JPS6357525B2 - - Google Patents

Info

Publication number
JPS6357525B2
JPS6357525B2 JP56108971A JP10897181A JPS6357525B2 JP S6357525 B2 JPS6357525 B2 JP S6357525B2 JP 56108971 A JP56108971 A JP 56108971A JP 10897181 A JP10897181 A JP 10897181A JP S6357525 B2 JPS6357525 B2 JP S6357525B2
Authority
JP
Japan
Prior art keywords
bromide
fibers
temperature
treated
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56108971A
Other languages
Japanese (ja)
Other versions
JPS5813722A (en
Inventor
Katsuichi Kimoto
Yoshiki Sunada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56108971A priority Critical patent/JPS5813722A/en
Publication of JPS5813722A publication Critical patent/JPS5813722A/en
Publication of JPS6357525B2 publication Critical patent/JPS6357525B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、セルロース系繊維を基材とする活性
炭素繊維の製法、さらに詳しくいえば、セルロー
ス系繊維を炭素化処理して高い吸着性能と優れた
物性を有する新規な活性炭素繊維の製法に関する
ものである。 セルロース系繊維から活性炭素繊維を製法する
方法はいくつか提案され、例えばセルロース系繊
維を不活性雰囲気中で加熱処理したのち、加熱水
蒸気処理を施す方法、あるいはあらかじめ該繊維
を金属塩化物や強酸性物質で処理したのち、加熱
処理を施す方法などが知られている。(例えば特
公昭38−12376号、特開昭49−133624号、特開昭
49−134997号、特開昭50−20030号及び特公昭53
−30810号公報参照)。 しかし、これら従来公知の方法でセルロース系
繊維から得られる活性炭素繊維は、例えば吸着性
能が良好であつても概して繊維の脆化をきたし、
あるいは金属塩化物や強酸性物質などの処理を施
さない方法では、不活性雰囲気下の加熱処理や水
蒸気処理における昇温速度が制限され、また熱処
理のあとの降温に長時間をかける必要があるなど
の制約のため、熱処理工程が極めて長くなり、工
業的な不利は回避できない。 本発明者らは、上記のような従来法の諸欠点を
解消し、高い吸着性能を有するとともに優れた物
性を兼ね備えたセルロース系活性炭素繊維を短か
い処理時間で製造する方法について鋭意研究の結
果、極めて効果的な方法を見出した。 すなわち、本発明は、セルロース系繊維に、周
期表族の金属の臭化物及び窒素含有化合物を付
与したのち、該繊維を不活性雰囲気中で加熱して
脱水炭化処理し、次いで上記脱水炭化処理温度よ
り高い温度条件下で水蒸気と接触させることを特
徴とする活性炭素繊維の製法を提供する。 本発明の方法に用いられるセルロース系繊維と
しては、通常セルロース系繊維として知られたも
のが包含され、例えばもめん、麻、その他の植物
繊維などの天然セルロース繊維やビスコースレー
ヨン、ポリノジツク、銅アンモニアレーヨンなど
の再生セルロース繊維などを代表的に挙げること
ができる。また、これらのセルロース系繊維はト
ウ、ウエブ、フエルト、かせ、布帛などの形態で
用いることができる。 また、本発明の方法で用いる周期表族の金属
の臭化物としては、臭化ベリウム、臭化マグネシ
ウム、臭化カルシウム、臭化亜鉛、臭化ストロン
チウム、臭化カドミウム、臭化バリウムが挙げら
れるが、これらのうち、臭化マグネシウム、臭化
カルシウム、臭化亜鉛及び臭化バリウムが好適で
ある。これらの臭化物は単独でもよいが2種以上
を選択使用できる。 上記臭化物と組み合わせて用いられる窒素含有
化合物としては、例えば尿素、チオ尿素、炭酸ア
ンモニウム、硫酸アンモニウム、硫酸水素アンモ
ニウム、亜硫酸水素アンモニウム、チオ硫酸アン
モニウム、メラミン、グアニジン、グアニル尿
素、ジシアンジアミド、シアナミド、スルフアミ
ン酸アンモニウム、スルホン酸アミド及びカルボ
ン酸アミドなどを代表的に挙げることができる。
これらの化合物も単独で使用してもよいが、2種
以上を組合わせて用いることができる。その場
合、臭素と窒素を含む臭化アンモニウムを上記窒
素含有化合物と併用することもできる。 本発明においては、セルロース系繊維は加熱処
理に先だつて、上記臭化物と窒素含有化合物の両
成分がその表面に均一に付与される。該繊維への
両成分の付与は均一付着が得られるならばどんな
方法を用いてもよいが、通常適当な溶剤に付与す
べき成分を溶解し、その溶液に繊維を浸すことに
より容易に付与させることができる。臭化物と窒
素含有化合物は、それぞれの成分を溶解した溶液
浴を用いて別々に付与させてもよいが、操作上及
び付与量をコントロールする容易さから、両成分
を溶解する共通の溶剤を用いて混合溶液を調製し
付着させることが望ましい。このような共通溶剤
としては水がもつとも適当であり、水性有機溶剤
も好都合に利用できる。臭化物は水溶性である
が、窒素含有化合物の中には実質的に水不溶性の
ものもあり、そのような化合物を用いる場合には
親水性基を導入するなどの水溶性化処理を施すこ
とがよい。 セルロース系繊維への臭化物の付与量は、繊維
重量に基いて2〜15重量%が好ましく、さらに好
ましい付与量は5〜10重量%である。2重量%未
満の場合には高い吸着性能の炭素繊維が得られに
くく、また15重量%を超えると得られる活性炭素
繊維の強度が低下する傾向がみられる。 本発明の方法においては、臭化物と組合わせて
窒素含有化合物を併用することが特徴的である。
併用される窒素含有化合物は、上記臭化物の付与
量の1〜1.5倍量程度を繊維に付与させることが
好ましく、このようなそれぞれの範囲量の組合わ
せ付与量の場合に、得られる活性炭素繊維の吸着
性能が高められ、物理的強度の低下が好都合に防
止されて高い相乗効果が期待できる。 このようにして臭化物と窒素含有化合物を付与
させたセルロース系繊維は、不活性雰囲気中で加
熱処理され脱水炭化される。両成分を溶液で付着
させた場合の繊維の乾燥は、媒体である水又は有
機溶剤が蒸発逸散する程度の温度で行えばよく、
不活性雰囲気下の加熱処理における昇温過程を利
用することもできる。 不活性雰囲気中での加熱処理温度は250〜400
℃、好ましくは300〜350℃である。また加熱処理
時間は5〜30分程度でよく、従来の方法に比べ、
同一温度ではるかに短かい処理時間で脱水炭化が
完了する。繊維の脱水炭化を短時間に十分行うに
は250℃以上の温度が好ましく、また付与せしめ
た臭化物や窒素含有化合物の分解逸散を防止する
には400℃より高い温度にさらすことは避けるべ
きである。この加熱脱水炭化処理は一定温度で行
つてもよいが、昇温させながら行うこともでき
る。 本発明の方法において不活性雰囲気を形成させ
るための不活性ガス媒体としては、窒素、アルゴ
ン、二酸化炭素、一酸化炭素などの不活性ガスの
ほか、炭化水素類の燃焼ガスも用いることができ
る。 不活性雰囲気下の加熱処理を行つた繊維は、続
いて、前段の加熱処理温度より高い温度条件下で
水蒸気と接触させながら加熱処理する。このより
高温での水蒸気処理により、繊維表面に付着した
臭化物と窒素含有化合物は、繊維表面で分解して
ほとんど逸散する。付着物の分解逸散の際に、繊
維表面に吸着に有効な細孔が形成され、また繊維
が酸化されて化学的に活性な官能基が生成するも
のと考えられるが、そのような望ましい諸性質を
炭素繊維に与えるには、700℃以上の加熱処理条
件が好ましい。この処理温度は1000℃以上に高め
てもなんらさしつかえないが、最終的に得られる
活性炭素繊維の吸着性能の向上はほとんど期待で
きないので、700〜1000℃の水蒸気処理温度が有
利に採用される。また、この水蒸気処理は5〜30
分で十分であり、これも従来公知の方法に比べ短
時間で処理が完了するので工業的に極めて有利で
