmospheric gases or by activating the atmosphere.

その効果は蒸着膜に入射するイオンによるものといわれ
ており、不活性ガスイオンの照射効果、イオンの運動エ
ネルギー効果、イオンの持つ電荷が膜質に及ぼす効果な
どが相まっていると考えられる。また基材に入射する電
子をトラップすることにより不必要な基材の温度上昇を
防止する効果も考えられる。
This effect is said to be due to ions incident on the deposited film, and is thought to be due to a combination of the irradiation effect of inert gas ions, the kinetic energy effect of the ions, and the effect of the electric charge of the ions on the film quality. It is also possible to have the effect of preventing an unnecessary rise in temperature of the base material by trapping electrons incident on the base material.

いずれにしても基材近傍に置かれた電極によって電位を
付与し空間電荷の制御を行なうことにより膜質の向上が
期待される。
In any case, it is expected that the film quality will be improved by controlling the space charge by applying a potential using an electrode placed near the base material.

しかしながら、上記従来の装置では蒸発粒子をイオン化
するためのグロー放電が蒸発源と基材との間で生じるた
め、基材は蒸着物質の粒子のみでなく、イオン化された
不活性ガスの衝撃をも受は温度上昇を生じるので基材の
温度制御が困難である。したがって耐熱性の低い物質を
基材とする蒸着は殆んど不可能であった。
However, in the conventional apparatus described above, a glow discharge for ionizing the evaporated particles occurs between the evaporation source and the base material, so the base material is not only bombarded with particles of the evaporated substance but also bombarded with ionized inert gas. It is difficult to control the temperature of the base material because the receiver causes a rise in temperature. Therefore, it has been almost impossible to perform vapor deposition using a substance with low heat resistance as a base material.

また蒸着中の条件によっては、逆スパツタを生じ被膜に
欠陥を生じるおそれがあった。さらに形成される被膜の
構造、特性が必ずしも満足すべきものではなかった。
Furthermore, depending on the conditions during vapor deposition, reverse spatter may occur and defects may occur in the film. Furthermore, the structure and properties of the formed film were not necessarily satisfactory.

これらの欠点を解決するものとして特公昭52〜299
71号公報には、高周波イオンブレーティング装置が提
案されている。この装置は、対向配置した蒸着物質源と
基材保持板との中間に高周波電極を配置して前記物質源
に近接した領域に高周波グロー放電を発生して前記蒸発
物質をイオン化する事を特徴とするイオンブレーティン
グ装置であって、高周波放電(励起)によりイオン化を
促進させるために放電(励起)状態の制御は、直流グロ
ー放電より容易であり、放電(励起)状態を目的のイオ
ンブレーティングに最適に保持する事ができる。したが
って蒸発粒子のイオン化効率、蒸発速度を向上させるこ
とができ、良質な被膜を得ることができる。またイオン
化効率が高いので、不活性ガスと共にあるいは単独に一
種または数種の活性ガスを真空容器内に封入し、蒸発粒
子と化学結合させると同時にイオン化し、酸化膜や窒化
膜をはじめとした種々の化合物のイオンブレーティング
を行なうこともできる。また基材温度の上昇は殆んどな
いから、熱により破壊されるような基Hにもイオンブレ
ーティングを施し得る。
As a solution to these shortcomings, the
Japanese Patent No. 71 proposes a high frequency ion brating device. This device is characterized in that a high frequency electrode is disposed between a vapor deposition material source and a base material holding plate which are arranged to face each other, and a high frequency glow discharge is generated in a region close to the material source to ionize the vaporized material. It is an ion blating device that promotes ionization by high-frequency discharge (excitation), so controlling the discharge (excitation) state is easier than direct current glow discharge, and the discharge (excitation) state can be adjusted to the desired ion blating. It can be held optimally. Therefore, the ionization efficiency and evaporation rate of evaporated particles can be improved, and a high-quality film can be obtained. In addition, since the ionization efficiency is high, one or more active gases can be sealed in a vacuum container together with an inert gas or alone, and ionized at the same time as they are chemically bonded to the evaporated particles. Ion blating of the compound can also be carried out. Furthermore, since there is almost no increase in the temperature of the base material, ion blating can be applied to groups H that would be destroyed by heat.

