JPH04314864A - Method for plasma-cleaning substrate surface - Google Patents

Method for plasma-cleaning substrate surface

Info

Publication number
JPH04314864A
JPH04314864A JP3108905A JP10890591A JPH04314864A JP H04314864 A JPH04314864 A JP H04314864A JP 3108905 A JP3108905 A JP 3108905A JP 10890591 A JP10890591 A JP 10890591A JP H04314864 A JPH04314864 A JP H04314864A
Authority
JP
Japan
Prior art keywords
plasma
substrate
sheet
vacuum chamber
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3108905A
Other languages
Japanese (ja)
Inventor
Etsuo Ogino
荻 野 悦 男
Hidemi Nakai
中 井 日 出 海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP3108905A priority Critical patent/JPH04314864A/en
Publication of JPH04314864A publication Critical patent/JPH04314864A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To plasma-clean the surface of a substrate and to obtain a relatively large-area article coated with a thick deposited film. CONSTITUTION:A composite-cathode plasma source 2 is opposed to an anode 3 in a vacuum vessel 1, a gas is introduced into the source 2 from the outside to produce the plasma contg. gas, a positive potential is applied to the anode 3 with respect to the source 2, the plasma is drawn into the vessel 1 kept at a lower pressure than the source 2 to produce high-density plasma in the space between the source 2 and the anode 3 in the vessel 1, the plasma is transformed into sheet plasma 6 by a magnetic field, and the surface of a substrate 5 is exposed to the sheet plasma 6 and cleaned.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は基体表面のプラズマクリ
ーニング方法に関し、とりわけ自動車の窓ガラスや建築
物の窓ガラスさらにはフラットディスプレイ用ガラス板
のような比較的大面積の基体に薄膜を被覆するときに適
した基体表面のクリーニング方法に関する。
[Field of Industrial Application] The present invention relates to a plasma cleaning method for the surface of a substrate, and in particular for coating a substrate with a thin film on a relatively large area substrate such as an automobile window glass, a building window glass, or a glass plate for a flat display. The present invention relates to a method of cleaning a substrate surface, which is sometimes suitable.

【0002】0002

【従来の技術】従来より、減圧された真空槽内で基体表
面に光学的特性、電気的特性あるいは機械的特性を付加
する目的で各種の金属薄膜、金属化合物薄膜、有機薄膜
を被覆する際に真空槽内で基体表面のクリーニングと基
体表面への膜の被覆とを一連のプロセスとしておこなう
ときのクリーニング方法としては、(1)真空槽内に設
けられた紫外線ランプから高エネルギ−紫外線を基体の
被覆面に照射して該基体表面に付着している有機物を分
解・気化して除去する方法、(2)真空槽内壁と放電電
極との間で高周波電力もしくは直流電力を印加してグロ
ー放電を生起させ、イオンボンバードあるいは化学反応
によって基体表面に付着している有機物あるいは水分を
分解蒸発させて除去する方法、が知られている。
[Prior Art] Conventionally, various metal thin films, metal compound thin films, and organic thin films have been coated on the surface of a substrate in a reduced pressure vacuum chamber for the purpose of adding optical properties, electrical properties, or mechanical properties. When cleaning the substrate surface and coating the substrate surface with a film as a series of processes in a vacuum chamber, the cleaning method is as follows: (1) A UV lamp installed in the vacuum chamber emits high-energy ultraviolet light onto the substrate. A method of irradiating the coated surface to decompose and vaporize organic matter adhering to the surface of the substrate, and removing it. (2) A method of applying high frequency power or DC power between the inner wall of the vacuum chamber and the discharge electrode to generate glow discharge. A method is known in which the organic matter or moisture adhering to the substrate surface is decomposed and evaporated by ion bombardment or chemical reaction.

