JPS5813722A - Production of activated carbon fiber - Google Patents

Production of activated carbon fiber

Info

Publication number
JPS5813722A
JPS5813722A JP56108971A JP10897181A JPS5813722A JP S5813722 A JPS5813722 A JP S5813722A JP 56108971 A JP56108971 A JP 56108971A JP 10897181 A JP10897181 A JP 10897181A JP S5813722 A JPS5813722 A JP S5813722A
Authority
JP
Japan
Prior art keywords
bromide
fibers
fiber
temperature
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56108971A
Other languages
Japanese (ja)
Other versions
JPS6357525B2 (en
Inventor
Katsuichi Kimoto
木元 勝一
Shigeyoshi Sunada
砂田 誉喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56108971A priority Critical patent/JPS5813722A/en
Publication of JPS5813722A publication Critical patent/JPS5813722A/en
Publication of JPS6357525B2 publication Critical patent/JPS6357525B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:A bromide of specific metal element and a nitrogen-containing compound are applied to cellulosic fiber and they are heat treated in two stages to produce the titled fiber of high adsorption performance and strength in a short treatment hours. CONSTITUTION:A bromide of a metal in group II of the periodic table such as zinc bromide and a nitrogen-containing compound such as thiourea are applied to cellulosic fiber by dipping or the like process by 2-5wt% based on the fiber and 1-1.5 times the weight of the bromide repectively. Then, the resultant fiber is heated in an inert atmosphere at 250-400 deg.C to effect dehydration and carbonization, then brought into contact with steam in a temperature range from 700-1,000 deg.C.

Description

【発明の詳細な説明】 本発明は、セルロース系繊維を基材とする活性炭素繊維
の製法、さらに詳しくいえば、セルロース系繊維を炭素
化処理して高い吸着性能と優れた物性を有する新規な活
性炭素繊維の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing activated carbon fibers based on cellulose fibers, and more specifically, a novel method for producing activated carbon fibers having high adsorption performance and excellent physical properties by carbonizing cellulose fibers. This invention relates to a method for producing activated carbon fiber.

セルロース系繊維から活性炭素繊維を製造する方法はい
くつか提案され、例えばセルロース系繊維を不活性雰囲
気中で加熱処理したのち、加熱水蒸気処理を施す方法、
あるいはあらかじめ該繊維を金属塩化物や強酸性物質で
処理したのち、加熱処理を施す方法な・どが知られてい
る。
Several methods have been proposed for producing activated carbon fibers from cellulose fibers, such as a method in which cellulose fibers are heat treated in an inert atmosphere and then subjected to heated steam treatment;
Alternatively, a method is known in which the fibers are treated in advance with a metal chloride or a strong acidic substance and then subjected to heat treatment.

しかし、これら従来公知の方法でセルロース系繊維から
得られる活性炭素繊維は、例えば吸着性能が良好であっ
ても概して繊維の脆化をきたし、あるいは金属塩化物や
強酸性物質などの処理を施さない方法では、不活性雰囲
気下の加熱処理や水蒸気処理における昇温速度が制限さ
れ、また熱処理のあとの降温に長時間をかける必要があ
るなどの制約のため、熱処理工程が極めて長くなシ、工
業的な不利は回避できない。
However, activated carbon fibers obtained from cellulose fibers by these conventionally known methods generally become brittle even if they have good adsorption performance, or are not treated with metal chlorides or strong acid substances. However, in this method, the heat treatment process is extremely long, and industrial disadvantage cannot be avoided.

本発明者らは、上記のような従来法の諸欠点を解消し、
高い吸着性能を有するとともに優れた物性を兼ね備えた
セルロース系活性炭素繊維を短かい処理時間で製造する
方法について鋭意研究の結果、極めて効巣的な方法を見
出した。
The present inventors solved the various drawbacks of the conventional method as described above,
As a result of intensive research into a method for producing cellulose-based activated carbon fibers that have both high adsorption performance and excellent physical properties in a short processing time, we have discovered an extremely effective method.