ある。 本発明の方法における水蒸気処理温度への昇温
は、なんら制約はなく、不活性雰囲気下での加熱
処理からつづけて処理される場合も、あるいはい
つたん冷却されたものを処理する場合も、任意の
昇温速度で加熱することができる。 水蒸気処理工程に使用される水蒸気容量は、繊
維が水蒸気の作用を受けるのに十分な容量であれ
ばよい。 本発明は、セルロース系繊維を2工程で加熱処
理して活性炭素繊維を製造する方法において、該
繊維に、加熱処理に先だつて周期表族の金属の
臭化物と窒素含有化合物を組み合わせて付与させ
ることに特徴があり、かかる前処理により高い吸
着性能と優れた強度を有するセルロース系活性炭
素繊維が容易に得られることが見出されたことに
基いている。両成分の組合わせ付与で上記のよう
な優れた効果が得られる理由は明らかではない
が、本発明者らは、族金属の臭化物がセルロー
ス系繊維に作用して脱水送化を促し、後の工程の
高温水蒸気処理において吸着に有効な繊維構造の
形成に効果的に作用するものと推定している。ま
た、窒素含有化合物は加熱処理における繊維の解
重合を抑制して繊維の強度低下を防止するものと
推定されるが、両成分の作用が有機的に相互に助
長し合つて、予期されない相乗効果が得られるも
のと考えられる。 以下に、実施例及び比較例により、本発明をさ
らに詳細に説明する。なお、実施例中ベンゼンの
吸着量は、JIS K1412に準じて測定した値であ
る。また繊維の強度、伸度等は、温度20℃、相対
湿度45%の雰囲気下で測定したものである。 実施例 1 銅アンモニアレーヨン糸(100デニール、60フ
イラメント)をかせ状にし、臭化亜鉛とチオ尿素
を含む水溶液で処理して乾燥し、繊維乾燥重量の
5%の臭化亜鉛と6%のチオ尿素を繊維に付与さ
せた。この繊維を窒素ガス中で300℃まで約7分
間で昇温し、300℃で10分間処理した。続いて、
800℃の温度で20分間、繊維が処理されるのに充
分な容量の水蒸気中で処理した。 得られた活性炭素繊維の諸性質を後掲第1表に
示す。 実施例 2 ビスコースレーヨン糸(120デニール、50フイ
ラメント)をかせ状にし、臭化マグネシウムとス
ルフアミン酸アンモニウムを含む水溶液で処理し
た後乾燥し、繊維乾燥重量の9%の臭化マグネシ
ウムと9%のスルフアミン酸アンモニウムを繊維
に付着させた。この繊維を炭酸ガス中で350℃の
温度で15分間処理した。次いで繊維が処理される
のに充分な容量の水蒸気中で750℃の温度で15分
間処理した。 以上の処理により得られた活性炭素繊維の性質
を第1表に示す。 実施例 3 ビスコースレーヨン平織布(経糸、緯糸とも
120デニール、50フイラメント糸)を、臭化バリ
ウムと硫酸アンモニウムを含む水溶液で処理し
て、織物乾燥重量の10%の臭化バリウムと12%の
硫酸アンモニウムを付着させた。この織物を窒素
ガス中で200℃より25分掛けて300℃の温度まで昇
温しながら処理したのち、700℃の温度で織物量
を上廻わる容量の水蒸気で処理した。こうして得
られた活性炭素繊維織物の性質を第1表に示す。 実施例 4 銅アンモニアレーヨン糸よりなる不織布(目付
30g/m2)を臭化カルシウムとジシアンジアミド
を含む水溶液で処理して、不織布の乾燥重量の15
%の臭化カルシウムと19%のジシアンジアミドを
不織布に付着させ乾燥した。この不織布を炭酸ガ
ス中、400℃の温度で5分間処理したのち、850℃
の温度で不織布の量をうわまわる容量の水蒸気で
10分間処理した。 得られた活性炭素繊維不織布の性質を第1表に
示す。 実施例 5 銅アンモニアレーヨンステープルよりなるニー
ドルパンチフエルト(目付300g/m2)を臭化亜
鉛とチオ硫酸アンモニウムを含む水溶液で処理し
たのち、乾燥して乾燥フエルト重量の7%の臭化
亜鉛と9%のチオ硫酸アンモニウムを付着させ
た。 このフエルトを窒素ガス中290℃の温度で10分
間処理し、続いてフエルトが処理されるのに充分
な容量の水蒸気中で850℃の温度で7分間処理し
た。このようにして得られた炭素繊維フエルトの
性質を第1表に示す。
The present invention relates to a method for manufacturing activated carbon fibers based on cellulose fibers, and more specifically, to a method for manufacturing novel activated carbon fibers having high adsorption performance and excellent physical properties by carbonizing cellulose fibers. It is. Several methods have been proposed for producing activated carbon fibers from cellulose fibers. For example, cellulose fibers are heat treated in an inert atmosphere and then heated with steam, or the fibers are treated with metal chlorides or strong acids in advance. A method is known in which a substance is treated with a substance and then a heat treatment is performed. (For example, JP-A-38-12376, JP-A-49-133624, JP-A-Sho.
No. 49-134997, Japanese Patent Application Publication No. 1972-20030, and Special Publication No. 1973
-Refer to Publication No. 30810). However, activated carbon fibers obtained from cellulose fibers by these conventionally known methods generally cause fiber embrittlement, even if they have good adsorption performance.
Alternatively, methods that do not involve treatment with metal chlorides or strong acidic substances limit the rate of temperature rise during heat treatment in an inert atmosphere or steam treatment, and require a long time to cool down after heat treatment. Due to this restriction, the heat treatment process becomes extremely long, which is an unavoidable industrial disadvantage. The present inventors have conducted extensive research into a method for producing cellulose-based activated carbon fibers that have both high adsorption performance and excellent physical properties in a short processing time by eliminating the drawbacks of the conventional methods described above. discovered a highly effective method. That is, the present invention provides cellulosic fibers with a bromide of a metal in the periodic table group and a nitrogen-containing compound, and then heats the fibers in an inert atmosphere to dehydrate and carbonize the