【0003】0003

【発明が解決しようとする課題】しかしながら、前記(
1)の紫外線照射によるクリーニング方法は、有機物に
対しては比較的良好に分解・除去できるものの、水分あ
るいは無機物に対する除去率は極めて低いという問題が
あった。又、前記(2)のグロー放電を利用したクリー
ニング方法は、プラズマ密度が低いために基体表面に到
達するイオンまたは化学的活性種の量が極めて小さく、
プラズマ反応による基体表面の付着物の除去率は小さい
という問題があり、さらに基体の面積が大きくなればな
る程プラズマ生成空間の増大によってプラズマ密度もま
すます小さくなり、付着物除去の効果が小さくなってし
まうという問題があった。またイオンボンバードによる
クリーニング効果をねらうために洗浄すべき基体にバイ
アス電圧を印加する場合においても、大面積でかつガラ
ス基体のような絶縁性の材料に対して深いバイアス電圧
の印加を安定して行うことは困難であった。本発明は、
上記従来の課題を解決するためになされたものであって
、たとえば30cm×30cm以上の大面積の基体でも
基体表面に付着している有機物、水分を表面全体にわた
って良好に除去し得るクリーニング方法を提供するもの
である。
[Problem to be solved by the invention] However, the above (
Although the cleaning method using ultraviolet irradiation (1) can decompose and remove organic substances relatively well, there is a problem in that the removal rate for moisture or inorganic substances is extremely low. Furthermore, in the cleaning method using glow discharge described in (2) above, the amount of ions or chemically active species that reach the substrate surface is extremely small due to the low plasma density.
There is a problem that the removal rate of deposits on the substrate surface due to plasma reaction is low, and furthermore, as the area of the substrate becomes larger, the plasma generation space increases and the plasma density becomes smaller and smaller, and the effect of removing deposits becomes smaller. There was a problem with this. Also, when applying a bias voltage to the substrate to be cleaned in order to achieve a cleaning effect by ion bombardment, it is possible to stably apply a deep bias voltage to a large area and insulating material such as a glass substrate. That was difficult. The present invention
The present invention has been made to solve the above-mentioned conventional problems, and provides a cleaning method that can effectively remove organic substances and moisture attached to the surface of a substrate even if the substrate has a large area of 30 cm x 30 cm or more over the entire surface. It is something to do.

【0004】0004

【課題を解決するための手段】本発明は、減圧された雰
囲気が調節できる真空槽内で基体表面をプラズマクリー
ニングする方法であって、前記真空槽に複合陰極型プラ
ズマ発生源と陽極とを対向して配置し、前記プラズマ発
生源内に外部よりガスを導入して前記ガスを含むプラズ
マを発生させ、その後前記プラズマ発生源に対して前記
陽極を正電位にすることにより、前記プラズマを前記プ
ラズマ発生源内より低い圧力に維持した前記真空槽内に
引き出して前記プラズマ発生源と前記陽極との間に高密
度プラズマを発生させ、しかるのち前記高密度プラズマ
を磁場手段によりシート状プラズマとし、前記シート状
プラズマに前記基体表面をさらすことを特徴とする基体
表面のプラズマクリーニング方法である。
[Means for Solving the Problems] The present invention provides a method for plasma cleaning the surface of a substrate in a vacuum chamber in which a reduced pressure atmosphere can be adjusted, wherein a composite cathode type plasma generation source and an anode are placed facing each other in the vacuum chamber. A gas is introduced into the plasma generation source from the outside to generate plasma containing the gas, and then the anode is set at a positive potential with respect to the plasma generation source, thereby generating the plasma. A high-density plasma is generated between the plasma generation source and the anode by drawing it into the vacuum chamber maintained at a pressure lower than that in the source, and then converting the high-density plasma into sheet-like plasma by magnetic field means. A plasma cleaning method for a substrate surface, characterized in that the substrate surface is exposed to plasma.