すなわち、本発明は、セルロース系繊維に、周期表■族
の金属の臭化物及び窒素含有化合物を付与したのち、該
繊維を不活性雰囲気中で加熱して脱水炭化処理し、次い
で上記脱水炭化処理温度より高い温度条件下で水蒸気と
接触させることを特徴とする活性炭素繊維の製法を提供
する。
That is, the present invention provides cellulosic fibers with a bromide and a nitrogen-containing compound of metals in Group I of the periodic table, and then heats the fibers in an inert atmosphere to perform a dehydration carbonization treatment, followed by the dehydration carbonization treatment temperature described above. Provided is a method for producing activated carbon fiber, which is characterized by contacting with water vapor under higher temperature conditions.

本発明の方法に用いられるセルロース系繊維としては、
通常セルロース系繊維としそ知られたものが包含され、
例えばもめん、麻、その他の植物繊維などの天然セルロ
ース繊維やビスコースレーヨン、ポリノジック、銅アン
モニアレーヨンなどの再生セルロース繊維などを代表的
に挙げることができる。また、これらのセルロース系繊
維はトウ、ウェブ、フェルト、かぜ、布帛などの形態で
用いることができる。
The cellulose fibers used in the method of the present invention include:
Usually includes what is known as cellulose fiber,
Typical examples include natural cellulose fibers such as noodles, hemp, and other vegetable fibers, and regenerated cellulose fibers such as viscose rayon, polynosic, and copper ammonia rayon. Furthermore, these cellulose fibers can be used in the form of tow, web, felt, wind, cloth, and the like.

また、本発明の方法で用いる周期表「族の金属の臭化物
としては、臭化ベリラム、臭化マグネシウム、臭化カル
シウム、臭化亜鉛、臭化ストロンチウム、臭化カドミウ
ム、臭化バリウムが挙げられるが、これらのうち、臭化
マグネシウム、臭化カルシウム、臭化亜鉛及び臭化バリ
ウムが好適である。これらの臭化物は単独でもよいが2
種以上を選択使用できる。
In addition, examples of the bromides of metals in group "Group" of the periodic table used in the method of the present invention include beryllum bromide, magnesium bromide, calcium bromide, zinc bromide, strontium bromide, cadmium bromide, and barium bromide. Among these, magnesium bromide, calcium bromide, zinc bromide and barium bromide are preferred.These bromides may be used alone, but 2
You can select and use more than one species.

上記臭化物と組み合わせて用いられる窒素含有化合物と
しては′、例えば尿素、チオ尿素、炭酸アンモニウム、
硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸水素
アンモニウム、チオ硫酸アンモニウム、メラミン−グア
ニジン、′グアニル尿素。
Examples of nitrogen-containing compounds used in combination with the bromides include urea, thiourea, ammonium carbonate,
Ammonium sulfate, ammonium hydrogen sulfate, ammonium hydrogen sulfite, ammonium thiosulfate, melamine-guanidine, 'guanylurea.

ジシアンジアミド、シ亨ナミド、スルファミン酸アンモ
ニウム、スルホン−アミド及びカルボン酸アミドなどを
代表的に挙げることができる。これらの化合物も単独で
使用してもよいが、2種以上を組合わせて用いることが
できる。その場合、臭素と窒素を含む臭化アンモニウム
を上記窒素含有化合物と併用することもできる。
Representative examples include dicyandiamide, cyanamide, ammonium sulfamate, sulfonamide, and carboxylic acid amide. Although these compounds may be used alone, two or more types can be used in combination. In that case, ammonium bromide containing bromine and nitrogen can also be used in combination with the above nitrogen-containing compound.