fibers, and then heats the fibers at a temperature lower than the dehydration and carbonization temperature. Provided is a method for producing activated carbon fiber, which is characterized by contacting with water vapor under high temperature conditions. The cellulose fibers used in the method of the present invention include those commonly known as cellulose fibers, such as natural cellulose fibers such as rice noodles, hemp, and other vegetable fibers, viscose rayon, polynosic, and cuprammonium rayon. Typical examples include regenerated cellulose fibers such as . Further, these cellulose fibers can be used in the form of tow, web, felt, skein, cloth, etc. Furthermore, examples of bromides of metals from the periodic table group used in the method of the present invention include beryum bromide, magnesium bromide, calcium bromide, zinc bromide, strontium bromide, cadmium bromide, and barium bromide. Among these, magnesium bromide, calcium bromide, zinc bromide and barium bromide are preferred. These bromides may be used alone or in combination of two or more. Examples of nitrogen-containing compounds used in combination with the bromide include urea, thiourea, ammonium carbonate, ammonium sulfate, ammonium hydrogen sulfate, ammonium hydrogen sulfite, ammonium thiosulfate, melamine, guanidine, guanylurea, dicyandiamide, cyanamide, ammonium sulfamate, Representative examples include sulfonic acid amides and carboxylic acid amides.
Although these compounds may be used alone, two or more types can be used in combination. In that case, ammonium bromide containing bromine and nitrogen can also be used in combination with the above nitrogen-containing compound. In the present invention, both the bromide and nitrogen-containing compounds are uniformly applied to the surface of cellulose fibers prior to heat treatment. Any method may be used to apply both components to the fibers as long as uniform adhesion can be obtained, but it is usually easily applied by dissolving the components to be applied in a suitable solvent and dipping the fibers in the solution. be able to. Bromide and nitrogen-containing compounds may be applied separately using a solution bath in which each component is dissolved, but for operational reasons and ease of controlling the amount applied, it is preferable to use a common solvent that dissolves both components. It is desirable to prepare and apply a mixed solution. Water is suitable as such a common solvent, and aqueous organic solvents can also be conveniently used. Bromide is water-soluble, but some nitrogen-containing compounds are essentially water-insoluble, and when using such compounds, it is necessary to perform a treatment to make them water-soluble, such as introducing a hydrophilic group. good. The amount of bromide applied to cellulose fibers is preferably 2 to 15% by weight, more preferably 5 to 10% by weight, based on the weight of the fibers. When it is less than 2% by weight, it is difficult to obtain carbon fibers with high adsorption performance, and when it exceeds 15% by weight, the strength of the obtained activated carbon fiber tends to decrease. The method of the present invention is characterized in that a nitrogen-containing compound is used in combination with bromide.
It is preferable that the nitrogen-containing compound used in combination be applied to the fibers in an amount of about 1 to 1.5 times the amount of the bromide mentioned above, and when the amount of the nitrogen-containing compound is applied in combination within these ranges, the resulting activated carbon fiber The adsorption performance of the compound is enhanced, the decrease in physical strength is advantageously prevented, and a high synergistic effect can be expected. The cellulosic fibers to which bromide and nitrogen-containing compounds have been added in this manner are heat treated in an inert atmosphere and dehydrated and carbonized. When both components are attached as a solution, the fibers may be dried at a temperature that allows the water or organic solvent as a medium to evaporate and evaporate.