【0005】本発明に用いることができる複合陰極型プ
ラズマ発生源としては、たとえば真空第25巻第10号
(1982発刊)に記載されているものを好んで用いる
ことができる。本発明の方法によりクリーニングされた
基体に、基体と密着力が大きい被膜を被覆する方法とし
ては、特に限定されないが、例えばスパッタリング法の
他真空蒸着法、イオンプレーティング法、CVD法、カ
ソードアーク蒸着法等を用いることができる。そしてプ
ラズマクリーニングと被膜の被覆は連続して、すなわち
途中で真空を破ることなく行うのが好ましい。また、本
発明のプラズマクリーニング方法を用いて基体表面を清
浄にするときは、基体を加熱ヒーターにより加熱するこ
とは、付着物の熱脱離と相まってよりいっそうのクリー
ニング効果が得られるので好ましい。
[0005] As a composite cathode type plasma generation source that can be used in the present invention, for example, those described in Shinku Vol. 25, No. 10 (published in 1982) can be preferably used. The method of coating the substrate cleaned by the method of the present invention with a coating having strong adhesion to the substrate is not particularly limited, but includes, for example, sputtering, vacuum evaporation, ion plating, CVD, cathodic arc evaporation, etc. The law, etc. can be used. Preferably, plasma cleaning and coating are carried out continuously, that is, without breaking the vacuum midway. Further, when cleaning the surface of a substrate using the plasma cleaning method of the present invention, it is preferable to heat the substrate with a heating heater, since in combination with thermal desorption of deposits, a further cleaning effect can be obtained.

【0006】[0006]

【作用】本発明にかかるプラズマは、高エネルギー電子
を含んだ大電流アーク放電によって発生しているため、
従来のグロー放電プラズマに比べてプラズマ密度が50
〜100倍程度高く、ガスの電離度は数十%となる。し
たがって、基体に到達するイオンあるいは化学的活性種
はグロー放電の数十倍以上の量となる。その結果、基体
表面に存在する付着物との間で高いプラズマ化学反応が
生じ、基体表面の付着物は効果的に除去される。また、
シート状に変形されたプラズマを基体に平行して生成す
ることにより、大面積の基体表面の全体にわたって均一
に付着物の除去を行なうことができる。
[Operation] Since the plasma according to the present invention is generated by large current arc discharge containing high energy electrons,
50% plasma density compared to conventional glow discharge plasma
It is about 100 times higher, and the degree of ionization of the gas is several tens of percent. Therefore, the amount of ions or chemically active species reaching the substrate is several tens of times larger than that of glow discharge. As a result, a high plasma chemical reaction occurs with the deposits present on the substrate surface, and the deposits on the substrate surface are effectively removed. Also,
By generating sheet-shaped plasma parallel to the substrate, deposits can be removed uniformly over the entire large surface of the substrate.

【0007】[0007]

【実施例】以下、実施例に基づいて本発明を説明する。 図1は本発明の基体表面のプラズマクリーニング方法を
実施するための装置の一実施例の断面図で、プラズマク
リーニング後基体表面に被膜を被覆するためのスパッタ
リングカソードが併設されている。図2は本発明にかか
るシートプラズマのプラズマ密度を説明するための図で
、図3は本発明に用いられる複合陰極型プラズマ発生源
の主要部であるホローカソード型放電電極の概略断面図
である。
EXAMPLES The present invention will be explained below based on examples. FIG. 1 is a cross-sectional view of an embodiment of an apparatus for carrying out the plasma cleaning method of the substrate surface of the present invention, in which a sputtering cathode for coating the substrate surface with a film after plasma cleaning is provided. FIG. 2 is a diagram for explaining the plasma density of the sheet plasma according to the present invention, and FIG. 3 is a schematic cross-sectional view of a hollow cathode discharge electrode, which is the main part of the composite cathode plasma generation source used in the present invention. .