本発明においては、セルロース系繊維は加熱処理に先だ
って、上記臭化物と窒素含有化合物の両成分がその表面
に均一に付与される。該繊維への両成分の付与は均一付
着が得られるならばどんな方法を用いてもよいが、通常
適当な溶剤に付与すべき成分を溶解し、その溶液に繊維
を浸すことにより容易に付与させることができる。臭化
物と窒素含有化合物は、それぞれの成分を溶解した溶液
浴を用いて別々に付与させてもよいが、操作上及び付与
量をコントロールする容易さから、両成分を溶解する共
通の溶剤を用いて混合溶液を調製し付着させることが望
ましい。このような共通溶剤としては水がもつとも適当
であシ、水性有機溶剤′も好都合に利用できる。臭化物
は水溶性であるが、窒素含有化合物の中には実質的に水
不溶性のものもあり、そのような化合物を用いる場合に
は親水4&其か導入+ふたどの水溶性化処理を施すこと
がよい。
In the present invention, both the bromide and nitrogen-containing compounds are uniformly applied to the surface of cellulose fibers prior to heat treatment. Any method may be used to apply both components to the fibers as long as uniform adhesion can be obtained, but it is usually easily applied by dissolving the components to be applied in a suitable solvent and dipping the fibers in the solution. be able to. Bromide and nitrogen-containing compounds may be applied separately using a solution bath in which each component is dissolved, but for operational reasons and ease of controlling the amount applied, it is preferable to use a common solvent that dissolves both components. It is desirable to prepare and apply a mixed solution. Water is suitable as such a common solvent, and aqueous organic solvents can also be conveniently used. Bromide is water-soluble, but some nitrogen-containing compounds are substantially water-insoluble, and when using such compounds, it is necessary to perform water-solubilization treatments such as hydrophilic 4 & or introduction + lid. good.

セルロース系繊維への臭化物の付与量は、繊維重量に基
いて2〜15重量%が好ましく、さらに好ましい付与量
は5〜10重量%である。2重量%未渦の場合には高い
吸着性能の炭素繊維が得ら・れにくく、また15重量%
を超えると得られる活性炭素繊維の強度が低下する傾向
がみられる。
The amount of bromide applied to cellulose fibers is preferably 2 to 15% by weight, more preferably 5 to 10% by weight, based on the weight of the fibers. If 2% by weight is not swirled, it is difficult to obtain carbon fiber with high adsorption performance, and if 15% by weight is not used, it is difficult to obtain carbon fiber with high adsorption performance.
When the carbon fiber content exceeds 100%, the strength of the obtained activated carbon fiber tends to decrease.

本発明の方法においては、臭化物と組合わせて窒素含有
化合物を併用することが特徴的である。
The method of the present invention is characterized in that a nitrogen-containing compound is used in combination with bromide.

併用される窒素含有化合物は、上記臭化物の付与量の1
〜1.5倍量程度を繊維に付与させることが好ましく、
このようなそれぞれの範囲量の組合わせ付与量の場合に
、得られる活性炭素繊維の吸着性能が高められ、物理的
強度の低下が好都合に防止されて高い相乗効果が期待で
きる。
The nitrogen-containing compound used in combination is 1 of the amount of bromide applied above.
It is preferable to apply about 1.5 times the amount to the fibers,
In the case of a combined application amount of each of these ranges, the adsorption performance of the resulting activated carbon fibers is enhanced, a decrease in physical strength is advantageously prevented, and a high synergistic effect can be expected.

このようにして臭化物と窒素含有化合物を付与させたセ
ルロース系繊維は、不活性雰囲気中で加熱処理され脱水
炭化される。両成分を溶液で付着させた場合の繊維の乾
燥は1、媒体である水又は有機溶剤が蒸発逸散する程度
の温度で行えばよく、不活性雰囲気下の加熱処理におけ
る昇温過程を利用することもできる。
The cellulosic fibers to which bromide and nitrogen-containing compounds have been added in this manner are heat treated in an inert atmosphere and dehydrated and carbonized. When both components are attached as a solution, drying of the fibers can be carried out at a temperature that allows the water or organic solvent as a medium to evaporate and evaporate, using the temperature raising process during heat treatment under an inert atmosphere. You can also do that.