It is also possible to utilize the temperature raising process in heat treatment under an inert atmosphere. Heat treatment temperature in inert atmosphere is 250-400
℃, preferably 300-350℃. In addition, the heat treatment time only takes about 5 to 30 minutes, compared to conventional methods.
Dehydration and carbonization can be completed in a much shorter treatment time at the same temperature. In order to sufficiently dehydrate and carbonize the fibers in a short period of time, a temperature of 250°C or higher is preferable, and in order to prevent the decomposition and escape of added bromides and nitrogen-containing compounds, exposure to temperatures higher than 400°C should be avoided. be. This heating dehydration carbonization treatment may be carried out at a constant temperature, but it can also be carried out while increasing the temperature. As an inert gas medium for forming an inert atmosphere in the method of the present invention, in addition to inert gases such as nitrogen, argon, carbon dioxide, and carbon monoxide, combustion gases of hydrocarbons can also be used. The fibers that have been heat-treated in an inert atmosphere are then heat-treated while being brought into contact with water vapor at a temperature higher than the previous heat treatment temperature. By this steam treatment at a higher temperature, most of the bromide and nitrogen-containing compounds adhering to the fiber surface are decomposed and dissipated on the fiber surface. It is thought that when the deposits decompose and escape, pores effective for adsorption are formed on the fiber surface, and the fibers are oxidized to produce chemically active functional groups. In order to impart properties to carbon fibers, heat treatment conditions of 700° C. or higher are preferable. Although there is no problem even if the treatment temperature is increased to 1000°C or higher, it is hardly expected to improve the adsorption performance of the activated carbon fibers finally obtained, so a steam treatment temperature of 700 to 1000°C is advantageously employed. In addition, this steam treatment
This is also extremely advantageous industrially since the treatment can be completed in a shorter time than conventionally known methods. There are no restrictions on raising the temperature to the steam treatment temperature in the method of the present invention, and it may be carried out as desired, whether the treatment is continued from the heat treatment under an inert atmosphere, or when the treatment is carried out after cooling. can be heated at a heating rate of . The steam capacity used in the steam treatment step may be sufficient as long as the fibers are subjected to the action of the steam. The present invention provides a method for producing activated carbon fibers by heat-treating cellulose fibers in two steps, which includes applying a combination of a bromide of a periodic table group metal and a nitrogen-containing compound to the fibers prior to the heat treatment. This is based on the discovery that cellulose-based activated carbon fibers having high adsorption performance and excellent strength can be easily obtained by such pretreatment. Although it is not clear why the above-mentioned excellent effects can be obtained by applying a combination of both components, the present inventors have found that group metal bromide acts on cellulose fibers to promote dehydration and improve the subsequent It