【0008】図1に示されるように減圧された真空槽1
に複合陰極型プラズマ発生源2と陽極3とが対向して配
置されている。複合陰極型プラズマ発生源2と陽極3は
、真空槽1とは電気絶縁材18を介して電気的に絶縁さ
れ、直流放電電源4に接続されている。複合陰極型プラ
ズマ発生源は、タンタル製のパイプ状補助陰極12とL
aB6 製の円盤状主陰極13を有するホロ−カソード
型放電電極15、プラズマ中の電子を加速するための電
子加速用第1中間電極14および電子加速用第2中間電
極20とからなっている。ホローカソード型放電電極1
5は、図3に示すように熱容量の小さいパイプ状補助陰
極12と、LaB6 製の主陰極13とを有し、水冷機
構19により冷却されている。補助陰極12に初期放電
を集中させて主陰極13を加熱し、主陰極でアーク放電
をおこなわせてプラズマを発生させる。ここで補助陰極
12はW,Ta,Mo等の高融点金属のパイプ状のもの
が好んで用いられる。パイプ状補助電極12の内部を経
て外部から制御された量の水素、アルゴン、ヘリウムま
たはそれらの混合ガスを導入し、その後ホローカソード
型放電電極15に直流電力を直流放電電源4から供給し
て電子を発生させる。この発生させた電子をホローカソ
ード型放電電極15と電子加速用第1中間電極14と第
2中間電極20との間に電位差を外部より適当に与える
ことによって真空槽1内に引き出し、プラズマ発生源2
と陽極3との間の真空槽1の内部空間に低電圧・大電流
のプラズマを生起させる。放電に使用されるガスとして
は水素ガス、アルゴン、ヘリウムの単一のガスのほか、
それらの混合ガスが好適に使用され、酸素ガスおよび窒
素ガスを含んだプラズマを発生させる場合は真空槽1に
設けられたガス導入パイプ11からこれら反応性のガス
を真空槽1内に導入する。複合陰極型プラズマ発生源2
内の圧力を100Pa(パスカル)程度になるように調
節し、かつ、真空槽1内の圧力を0.05〜0.5Pa
になるように調節される。複合陰極型プラズマ発生源2
内の圧力を真空槽1内の空間の圧力よりも大きくするこ
とにより、真空槽1内のガスイオンの逆流による陰極の
損傷が抑制される。また、外部より複合陰極型プラズマ
発生源2内に導入するキャリアガスの電離効率が飛躍的
に大きくなり、その結果大電流放電が可能となる。
[0008] As shown in FIG. 1, a reduced pressure vacuum chamber 1
A composite cathode type plasma generation source 2 and an anode 3 are disposed facing each other. The composite cathode type plasma generation source 2 and the anode 3 are electrically insulated from the vacuum chamber 1 via an electrical insulating material 18, and are connected to a DC discharge power source 4. The composite cathode type plasma generation source includes a tantalum pipe-shaped auxiliary cathode 12 and L.
It consists of a hollow cathode type discharge electrode 15 having a disc-shaped main cathode 13 made of aB6, a first intermediate electrode 14 for electron acceleration, and a second intermediate electrode 20 for accelerating electrons, for accelerating electrons in plasma. Hollow cathode type discharge electrode 1
As shown in FIG. 3, the cathode 5 has a pipe-shaped auxiliary cathode 12 with a small heat capacity and a main cathode 13 made of LaB6, and is cooled by a water cooling mechanism 19. The initial discharge is concentrated on the auxiliary cathode 12 to heat the main cathode 13, causing arc discharge at the main cathode to generate plasma. Here, the auxiliary cathode 12 is preferably a pipe-shaped one made of a high melting point metal such as W, Ta, Mo, or the like. A controlled amount of hydrogen, argon, helium, or a mixture thereof is introduced from the outside through the inside of the pipe-shaped auxiliary electrode 12, and then DC power is supplied from the DC discharge power source 4 to the hollow cathode type discharge electrode 15 to generate electrons. to occur. The generated electrons are drawn out into the vacuum chamber 1 by applying an appropriate potential difference from the outside between the hollow cathode type discharge electrode 15, the first intermediate electrode 14 for electron acceleration, and the second intermediate electrode 20, and are drawn out into the vacuum chamber 1 to become a plasma generation source. 2
A low-voltage, high-current plasma is generated in the internal space of the vacuum chamber 1 between the anode 3 and the anode 3. In addition to single gases such as hydrogen gas, argon, and helium, gases used for discharge include
When such a mixed gas is preferably used to generate plasma containing oxygen gas and nitrogen gas, these reactive gases are introduced into the vacuum chamber 1 through a gas introduction pipe 11 provided in the vacuum chamber 1. Composite cathode type plasma source 2
Adjust the pressure inside the vacuum chamber 1 to about 100 Pa (Pascal), and keep the pressure inside the vacuum chamber 1 at 0.05 to 0.5 Pa.
It is adjusted so that Composite cathode type plasma source 2
By making the internal pressure higher than the pressure of the space within the vacuum chamber 1, damage to the cathode due to backflow of gas ions within the vacuum chamber 1 is suppressed. Moreover, the ionization efficiency of the carrier gas introduced from the outside into the composite cathode type plasma generation source 2 is dramatically increased, and as a result, large current discharge becomes possible.