不活性雰囲気中での加熱処理温度は250〜400℃、
好ましくは300〜350℃である。また加熱処理時間
は5〜30分程度でよく、従来の方法に比べ、同一温度
ではるかに短かい処理時間で脱水炭化が完了する。繊維
の脱水炭化を短時間に十分行うには250℃以上の温度
が好ましく、また付与せしめた臭化物や窒素含有化合物
の分解逸散を防止するには400℃よシ高い温度にさら
すことは避けるべきである。この加熱脱水炭化処理は一
定温度で行ってもよいが、昇温させながら行うこともで
きる。
The heat treatment temperature in an inert atmosphere is 250 to 400°C,
Preferably it is 300-350°C. Further, the heat treatment time may be about 5 to 30 minutes, and dehydration and carbonization can be completed in a much shorter treatment time at the same temperature than in conventional methods. In order to sufficiently dehydrate and carbonize the fibers in a short time, a temperature of 250°C or higher is preferable, and in order to prevent the decomposition and escape of added bromides and nitrogen-containing compounds, exposure to temperatures higher than 400°C should be avoided. It is. This heating dehydration carbonization treatment may be carried out at a constant temperature, but it can also be carried out while increasing the temperature.

本発明の方法において不活性雰囲気を形成させるだめの
不活性ガス媒体としては、窒素、アルゴン、二酸化炭素
、−酸化炭素などの不活性ガスのほか、炭化水素類の燃
焼ガスも用いることができるO 不活性雰囲気下の加熱処理を行った繊維は、続いて、前
段の加熱処理温度より高い温度条件下で水蒸気と接触さ
せながら加熱処理する。このより高温での水蒸気処理に
より、繊維表面に付着した臭化物と窒素含有化合物は、
繊維表面で分解してほとんど逸散する。付着物の分解逸
散の際に、繊維表面に吸着に有効な細孔が形成され、ま
た繊維が酸化されて化学的に活性な官能基が生成するも
のと考えられるが、そのような望ましい諸性質を炭素繊
維に与えるには、7001:以上の加熱処理条件が好ま
しい。この処理温度は1000 ℃以上に高めてもなん
らさしつかえないが、最終的に得られる活性炭素繊維の
吸着性能の向上はほとんど期待できないので、700〜
1000 ℃の水蒸気処理温度が有利に採用される。ま
た、この水蒸気処理は5〜30分で十分であシ、これも
従来公知の方法に比べ短時間で処理が完了するので工業
的に極めて有利である。
As the inert gas medium for forming the inert atmosphere in the method of the present invention, in addition to inert gases such as nitrogen, argon, carbon dioxide, and carbon oxide, combustion gases of hydrocarbons can also be used. The fibers that have been heat-treated in an inert atmosphere are then heat-treated while being brought into contact with water vapor at a temperature higher than the previous heat treatment temperature. This higher temperature steam treatment removes bromides and nitrogen-containing compounds that adhere to the fiber surface.
Most of it dissipates by decomposing on the fiber surface. It is thought that when the deposits decompose and escape, pores effective for adsorption are formed on the fiber surface, and the fibers are oxidized to produce chemically active functional groups. In order to impart properties to carbon fibers, heat treatment conditions of 7001: or higher are preferable. There is no harm in raising this treatment temperature to 1000°C or higher, but since it is hardly expected to improve the adsorption performance of the activated carbon fibers finally obtained,
A steaming temperature of 1000° C. is advantageously employed. Further, this steam treatment only takes 5 to 30 minutes, and this is also extremely advantageous industrially since the treatment can be completed in a shorter time than conventionally known methods.

本発明の方法にシける水蒸気処理温度への昇温は、なん
ら制約はカ1<、不活性雰囲気下での加熱処理からつづ
けて処理される場合も、あるいはいったん冷却されたも
のを処理する場合も、任意の昇温速度で加熱することが
できる。
There are no restrictions on raising the temperature to the steam treatment temperature in the method of the present invention, even when the treatment is continued from the heat treatment under an inert atmosphere, or when the treatment is performed once cooled. can also be heated at any temperature increase rate.