is presumed that it acts effectively on the formation of a fibrous structure that is effective for adsorption during the high-temperature steam treatment in the process. Furthermore, it is assumed that the nitrogen-containing compound suppresses fiber depolymerization during heat treatment and prevents a decrease in fiber strength, but the actions of both components organically promote each other, resulting in an unexpected synergistic effect. It is thought that this can be obtained. EXAMPLES Below, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In addition, the adsorption amount of benzene in the examples is a value measured according to JIS K1412. In addition, the strength, elongation, etc. of the fibers were measured under an atmosphere of a temperature of 20° C. and a relative humidity of 45%. Example 1 A cuprammonium rayon yarn (100 denier, 60 filaments) was formed into a skein, treated with an aqueous solution containing zinc bromide and thiourea, dried, and treated with 5% zinc bromide and 6% thiourea of the dry weight of the fiber. Urea was added to the fibers. This fiber was heated to 300°C in nitrogen gas for about 7 minutes, and then treated at 300°C for 10 minutes. continue,
The fibers were treated at a temperature of 800° C. for 20 minutes in a volume of steam sufficient to treat the fibers. Various properties of the obtained activated carbon fiber are shown in Table 1 below. Example 2 Viscose rayon yarn (120 denier, 50 filaments) was formed into a skein, treated with an aqueous solution containing magnesium bromide and ammonium sulfamate, dried, and treated with 9% magnesium bromide and 9% of the fiber dry weight. Ammonium sulfamate was deposited on the fibers. This fiber was treated in carbon dioxide gas at a temperature of 350°C for 15 minutes. The fibers were then treated for 15 minutes at a temperature of 750° C. in a volume of steam sufficient to treat the fibers. Table 1 shows the properties of the activated carbon fibers obtained by the above treatment. Example 3 Viscose rayon plain woven fabric (both warp and weft
A 120 denier, 50 filament yarn) was treated with an aqueous solution containing barium bromide and ammonium sulfate to deposit 10% barium bromide and 12% ammonium sulfate of the dry weight of the fabric. This fabric was treated in nitrogen gas while increasing the temperature from 200°C to 300°C over 25 minutes, and then treated with steam at a temperature of 700°C in an amount that exceeded the amount of fabric. The properties of the activated carbon fiber fabric thus obtained are shown in Table 1. Example 4 Nonwoven fabric made of copper ammonia rayon yarn (basis weight
30 g/m 2 ) was treated with an aqueous solution containing calcium bromide and dicyandiamide to reduce the dry weight of the nonwoven fabric to 15
% calcium bromide and 19% dicyandiamide were applied to the nonwoven fabric and dried. This nonwoven fabric was treated in carbon dioxide gas at a temperature of 400℃ for 5 minutes, and then heated to 850℃.
With a volume of water vapor that exceeds the amount of nonwoven fabric at a temperature of
Treated for 10 minutes. Table 1 shows the properties of the activated carbon fiber nonwoven fabric obtained. Example 5 Needle punched felt (fabric weight 300 g/m 2 ) made of cuprammonium rayon staples was treated with an aqueous solution containing zinc bromide and ammonium thiosulfate, and then dried to give 7% of the weight of the dry felt zinc bromide and 9% of the weight of the dry felt. of ammonium thiosulfate was deposited. The felt was treated in nitrogen gas at a temperature of 290°C for 10 minutes, followed by a temperature of 850°C for 7 minutes in a volume of steam sufficient to treat the felt. Table 1 shows the properties of the carbon fiber felt thus obtained.