【0009】真空槽1内に引き出されたプラズマは、特
開昭59−27499号公報に記載されている方法、す
なわちプラズマ誘導用空芯コイル9による磁場と互いに
N極が対向するように配置された一対のプラズマ圧縮用
永久磁石10の磁場を印加する方法により、真空槽1内
で厚みが薄く、かつ、大きな面積にわたって均一に広が
ったシート状のプラズマ6とすることができる。
The plasma drawn into the vacuum chamber 1 is generated by the method described in Japanese Patent Laid-Open No. 59-27499, that is, the plasma is placed in a magnetic field generated by an air-core coil 9 for plasma induction so that the north poles face each other. By applying the magnetic field of the pair of plasma compression permanent magnets 10, it is possible to form a sheet-like plasma 6 that is thin and uniformly spread over a large area within the vacuum chamber 1.

【0010】クリーニングを行なう基体は前記シート状
プラズマに対して固定しておくと付着物の除去が効果的
に行なわれるが、連続的にシート状プラズマに対して平
行に移動させてもよい。そしてクリーニングを行なう基
体5はシート状プラズマ6とほぼ平行に近接して配置さ
れる。基体5とシート状プラズマ6との距離は短い程ク
リーニングは効果的に行われるが、短すぎるとプラズマ
により発生する熱のため基体が損傷することがあるので
、10mm以上の距離を置くことが好ましい。また、基
体がプラズマから離れすぎると基体近傍のプラズマ密度
が小さくなりクリーニング効果が低下するので200m
m以下の距離で基体を配置することが好ましい。
[0010] If the substrate to be cleaned is fixed relative to the sheet-like plasma, deposits can be effectively removed, but it may be continuously moved parallel to the sheet-like plasma. The substrate 5 to be cleaned is arranged approximately parallel to and close to the sheet plasma 6. The shorter the distance between the base 5 and the sheet plasma 6, the more effective the cleaning will be, but if it is too short, the base may be damaged by the heat generated by the plasma, so it is preferable to keep a distance of 10 mm or more. . In addition, if the substrate is too far away from the plasma, the plasma density near the substrate will decrease and the cleaning effect will decrease.
Preferably, the substrates are arranged at a distance of not more than m.