しかしこの高周波イオンブレーティング装置は蒸着物質
の蒸発を抵抗加熱あるいは電子銃加熱等で行なうため基
材から見れば煮蒸発源となり、大面積の基材に均一にa
膜を形成する事は困難であった。長尺の巾広い高分子フ
ィルム等に連続的に1 薄膜を形成する場合等には特に
問題である。
However, since this high-frequency ion blating device evaporates the deposited material using resistance heating or electron gun heating, it becomes a boiling evaporation source when viewed from the base material, and the atomization is uniformly applied to a large area of the base material.
It was difficult to form a film. This is particularly a problem when one thin film is continuously formed on a long and wide polymer film.

一方低温でかつ島速で金属等の導電性の薄膜を形成する
装置として直流マグネトロンスパッタ装置がある。マグ
ネトロンスパッタ装置はターゲット(カソード)下部に
設置した磁界により、電界に直交する磁界をかける事に
より、ターゲット近傍に高密度プラズマを閉じ込めてス
パッタリングを行なう。この方法は本質的には面蒸発源
であるため、巾方向の膜厚分布は均一であるという特長
を有する。
On the other hand, there is a direct current magnetron sputtering apparatus as an apparatus for forming a conductive thin film of metal or the like at low temperature and at high speed. A magnetron sputtering device performs sputtering by confining high-density plasma near the target by applying a magnetic field perpendicular to the electric field using a magnetic field installed below the target (cathode). Since this method is essentially a planar evaporation source, it has the advantage that the film thickness distribution in the width direction is uniform.

しかしながらプラズマはターゲット(カソード)近傍に
閉じ込められるため薄膜形成時にイオンの照射効果が得
られず得られた膜の特性は必ずしも満足すべきものでは
なかった。一方、膜形成時にイオンを関与させるには、
閉じ込められたプラズマが比較的強い中心部のみを使用
する事もある。
However, since the plasma is confined near the target (cathode), the ion irradiation effect cannot be obtained during thin film formation, and the properties of the resulting film are not necessarily satisfactory. On the other hand, to involve ions in film formation,
Sometimes only the central part, where the confined plasma is relatively strong, is used.

このために前記プラズマ上にマスクを設置してスパッタ
リングを行なうが、マスクをする事により付着速度は小
さくなり効率も悪くなるという別の問題がある。
For this purpose, sputtering is performed by placing a mask on the plasma, but there is another problem in that the deposition rate decreases and the efficiency deteriorates due to the use of the mask.

本発明者の一人は、従来の高周波イオンブレーティング
やマグネトロンスパッタ法にみられる上述のような問題
点を解決すべり12慝研究の結果、ターゲット(カソー
ド)表面近傍に閉磁界を形成する磁石を備えたマグネト
ロンスパッタ装置において、アノードと基材との間に高
周波電力を印加する高周波電極を設置し、当該電極に高
周波を印加しつつ、ターゲット(カソード)とアノード
間に電圧を与えてスパッタリングを行なうことにより薄
膜を形成するようになした事を特徴とするマグネトロン
スパッタ装置を提案した(特開[59−96268号公
報)。
As a result of 12 years of research, one of the inventors of the present invention has solved the above-mentioned problems found in conventional high-frequency ion brating and magnetron sputtering methods. In magnetron sputtering equipment, a high frequency electrode that applies high frequency power is installed between the anode and the base material, and sputtering is performed by applying a voltage between the target (cathode) and the anode while applying high frequency to the electrode. proposed a magnetron sputtering apparatus characterized by forming a thin film using the following method (Japanese Patent Laid-Open No. 59-96268).

この装置は前述の如く、特性の改善された薄膜を大面積
に形成できるという特徴を有するが、金属酸化物、金属
窒化物などを反応性スパッタリングにより形成する場合
には、膜の堆積速度が遅いという欠点を有していた。こ
れは、スパッタリング中に金属ターゲットと反応性ガス
の反応が基板表面上でも生じ、ターゲット表面に絶縁性
の金属酸化物、窒化物などが形成され、電流の投入が制
限されることによる。投入電力を増すとターゲットのス
パッタ速度は早くなるが、膜は化学量論的組成からずれ
た金属酸化物、窒化物、とくにひどいときには金属膜と
なり所期の膜が得られないという欠点があった。
As mentioned above, this device has the feature of being able to form thin films with improved properties over a large area, but when forming metal oxides, metal nitrides, etc. by reactive sputtering, the film deposition rate is slow. It had the following drawback. This is because the reaction between the metal target and the reactive gas also occurs on the substrate surface during sputtering, and insulating metal oxides, nitrides, etc. are formed on the target surface, which limits the input of current. Increasing the input power increases the sputtering speed of the target, but the disadvantage is that the desired film cannot be obtained because the film becomes a metal oxide or nitride film that deviates from the stoichiometric composition, or in particularly severe cases, becomes a metal film. .