【表】 で引張り破断する時の強力。
比較例 1 実施例1で用いたのと同じ銅アンモニアレーヨ
ン糸のかせに5%の臭化亜鉛のみ、6%のチオ尿
素のみを付着させたものをそれぞれ調製した。こ
れらのかせと臭化亜鉛及びチオ尿素を付着させな
いかせを実施例1と同じ熱処理及び水蒸気処理を
した。 得られた活性炭素繊維の諸性質を後掲第2表に
まとめて示す。 比較例 2 実施例2で用いたのと同じビスコースレーヨン
糸のかせで、実施例2と同じような処理で9%の
臭化マグネシウムのみ、9%のスルフアミン酸ア
ンモニウムのみを付着させたものをそれぞれ調製
した。この各々のかせを実施例2と同じように熱
処理した後水蒸気処理を施した。一方、臭化マグ
ネシウム及びスルフアミン酸アンモニウムを付着
させないかせを同じように熱処理した後水蒸気処
理をした。 得られた活性炭素繊維の性質を第2表にまとめ
て示す。 比較例 3 実施例3で用いたのと同じビスコースレーヨン
平織布で、10%の臭化バリウムのみ、12%の硫酸
アンモニウムのみを付着させたものをそれぞれ調
製した。これらの織物と臭化バリウム及び硫酸ア
ンモニウム両者を付着させない織物を実施例3と
同じように熱処理、続いて水蒸気処理をした。こ
こに得られた炭素繊維平織布の性質を第2表にま
とめて示す。 比較例 4 実施例4で用いたのと同じ銅アンモニアレーヨ
ン糸よりなる不織布で、15%の臭化カルシウムの
み、19%のジシアンジアミドのみを付着させたも
のをそれぞれ調製した。一方、臭化カルシウム及
びジシアンジアミドを付着しない実施例4と同じ
不織布を調製した。 これらの不織布を実施例4と同じように、熱処
理及び水蒸気処理をした。 得られた炭素繊維不織布の性質を第2表に示
す。
[Table] Strength at tensile breakage.
Comparative Example 1 A skein of the same copper ammonia rayon thread as used in Example 1 was prepared with 5% zinc bromide and 6% thiourea attached respectively. These skeins and the skeins to which zinc bromide and thiourea were not attached were subjected to the same heat treatment and steam treatment as in Example 1. Various properties of the obtained activated carbon fibers are summarized in Table 2 below. Comparative Example 2 A skein of the same viscose rayon thread as used in Example 2 was treated in the same manner as in Example 2 to which only 9% magnesium bromide and 9% ammonium sulfamate were attached. Each was prepared. Each of the skeins was heat treated in the same manner as in Example 2, and then subjected to steam treatment. On the other hand, a skein to which magnesium bromide and ammonium sulfamate were not attached was similarly heat-treated and then steam-treated. The properties of the obtained activated carbon fibers are summarized in Table 2. Comparative Example 3 The same plain woven viscose rayon fabric as used in Example 3 was prepared with only 10% barium bromide and 12% ammonium sulfate attached. These fabrics and fabrics to which neither barium bromide nor ammonium sulfate were attached were heat treated in the same manner as in Example 3, followed by steam treatment. The properties of the carbon fiber plain woven fabric obtained here are summarized in Table 2. Comparative Example 4 Nonwoven fabrics made of the same copper ammonia rayon yarn as used in Example 4 were prepared, to which only 15% of calcium bromide and only 19% of dicyandiamide were attached. On the other hand, the same nonwoven fabric as in Example 4 without adhering calcium bromide and dicyandiamide was prepared. These nonwoven fabrics were subjected to heat treatment and steam treatment in the same manner as in Example 4. The properties of the obtained carbon fiber nonwoven fabric are shown in Table 2.