【0011】実施例1 図1の真空槽1内を排気口17から真空排気ポンプ(図
示されていない)で6.7×10ー4Pa以下になるま
で真空排気した。その後プラズマ発生源のタンタル製の
パイプ状補助電極12からアルゴンガスを約30scc
m導入し、複合陰極型プラズマ発生源2に100Aの電
流を供給し、陽極3との間に大電流アーク放電プラズマ
を生起させた。この時シート状プラズマ6は、プラズマ
誘導空芯用コイル9とプラズマ圧縮用永久磁石10の磁
場によって幅約45cm 、長さ約80cm、厚み約2
cmのシート状であった。この状態でシート状プラズマ
6の中心付近のプラズマ密度をラングミュアプローブに
よってプラズマからの距離が15mm〜75mmの範囲
で測定した。図2はその測定結果である。シート状プラ
ズマからの距離が15mmにおけるプラズマ密度は約8
.3×1010cm−3 であり、プラズマ密度はプラ
ズマの中心からの距離が大きくなるとともに減少するが
、従来のグロー放電プラズマと比較して約50倍〜10
0倍以上の高密度プラズマであった。また、シート状プ
ラズマ面内のプラズマ密度分布を同様の方法で測定した
結果、10%以下に納まった非常に均一なプラズマであ
った。
Example 1 The inside of the vacuum chamber 1 shown in FIG. 1 was evacuated from the exhaust port 17 using a vacuum pump (not shown) until the pressure was 6.7×10 −4 Pa or less. After that, about 30 sc of argon gas is supplied from the tantalum pipe-shaped auxiliary electrode 12 which is the plasma generation source.
m was introduced, a current of 100 A was supplied to the composite cathode type plasma generation source 2, and a large current arc discharge plasma was generated between the composite cathode type plasma generation source 2 and the anode 3. At this time, the sheet-shaped plasma 6 is formed into a width of about 45 cm, a length of about 80 cm, and a thickness of about 2 cm by the magnetic fields of the plasma induction air-core coil 9 and the plasma compression permanent magnet 10.
It was in the form of a cm sheet. In this state, the plasma density near the center of the sheet plasma 6 was measured using a Langmuir probe at a distance from the plasma in a range of 15 mm to 75 mm. Figure 2 shows the measurement results. The plasma density at a distance of 15 mm from the sheet plasma is approximately 8
.. 3 x 1010 cm-3, and although the plasma density decreases as the distance from the plasma center increases, it is approximately 50 to 10 times that of conventional glow discharge plasma.
It was 0 times more dense plasma. Furthermore, as a result of measuring the plasma density distribution within the sheet plasma surface using a similar method, it was found that the plasma density was very uniform, with the density distribution falling within 10%.

【0012】実施例2 純水による超音波洗浄および乾燥を施した50cm角の
フロートガラスを図1の基体保持機構16で保持したの
ち、真空槽1内を真空排気し、実施例1で述べた方法と
同様の方法でアルゴンからなるシート状プラズマを基体
から25mmの位置に基体と平行に生起させた。この後
、ガス導入パイプ11からコントロールバルブ19を介
してから200sccmの酸素ガスを真空槽1内に導入
し、アルゴンと酸素からなるシート状プラズマとした。 この状態で2分間待機したのち直流放電電源からの電力
の印加およびガスの導入を停止し、シート状プラズマの
発生を止めた。この直後、ガス導入パイプ11から酸素
ガスを50sccm導入し、スパッタリングターゲット
として金属チタンが接合されているスパッタリングカソ
ード7にスパッタリング電源8から直流電力を供給して
、プラズマクリーニングされた基体表面に酸化チタンの
薄膜を約500nm形成した。酸素ガス導入およびスパ
ッタリング電源を停止し、真空槽1内を大気圧に戻した
後、酸化チタンの薄膜が被覆されたガラスサンプルを得
た。得られた薄膜の付着力をスクラッチ試験機(レスカ
製CSR−02)で測定したしたところ28mNの値が
得られた。この値はガラス基体内の中央部、周辺部、コ
ーナー部のいずれにおいてもほぼ同一の値であった。
Example 2 A 50 cm square float glass that had been subjected to ultrasonic cleaning with pure water and drying was held by the substrate holding mechanism 16 shown in FIG. A sheet-shaped plasma made of argon was generated in parallel to the substrate at a position 25 mm from the substrate in the same manner as in the above method. Thereafter, 200 sccm of oxygen gas was introduced into the vacuum chamber 1 from the gas introduction pipe 11 via the control valve 19 to form a sheet-like plasma consisting of argon and oxygen. After waiting in this state for 2 minutes, the application of power from the DC discharge power supply and the introduction of gas were stopped, and the generation of sheet plasma was stopped. Immediately after this, 50 sccm of oxygen gas is introduced from the gas introduction pipe 11, and DC power is supplied from the sputtering power source 8 to the sputtering cathode 7 to which metal titanium is bonded as a sputtering target, so that titanium oxide is applied to the plasma-cleaned substrate surface. A thin film of about 500 nm was formed. After stopping the introduction of oxygen gas and the sputtering power supply and returning the inside of the vacuum chamber 1 to atmospheric pressure, a glass sample coated with a thin film of titanium oxide was obtained. The adhesion force of the obtained thin film was measured using a scratch tester (CSR-02 manufactured by Reska) and a value of 28 mN was obtained. This value was almost the same in the center, periphery, and corner of the glass substrate.