水蒸気処理工程に使用される水蒸気容量は、繊維が水蒸
気の作用を受けるのに十分な容量であればよい。
The steam capacity used in the steam treatment step may be sufficient as long as the fibers are subjected to the action of the steam.

本発明は、セルロース系繊維を2工程で加熱処理して活
性炭素繊維を製造する方法において、該繊維に、加熱処
理に先だって周期表■族の金属の臭化物と窒素含有化合
物を組み合わせて付与させることに特徴があり、かかる
前処理により高い吸着性能と優れた強度を有するセルロ
ース系活性炭素繊維が容易に得られることが見出された
ことに基いている。両成分の組合わせ付与で上記のよう
な優れた効果が得られる理由は明らかではないが、本発
明者らは、■族金属の臭化物がセルロース系繊維に作用
して脱水炭化を促し、後の工程の高温水蒸気処理におい
て吸着に有効な繊維構造の形成に効果的に作用するもの
と推定している。また、窒素含有化合物は加熱処理にお
ける繊維の解重合を抑制して繊維の強度低下を防、止す
るものと推定されるが、両成分の作用が有機的に相互に
助長し合って、予期されない相乗効果が得られるものと
考えられる。
The present invention provides a method for producing activated carbon fibers by heat-treating cellulose fibers in two steps, which includes applying a combination of a bromide of a metal of group I of the periodic table and a nitrogen-containing compound to the fibers prior to the heat treatment. This is based on the discovery that cellulose-based activated carbon fibers having high adsorption performance and excellent strength can be easily obtained by such pretreatment. Although it is not clear why the above-mentioned excellent effects can be obtained by applying a combination of both components, the present inventors have found that bromides of group metals act on cellulose fibers to promote dehydration and carbonization, resulting in It is presumed that it acts effectively on the formation of a fibrous structure that is effective for adsorption during the high-temperature steam treatment in the process. In addition, it is assumed that nitrogen-containing compounds suppress depolymerization of fibers during heat treatment and prevent a decrease in strength of fibers, but the effects of both components organically promote each other, leading to unexpected results. It is thought that a synergistic effect can be obtained.

以下に、実施例及び比較例により、本発明をさらに詳細
に説明する。なお、実施例中ベンゼンの吸着量は、J工
S  K  1412に準じて測定した値である。捷だ
繊維の強度、伸度等は、温度20℃、相対湿度45%の
雰囲気下で測定したものである0実施例1 銅アンモニアレーヨン糸(100テニール、60フイラ
メント)をかぜ状にし、臭化亜鉛とチオ尿素を含む水溶
液で処理して乾燥し、繊維乾燥重量の5%の臭化亜鉛と
6%のチオ尿素を繊維に付与させた。この繊維を窒素ガ
ス中で306℃まで約7分間で昇温し、300℃で10
分間処理した。続いて、800℃の温度で20分間、繊
維が処理されるのに充分な容量の水蒸気中で処理した。
EXAMPLES Below, the present invention will be explained in more detail with reference to Examples and Comparative Examples. In addition, the adsorption amount of benzene in the examples is a value measured according to J.E.S.K. 1412. The strength, elongation, etc. of the twisted fibers were measured in an atmosphere with a temperature of 20°C and a relative humidity of 45%.Example 1 Copper ammonia rayon yarn (100 tenier, 60 filament) was made into a wind shape and bromated. The fibers were treated with an aqueous solution containing zinc and thiourea and dried to impart 5% zinc bromide and 6% thiourea to the fiber dry weight. This fiber was heated to 306°C in nitrogen gas for about 7 minutes, and then heated to 306°C for 10 minutes at 300°C.
Processed for minutes. This was followed by treatment at a temperature of 800° C. for 20 minutes in a volume of steam sufficient to treat the fibers.

得られた活性炭素繊維の諸性質を後掲第1表に示す。Various properties of the obtained activated carbon fiber are shown in Table 1 below.