〈発明の目的〉 本発明の目的は金属酸化物、窒化物等の金属化合物を大
面積基板上に高速で形成できるマグネトロンスパッタ装
置を提供するところにある。
<Objective of the Invention> An object of the present invention is to provide a magnetron sputtering apparatus capable of forming metal compounds such as metal oxides and nitrides on a large-area substrate at high speed.

〈発明の構成1作用〉 すなわら、本発明は、ターゲット表面近傍に閉磁界を形
成するための磁石を設けたカソード部を具備し、該カソ
ード部に対してアノード、基板を所定間隔で配置すると
共に、前記アノードと前記基板の間に高周波電力を印加
するための高周波電極を設け、該高周波電極により高周
波電力を印加しつつ膜形成するようになしたマグネトロ
ンスパッタ装置において、前記ターゲット表面近傍と前
記高周波電極の近傍の2個所に、互に独立に条件設定で
きるガスの吹出口を設けたことを特徴とするマグネトロ
ンスパッタ装置である。
<Configuration 1 of the Invention> In other words, the present invention includes a cathode portion provided with a magnet for forming a closed magnetic field near the target surface, and an anode and a substrate are arranged at a predetermined interval with respect to the cathode portion. In addition, in the magnetron sputtering apparatus, a high-frequency electrode for applying high-frequency power is provided between the anode and the substrate, and a film is formed while applying high-frequency power by the high-frequency electrode. The magnetron sputtering apparatus is characterized in that two gas outlets are provided near the high-frequency electrode, the conditions of which can be set independently of each other.

以下、本発明の詳細を実施例に基いて説明する。Hereinafter, details of the present invention will be explained based on examples.

ところで、マグネトロンスパッタ装置のカソード部工は
、第2図に示す様に、負電極ターミナル8と導通した凹
部を有するステンレス製の陰極本体2上に平板状ターゲ
ット1を取着するように構成され、内部空間3に案内管
4を介して冷却水を導入し、出口管5より外部に排出し
、これにより正イオンの衝突により高温となるターゲッ
ト1を冷却する様になっている。
By the way, as shown in FIG. 2, the cathode part of the magnetron sputtering apparatus is constructed such that a flat target 1 is mounted on a stainless steel cathode body 2 having a recessed part connected to a negative electrode terminal 8. Cooling water is introduced into the internal space 3 through a guide pipe 4 and discharged to the outside through an outlet pipe 5, thereby cooling the target 1, which becomes hot due to the collision of positive ions.

マグネトロンスパッタ装置のカソード部工においては、
ターゲット1の裏面に鉄コア6に装着された永久磁石よ
りなる磁石7aおよび7bを配置して電極面近傍に閉じ
た磁界を発生させる。又、特殊な場合としては磁石7a
、7bは永久磁石のかわりに電磁石を用いる場合もある
When working on the cathode part of magnetron sputtering equipment,
Magnets 7a and 7b, which are permanent magnets attached to an iron core 6, are arranged on the back surface of the target 1 to generate a closed magnetic field near the electrode surface. In addition, in special cases, the magnet 7a
, 7b may use an electromagnet instead of a permanent magnet.

ターゲット1の形状は矩形1円形が多く用いられるがS
ガンとして知られるターゲットのごとく円すい状のター
ゲットが用いられる場合もある。
The shape of target 1 is often rectangular or circular, but S
Conical targets may also be used, such as those known as guns.

いずれにしても磁石7a、7bは第2図に示すごとくタ
ーゲット1の外周部と中心部においてターゲツト面に面
した極を相反する様に配置する。そして、公知の通りカ
ソード部分の上方に位置したアノード■とターゲット1
の間に電圧をかける事によりターゲット近傍にプラズマ
を生じさせスパッタリングを行なう。
In any case, the magnets 7a and 7b are arranged so that the poles facing the target surface are opposite to each other at the outer periphery and center of the target 1, as shown in FIG. As is well known, the anode ■ located above the cathode part and the target 1
By applying a voltage during this period, plasma is generated near the target and sputtering is performed.