【0013】比較例 実施例2とは基体のプラズマクリーニングを行なわなか
ったことの他は全く同じようにして、酸化チタンの薄膜
が被覆された比較サンプルを得た。同じようにしてスク
ラッチ試験機により酸化チタン薄膜の付着力を測定した
ところ、基体の表面内で5〜13mNとばらついた付着
強度を示した。上記に示すように、本発明の実施例の方
法では酸化チタン被膜の基体に対する付着力が極めて高
いことが確認された。
Comparative Example A comparative sample coated with a thin film of titanium oxide was obtained in exactly the same manner as in Example 2 except that the substrate was not plasma cleaned. When the adhesion force of the titanium oxide thin film was measured using a scratch tester in the same manner, the adhesion strength varied from 5 to 13 mN within the surface of the substrate. As shown above, it was confirmed that the adhesion of the titanium oxide film to the substrate was extremely high in the method of the example of the present invention.

【0014】[0014]

【発明の効果】本発明によれば基体の表面を均一にクリ
ーニングすることができるので、付着力が大きい薄膜被
膜物品を得ることが出来る。とりわけ建築用や自動車用
の窓ガラスあるいはフラットディスプレイ等に用いられ
る大面積の基体に対してもクリーニングを均一に行なう
ことができる。
According to the present invention, it is possible to uniformly clean the surface of a substrate, so that it is possible to obtain a thin-film coated article with strong adhesion. In particular, it is possible to uniformly clean large-area substrates used for architectural and automobile window glasses, flat displays, and the like.

【0015】[0015]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を実施するのに用いた装置の断面図。FIG. 1 is a cross-sectional view of the apparatus used to carry out the invention.

【図2】本発明にかかるシート状プラズマのプラズマ密
度を説明するための図。
FIG. 2 is a diagram for explaining the plasma density of sheet-like plasma according to the present invention.

【図3】本発明にかかる複合陰極型プラズマ発生源の主
要部であるホローカソード型放電電極の概略断面図。
FIG. 3 is a schematic cross-sectional view of a hollow cathode discharge electrode, which is the main part of the composite cathode plasma generation source according to the present invention.