【表】 以上の実施例及び比較例から明らかなように、
本発明の方法は、高い吸着性能と優れた強度、伸
度を持つセルロース系活性炭素繊維を与える。ま
た、本発明の方法は、従来法に比べて短時間の熱
処理及び水蒸気処理で済み、工業的に極めて有利
である。
[Table] As is clear from the above examples and comparative examples,
The method of the present invention provides cellulosic activated carbon fibers with high adsorption performance and excellent strength and elongation. Further, the method of the present invention requires shorter heat treatment and steam treatment than conventional methods, and is extremely advantageous industrially.

Claims (1)

【特許請求の範囲】 1 セルロース系繊維に、周期表族の金属の臭
化物及び窒素含有化合物を付与したのち、該繊維
を不活性雰囲気中で加熱して脱水炭化処理し、次
いで上記脱水炭化処理温度より高い温度条件下で
水蒸気と接触させることを特徴とする活性炭素繊
維の製法。 2 周期表族の金属の臭化物の付与量が繊維の
重量に基いて2〜15重量%でかつ窒素含有化合物
の付与量が上記臭化物の1〜1.5重量倍である特
許請求の範囲第1項記載の製法。 3 不活性雰囲気中での脱水炭化処理を250〜400
℃の温度で行なう特許請求の範囲第1項又は第2
項記載の製法。 4 水蒸気と接触させる加熱処理を700〜1000℃
温度で行う特許請求の範囲第1〜3項のいずれか
に記載の製法。
[Scope of Claims] 1. After adding a bromide of a periodic table group metal and a nitrogen-containing compound to cellulose fibers, the fibers are heated in an inert atmosphere to undergo a dehydration carbonization treatment, and then the dehydration carbonization treatment temperature is A process for producing activated carbon fibers characterized by contact with water vapor under higher temperature conditions. 2. Claim 1, wherein the amount of the bromide of a periodic table group metal is 2 to 15% by weight based on the weight of the fiber, and the amount of the nitrogen-containing compound is 1 to 1.5 times the weight of the bromide. manufacturing method. 3 Dehydration carbonization treatment in an inert atmosphere for 250 to 400
Claim 1 or 2 which is carried out at a temperature of °C.
Manufacturing method described in section. 4 Heat treatment by contacting with water vapor at 700-1000℃
The manufacturing method according to any one of claims 1 to 3, which is carried out at temperature.
JP56108971A 1981-07-13 1981-07-13 Production of activated carbon fiber Granted JPS5813722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108971A JPS5813722A (en) 1981-07-13 1981-07-13 Production of activated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108971A JPS5813722A (en) 1981-07-13 1981-07-13 Production of activated carbon fiber