第2図の52はガス吹出し口であり、第2図ではシール
ドカバー9上に接するように取りつけられているが、ガ
ス吹出し口は吹出したガスがターゲット表面に向って、
ターゲット表面を覆うような位置、形状であればよい。
Reference numeral 52 in FIG. 2 is a gas outlet, which is installed so as to be in contact with the shield cover 9 in FIG.
Any position and shape that covers the target surface may be used.

第3図は、本発明に係わる高周波励起型マグネトロンス
パッタ装置の要部概略図である。第3図において■は第
2図に示したカソード部であり■はアノードである。■
はアノード■と基材IVの間に設置された高周波を印加
すべき高周波電極である。
FIG. 3 is a schematic diagram of main parts of a high frequency excitation type magnetron sputtering apparatus according to the present invention. In FIG. 3, ■ is the cathode portion shown in FIG. 2, and ■ is the anode. ■
is a high-frequency electrode to which high-frequency waves should be applied, which is placed between the anode (2) and the base material IV.

高周波電極■の形状は任意の形状であって良く、又、そ
の位置もターゲツト面を大きくはみださない程度にプラ
ズマ分布が一様になる様に又、スパッタ物質が基材上に
形成される時のさまたげとならない様に実験的に決めら
れる。特にループ状の形状を成している場合が好ましく
、更にターゲット1の周囲に沿った大きさとすると良い
。この場合はイオン化の効率を高めるためにラセン状に
ル−ブを形成する事もある。
The shape of the high-frequency electrode (2) may be arbitrary, and its position is such that the sputtered material is formed on the base material so that the plasma distribution is uniform to the extent that it does not extend far beyond the target surface. It is determined experimentally so that it does not interfere with the process. In particular, it is preferable to have a loop-like shape, and it is further preferable to have a size along the periphery of the target 1. In this case, a helical lube may be formed to increase the ionization efficiency.

高周波電極■の材質は導電性が有れば特に限定しないが
、ステンレス、銅等が用いられる事が多い。又、プラズ
マからの熱による電極の損傷、溶融などを防止するため
に水冷する場合もある。また特殊な場合としては高周波
電極をガス導入管とすることもできる。この場合には電
極には全体が−様な雰囲気になるように工夫されたピン
ホールが適当な大きさ2間隔で設けである。吹き出すガ
スはターゲットと反対側を向くようにしておく必要があ
り、少くともターゲット表面上に向わないようにしてお
くことが好ましい。
The material of the high-frequency electrode (2) is not particularly limited as long as it has conductivity, but stainless steel, copper, etc. are often used. In addition, water cooling may be used to prevent the electrodes from being damaged or melted due to heat from the plasma. In special cases, the high frequency electrode can also be used as a gas introduction pipe. In this case, pinholes of appropriate size are provided at two intervals in the electrode to create a negative atmosphere throughout. The gas to be blown out must be directed toward the opposite side of the target, and preferably at least not directed onto the target surface.