【符号の説明】[Explanation of symbols]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】減圧された雰囲気が調節できる真空槽内で
基体表面をプラズマクリーニングする方法において、前
記真空槽に複合陰極型プラズマ発生源と陽極とを対向し
て配置し、前記プラズマ発生源内に外部よりガスを導入
して前記ガスを含むプラズマを前記プラズマ発生源内に
発生させ、その後前記プラズマ発生源に対して前記陽極
を正電位にすることにより、前記プラズマを前記プラズ
マ発生源内より低い圧力に維持した前記真空槽内に引き
出して前記プラズマ発生源と前記陽極との間に高密度プ
ラズマを発生させ、しかるのち前記高密度プラズマを磁
場手段によりシート状プラズマとし、前記シート状プラ
ズマに前記基体表面をさらすことを特徴とする基体表面
のプラズマクリーニング方法。
1. A method for plasma cleaning a substrate surface in a vacuum chamber in which a reduced pressure atmosphere can be adjusted, wherein a composite cathode type plasma generation source and an anode are arranged facing each other in the vacuum chamber, and A plasma containing the gas is generated in the plasma generation source by introducing a gas from the outside, and then the plasma is brought to a lower pressure than in the plasma generation source by setting the anode at a positive potential with respect to the plasma generation source. A high-density plasma is generated between the plasma generation source and the anode by drawing it into the maintained vacuum chamber, and then the high-density plasma is made into a sheet-like plasma by magnetic field means, and the sheet-like plasma is attached to the surface of the substrate. A plasma cleaning method for the surface of a substrate, characterized by exposing the surface of the substrate to plasma.
【請求項2】前記シート状プラズマが、水素、ヘリウム
、酸素、アルゴンからなる群から選ばれた少くなくとも
1種の電離によって生成されていることを特徴とする請
求項1に記載の方法。
2. The method according to claim 1, wherein the sheet plasma is generated by ionizing at least one species selected from the group consisting of hydrogen, helium, oxygen, and argon.
【請求項3】前記基体が加熱ヒータにより加熱されてい
ることを特徴とする請求項1または2に記載の方法。
3. The method according to claim 1, wherein the substrate is heated by a heater.
JP3108905A 1991-04-12 1991-04-12 Method for plasma-cleaning substrate surface Pending JPH04314864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3108905A JPH04314864A (en) 1991-04-12 1991-04-12 Method for plasma-cleaning substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108905A JPH04314864A (en) 1991-04-12 1991-04-12 Method for plasma-cleaning substrate surface

Publications (1)

Publication Number Publication Date
JPH04314864A true JPH04314864A (en) 1992-11-06

Family

ID=14496608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108905A Pending JPH04314864A (en) 1991-04-12 1991-04-12 Method for plasma-cleaning substrate surface

Country Status (1)

Country Link
JP (1) JPH04314864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056546A (en) * 2006-09-01 2008-03-13 Ihi Corp Production device and production method for carbon structure
JP2013048017A (en) * 2011-08-28 2013-03-07 Imagineering Inc Plasma processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056546A (en) * 2006-09-01 2008-03-13 Ihi Corp Production device and production method for carbon structure
JP2013048017A (en) * 2011-08-28 2013-03-07 Imagineering Inc Plasma processing apparatus

Similar Documents

Publication Publication Date Title
US6103320A (en) Method for forming a thin film of a metal compound by vacuum deposition
US5510011A (en) Method for forming a functional deposited film by bias sputtering process at a relatively low substrate temperature
JPS63210099A (en) Preparation of diamond film
JP2000068227A (en) Method for processing surface and device thereof
KR101055396B1 (en) Solid element plasma ion implantation method and apparatus
JP2001262335A (en) Film coating method
US6083356A (en) Method and device for pre-treatment of substrates
EP1239056A1 (en) Improvement of a method and apparatus for thin film deposition, especially in reactive conditions
JPH04314864A (en) Method for plasma-cleaning substrate surface
JPH07258840A (en) Formation of carbon thin film
JP3685670B2 (en) DC sputtering equipment
US5024721A (en) Method of forming metal surface thin film having high corrosion resistance and high adhesion
JPS61238962A (en) Method and apparatus for forming film
JPH06112133A (en) Method of covering upper section of base body with transparent dielectric film
JP2849771B2 (en) Sputter type ion source
JP3305786B2 (en) Manufacturing method of permanent magnet with excellent corrosion resistance
JPH11335832A (en) Ion implantation and ion implantation device
JPS6350463A (en) Method and apparatus for ion plating
US6223686B1 (en) Apparatus for forming a thin film by plasma chemical vapor deposition
JPS63458A (en) Vacuum arc vapor deposition device
JPH03115561A (en) Method for coating film and coating device
JPH02156066A (en) Method for cleaning base material
JPH0378954A (en) Ion source
JPS63213664A (en) Ion plating device
JP2687468B2 (en) Thin film forming equipment