Publications (2)

Publication Number Publication Date
JPS5813722A JPS5813722A (en) 1983-01-26
JPS6357525B2 true JPS6357525B2 (en) 1988-11-11

Family

ID=14498287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108971A Granted JPS5813722A (en) 1981-07-13 1981-07-13 Production of activated carbon fiber

Country Status (1)

Country Link
JP (1) JPS5813722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950929A (en) * 2014-05-23 2014-07-30 福建农林大学 Method for preparing granular active carbon by adopting chemical method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104562B2 (en) * 1985-07-24 1994-12-21 大阪瓦斯株式会社 Activated carbon fiber manufacturing method
JPS62141126A (en) * 1985-12-10 1987-06-24 Agency Of Ind Science & Technol Production of activated carbon fiber
JP2630142B2 (en) * 1991-12-11 1997-07-16 株式会社イナックス Faucet device
JP2002146636A (en) * 2000-11-10 2002-05-22 Tokai Senko Kk Activated carbon fibers using natural cellulosic fibers as precursor
KR100398062B1 (en) * 2001-05-11 2003-09-19 한국과학기술연구원 High functional viscose rayon activated carbon and a process of making them
KR102243001B1 (en) * 2013-10-29 2021-04-22 코오롱인더스트리 주식회사 Activated Carbon Fiber and Method for Preparing the Same
DE102020113807A1 (en) * 2020-05-22 2021-11-25 centrotherm international AG Continuous fibers based on cellulose and / or cellulose derivatives, processes for their production and their use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950929A (en) * 2014-05-23 2014-07-30 福建农林大学 Method for preparing granular active carbon by adopting chemical method

Also Published As

Publication number Publication date
JPS5813722A (en) 1983-01-26

Similar Documents

Publication Publication Date Title
US4362646A (en) Process for the production of fibrous activated carbon
US5690874A (en) Fiber production process
RU2502836C2 (en) Method of producing carbon fibre materials from viscose fibres
JP6470750B2 (en) Activated carbon fiber and method for producing the same
US3242000A (en) Impregnated carbonized acrylic textile product and method for producing same
US4080417A (en) Process for producing carbon fibers having excellent properties
JP2001516404A (en) Method for producing active fabric made of carbon fiber
JPS6357525B2 (en)
US3639140A (en) Process for carbonized cellulose fiber or the products thereof
US4714649A (en) Carbonizable fabrics of activated, carbonized fibers and differently activated or unactivated fibers
US4661336A (en) Pretreatment of pan fiber
US3661616A (en) Process for carbonizing cellulose fiber or the products thereof
US3413094A (en) Method of decreasing the metallic impurities of fibrous carbon products
RU2016146C1 (en) Method of carbon fibrous material preparing
US3847833A (en) Flexible activated carbon fibers manufactured from salt impregnated cellulosic fibers
GB1600640A (en) Method of removing alkali and alkaline earth impurities from carbonizable polyacrylonitrile material
JPS59116422A (en) Treatment of gas discharged from flame resistant treatment process in manufacture of carbon fiber
DE2500307C3 (en) Process for the production of activated carbon fibers
KR0151987B1 (en) Method of manufacturing carbon fiber
US3661503A (en) Process for dehydrating cellulosic textile material
RU2679265C2 (en) Method for finishing lyocell hydrated cellulose fiber in producing precursor of carbon fiber material
JPS6025528B2 (en) activated carbon fiber
RU2669273C2 (en) Method for obtaining lyocell hydrated cellulose precursor of carbon fibre material
JPS6158403B2 (en)
KR100487247B1 (en) Mesoporous Caborn Fibers and Method of Preparation Thereof