第1図は本発明の高周波励起型マグトロンスパッタ装置
の一実施態様の概略構成図である。図にJ5いて10は
真空容器、20は真空容器10内を所定の真空度に排気
する真空排気系、21はガス導入口である。30は前述
したカソードIIと同様な構成のカソード部、31はア
ノードであり、目的の薄膜形成物をターゲット32より
スパッタする。40は基板移送系で基板41を繰り出し
装置の原反ロール42からカソード30に対向配置した
冷却ドラム43のスパッタ物質33が飛来する膜形成領
域りを通して図の矢印へ方向に移送し巻取り装置の巻取
りロール44に巻き取るもので、長尺のポリエステルフ
ィルム等の高分子フィルムの基板41に連続的に薄膜形
成するのに適した装置となっている。34は前述した高
周波電極である。スパッタ粒子は蒸着物質33がターゲ
ット32から冷却ドラム43の膜形成領1jl Dに飛
来し冷却ドラム43に密着して移送される基板41に堆
積する。、51は高周波電極近傍に設置されたガス吹出
口である。吹出し口から放出されるガスは、酸化物を形
成するときは酸化性のガス、即ら酸毒ガス単体か、ある
いはArガスなど担体ガスに酸素を混入したものが用い
られる。また窒化物を形成するとぎには窒素ガス、Ar
ガスなどに窒素を混入したガス、あるいは分解して窒素
を発生するガス例えばNH3の如きガスが用いられる。
FIG. 1 is a schematic diagram of an embodiment of a high frequency excitation type magtron sputtering apparatus of the present invention. In the figure, in J5, 10 is a vacuum container, 20 is a vacuum exhaust system for evacuating the inside of the vacuum container 10 to a predetermined degree of vacuum, and 21 is a gas inlet. Reference numeral 30 represents a cathode section having the same structure as the above-described cathode II, and 31 represents an anode, which sputters a target thin film from a target 32. Reference numeral 40 denotes a substrate transfer system, which transfers the substrate 41 from the original roll 42 of the unwinding device in the direction of the arrow in the figure through the film forming area where the sputtered material 33 of the cooling drum 43 disposed opposite to the cathode 30 flies. The device is wound onto a take-up roll 44, and is suitable for continuously forming a thin film on a substrate 41 of a polymer film such as a long polyester film. 34 is the aforementioned high frequency electrode. The sputtered particles are deposited on the substrate 41 where the vapor deposition material 33 flies from the target 32 to the film forming area 1jlD of the cooling drum 43 and is transferred in close contact with the cooling drum 43. , 51 is a gas outlet installed near the high frequency electrode. When forming an oxide, the gas released from the outlet is an oxidizing gas, that is, an acid poison gas alone, or a carrier gas such as Ar gas mixed with oxygen. In addition, when forming nitrides, nitrogen gas, Ar
A gas mixed with nitrogen, or a gas that decomposes to generate nitrogen, such as NH3, is used.

かかるガスは高周波電極34に印加された高周波電力に
より分解、励起、イオン化され、ターゲラl〜から飛来
する金属原子と反応して酸化物あるいは窒化物となって
基板41上に堆積する。高周波電極34に印加する高周
波の周波数及び電力は、スパッタ粒子飛来領I4Wの真
空度、担体ガス粒子、スパッタ粒子のイオン化効率を考
慮して、最適な値を選べば良いが通常は13.56 M
 )−! ZのRF周波数で行なうのが、最も簡便であ
る。
This gas is decomposed, excited, and ionized by the high-frequency power applied to the high-frequency electrode 34, and reacts with metal atoms flying from the target particles 1~ to become oxides or nitrides, which are deposited on the substrate 41. The frequency and power of the high frequency applied to the high frequency electrode 34 may be selected optimally by taking into consideration the degree of vacuum in the sputtered particle landing area I4W, the ionization efficiency of the carrier gas particles, and the sputtered particles, but usually 13.56 M
)−! It is easiest to use the Z RF frequency.

一方金属ターゲット近傍には前述の通り別のガス吹出し
口52が設けられている。ガス吹出し口52からは金属
と不活性あるいは還元性のガスを吹き出させる。かかる
ガス雰囲気中で金属ターゲットはスパッタされるので、
ターゲット32表面上は常に金属が露出していることに
なり表面が絶縁性とはならず、スパッタ投入電力が大き
くとれ、従ってスパッタ速度を大きくづることができる
。即ちターゲット表面(スパッタ粒子発生部)と高周波
電極近傍(反応部あるいは膜堆積部)の雰囲気を違える
ことにより、高速でかつ安定なスパッタが可能になる。
On the other hand, another gas outlet 52 is provided near the metal target as described above. Metal and inert or reducing gas are blown out from the gas outlet 52. Since the metal target is sputtered in such a gas atmosphere,
Since metal is always exposed on the surface of the target 32, the surface is not insulating, and a large amount of sputtering power can be used, thereby increasing the sputtering speed. That is, by differentiating the atmosphere between the target surface (sputter particle generation area) and the vicinity of the high-frequency electrode (reaction area or film deposition area), high-speed and stable sputtering becomes possible.

吹出すガスの種類、流aおよび組成は目的とする膜の特
性、放電条件から夫々独立に決定することができる。
The type, flow a, and composition of the gas to be blown out can be determined independently from the characteristics of the desired film and the discharge conditions.

以下に本発明の効果を示す上述のマグネl−ロンスパッ
タ装置による膜形成例を示すが、本発明はかかる膜形成
例及び以上の説明の装置に限定されるものでない事は、
本発明の主旨からも明らかである。
An example of film formation using the above-mentioned Magneto-Lon sputtering apparatus will be shown below to demonstrate the effects of the present invention, but it should be noted that the present invention is not limited to such film formation example or the apparatus described above.
This is clear from the gist of the present invention.

く膜形成例〉 第1図の高周波励起型マグネトロンスパッタ装置におい
て、ポリエステルフィルムを基板41とし、Tiをター
ゲット32としてTi 02の膜形成を行なった。ター
ゲットの大きさは、125扁X 300+71111で
ある。まず真空排気系20により真空容器10全体をI
 X 10−5 T orrまで排気し、しかる後にタ
ーゲット近傍のガス吹出し口52よりArガスを、n周
波電極近傍のガス吹出し口51より20 vo1%のM
fflを含む△r−02混合ガスを導入し、真空度3 
x 10’ T orrに保った。このときのArガス
とAr−02ガスの流値はそれぞれ508 CCMとし
た。ターゲラl−32(カソード30)とアノード31
0間に直流電圧420■を印加し、同時に高周波′市極
34に13.56 M HZの高周波を印加した。この
時の最適な高周波電力は240Wであった。フィルムの
送り速度2i/sinとした時にフィルム上に形成され
たTfOzの膜厚は340人であった。すなわち、本条
件により高速で透明な良質のTi0zl!1が得られる
ことがわかった。このサンプルを基準サンプルとして以
下種々の条件で膜形成を行なった。
Film Formation Example> In the high-frequency excitation type magnetron sputtering apparatus shown in FIG. 1, a Ti 02 film was formed using a polyester film as the substrate 41 and a Ti target 32. The size of the target is 125 x 300+71111. First, the entire vacuum container 10 is
After exhausting to X 10-5 T orr, Ar gas was supplied from the gas outlet 52 near the target, and 20 vo 1% M was supplied from the gas outlet 51 near the n-frequency electrode.
△r-02 mixed gas containing ffl was introduced, and the vacuum level was 3.
The temperature was maintained at x 10' Torr. The flow values of Ar gas and Ar-02 gas at this time were each 508 CCM. Targera l-32 (cathode 30) and anode 31
A DC voltage of 420 mm was applied between the two electrodes, and at the same time, a high frequency of 13.56 MHz was applied to the high frequency electrode 34. The optimum high frequency power at this time was 240W. The film thickness of TfOz formed on the film was 340 when the film feeding speed was 2i/sin. In other words, under these conditions, high-speed, transparent, and high-quality Ti0zl! It was found that 1 was obtained. Using this sample as a reference sample, film formation was performed under various conditions below.

まず、ガス吹出し口51.52のガスの種類、流苗を変
えて、その他は基準サンプルと同じ条件で膜形成を行っ
た(サンプルNo、:比較1.2.3゜4)。結果を表
1に示す。
First, film formation was performed under the same conditions as the reference sample except for changing the type of gas at the gas outlet 51 and 52 and the flow of seedlings (Sample No.: Comparison 1.2.3°4). The results are shown in Table 1.

表  1 雰囲気がAr−0zの場合はスパッタ速度が基準に比し
て遅いことが判る。
Table 1 It can be seen that when the atmosphere is Ar-0z, the sputtering speed is slower than the standard.

又、上述の比較1〜3のサンプル膜形成において高周波
電力を印加しないときにはT1は殆どスパッタされずT
lO2の膜厚は10〜20人であった。
Furthermore, in forming the sample films of Comparisons 1 to 3 above, when high frequency power is not applied, T1 is hardly sputtered and T1 is not sputtered.
The film thickness of lO2 was 10-20 people.

更に、比較1のサンプル形成においてターゲットに印加
する電圧を変化させたところ0〜470Vまでは透明な
Ti 02膜が形成されたが膜厚は薄く殆ど膜の形成は
なされていなかった。470vを越えたところで電力は
急に増し、Tiが急激にスパッタされるようになったが
形成された膜は金属色をしておりTiO2は形成されな
かった。
Furthermore, when the voltage applied to the target was varied in forming the sample of Comparative 1, a transparent Ti 02 film was formed from 0 to 470 V, but the film thickness was thin and almost no film was formed. When the power exceeded 470 V, the power suddenly increased and Ti began to be sputtered rapidly, but the formed film had a metallic color and no TiO2 was formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のマグネトロンスパッタ装置の一実施態
様の全体概略構成図、第2図はマグネトロンスパッタ装
置のカソード部の構成図、第3図は本発明のマグネトロ
ンスパッタ装置の要部概略図である。 I、30:カソード部  1,32:ターゲット[,3
1ニアノード   1,34:高周波電極IV、 41
 : l板51.52: カス吹出口卯31力
FIG. 1 is an overall schematic diagram of an embodiment of the magnetron sputtering device of the present invention, FIG. 2 is a diagram of the configuration of the cathode section of the magnetron sputtering device, and FIG. 3 is a schematic diagram of the main parts of the magnetron sputtering device of the present invention. be. I, 30: Cathode part 1, 32: Target [, 3
1 near node 1, 34: high frequency electrode IV, 41
: l plate 51.52: scum outlet 31 force

Claims (1)

【特許請求の範囲】[Claims] 1、ターゲット表面近傍に閉磁界を形成するための磁石
を設けたカソード部を具備し、該カソード部に対してア
ノード、基板を所定間隔で配置すると共に、前記アノー
ドと前記基板の間に高周波電力を印加するための高周波
電極を設け、該高周波電極により高周波電力を印加しつ
つ膜形成するようになしたマグネトロンスパッタ装置に
おいて、前記ターゲット表面近傍と前記高周波電極近傍
の二個所に、互いに独立に条件設定できるガスの吹出口
を設けたことを特徴とするマグネトロンスパッタ装置。
1. A cathode section is provided with a magnet for forming a closed magnetic field near the target surface, an anode and a substrate are arranged at a predetermined interval with respect to the cathode section, and high frequency power is applied between the anode and the substrate. In a magnetron sputtering apparatus, a high-frequency electrode is provided for applying high-frequency power, and a film is formed while applying high-frequency power by the high-frequency electrode. A magnetron sputtering device characterized by having a gas outlet that can be set.
JP19914986A 1986-08-27 1986-08-27 Magnetron sputtering device Pending JPS6357764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19914986A JPS6357764A (en) 1986-08-27 1986-08-27 Magnetron sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19914986A JPS6357764A (en) 1986-08-27 1986-08-27 Magnetron sputtering device

Publications (1)

Publication Number Publication Date
JPS6357764A true JPS6357764A (en) 1988-03-12

Family

ID=16402965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19914986A Pending JPS6357764A (en) 1986-08-27 1986-08-27 Magnetron sputtering device

Country Status (1)

Country Link
JP (1) JPS6357764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158166B2 (en) 2002-03-19 2007-01-02 Citizen Watch Co. Optical printer head having liquid crystal shutter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110673A (en) * 1981-12-23 1983-07-01 Hitachi Ltd Reactive sputtering device
JPS5996268A (en) * 1982-11-26 1984-06-02 Teijin Ltd Magnetron sputtering apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110673A (en) * 1981-12-23 1983-07-01 Hitachi Ltd Reactive sputtering device
JPS5996268A (en) * 1982-11-26 1984-06-02 Teijin Ltd Magnetron sputtering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158166B2 (en) 2002-03-19 2007-01-02 Citizen Watch Co. Optical printer head having liquid crystal shutter

Similar Documents

Publication Publication Date Title
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
US4151325A (en) Titanium nitride thin films for minimizing multipactoring
JPS6254078A (en) Apparatus for depositing membrane to substrate by cathodic sputtering treatment
US4209552A (en) Thin film deposition by electric and magnetic crossed-field diode sputtering
US4933065A (en) Apparatus for applying dielectric or metallic materials
JPH08287901A (en) Manufacture of positive electrode for lithium secondary battery
JPH0136693B2 (en)
JPS6357764A (en) Magnetron sputtering device
JPS61135126A (en) Equipment of plasma treatment
JP4019457B2 (en) Arc type evaporation source
JPS6324068A (en) Continuous vacuum deposition plating device
JP3562595B2 (en) Sputtering equipment
JPS6353261B2 (en)
JP3775851B2 (en) Vapor deposition apparatus and protective film manufacturing method
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JPS63140079A (en) Sputtering device
JP3291088B2 (en) Coating method
JPS63213664A (en) Ion plating device
JPH04191364A (en) Method and device for ion plating
JP2777657B2 (en) Plasma deposition equipment
JP3788632B2 (en) Continuous ion plating equipment
JPH10330935A (en) Sputtering device
JPH04314864A (en) Method for plasma-cleaning substrate surface
JPS6342373A (en) Continuous vacuum deposition plating device
JPH0372069A (en) Method for continuously vapor-depositing compound on metal strip