実施例2 ビスコースレーヨン糸(120テニール、50フイラメ
ント)をかぜ状にし、臭化マグネシウムとスルファミン
酸アンモニウムを含む水溶液で処理した後乾燥し、繊維
乾燥重量の9%の臭化マグネシウムと9%のスルファミ
ノ酸アンモニウムヲ繊維に付着させた。この繊維を炭酸
ガス中で350℃の温度で15分間処理した。次いで繊
維が処理されるのに充分な容量の水蒸気中で750℃の
温度で15分間処理した。
Example 2 Viscose rayon yarn (120 tenier, 50 filaments) was combed, treated with an aqueous solution containing magnesium bromide and ammonium sulfamate, dried, and treated with 9% magnesium bromide and 9% of the fiber dry weight. Ammonium sulfaminate was attached to the fibers. This fiber was treated in carbon dioxide gas at a temperature of 350° C. for 15 minutes. The fibers were then treated for 15 minutes at a temperature of 750° C. in a volume of steam sufficient to treat the fibers.

以上の処理により得られた活性炭素繊維の性質を第1表
に示す。
Table 1 shows the properties of the activated carbon fibers obtained by the above treatment.

実施例3 ビスコースレーヨン平織布(経糸、緯糸とも120デニ
ール、50フイラメント糸)を、臭化バリウムと硫酸ア
ンモニウムを含む水溶液で処理して、織物乾燥重量の1
0%の臭化バリウムと12%の硫酸アンモニウムを付着
させた。この織物を窒素ガス中で200℃より25分掛
けて300℃の温度まで昇温しながら処理したのち、7
00℃の温度で織物号を上廻わる容量の水蒸気で処理し
た。こうして得られた活性炭素繊維織物の性質を第1表
に示す。
Example 3 A viscose rayon plain woven fabric (warp and weft both 120 denier, 50 filament yarn) was treated with an aqueous solution containing barium bromide and ammonium sulfate to reduce the dry weight of the fabric to 1
0% barium bromide and 12% ammonium sulfate were deposited. This fabric was treated in nitrogen gas while increasing the temperature from 200°C to 300°C over 25 minutes, and then
The fabric was treated at a temperature of 0.000C with a volume of water vapor exceeding that of the fabric. The properties of the activated carbon fiber fabric thus obtained are shown in Table 1.

実施例4 銅アンモニアレーヨン糸よりなる不織布(目付3oy/
m)を臭化カルシウムとジシアンジアミドを含む水溶液
で処理して、不織布の乾燥重量の15%の臭化カルシウ
ムと19%のジシアンジアミドを不織布に付着させ乾燥
した。この不織布を炭酸ガス中、400℃の温度で5分
間処理したのち、850℃の温度で不織布の量をうわま
わる容量の水蒸気で10分間処理した。
Example 4 Non-woven fabric made of copper ammonia rayon yarn (basis weight 3 oy/
m) was treated with an aqueous solution containing calcium bromide and dicyandiamide to adhere 15% of calcium bromide and 19% of dicyandiamide to the nonwoven fabric based on the dry weight of the nonwoven fabric and dry it. This nonwoven fabric was treated in carbon dioxide gas at a temperature of 400°C for 5 minutes, and then treated with water vapor at a temperature of 850°C for 10 minutes in an amount exceeding the amount of the nonwoven fabric.

得られた活性炭素繊維不織布の性質を第1表に示す。Table 1 shows the properties of the activated carbon fiber nonwoven fabric obtained.

実施例5 銅アンモニアレーヨンステーブルlなる=−ドルパンチ
フェルト(目付300 t /rr? )を臭化亜鉛と
チオ硫酸アンモニウムを含む水溶液で処理したのち、乾
燥して乾燥フェルト重量の7%の臭化亜鉛と9%のチオ
硫酸アンモニウムを付着させた。
Example 5 Copper ammonium rayon stable =- dollar punch felt (basis weight 300 t/rr?) was treated with an aqueous solution containing zinc bromide and ammonium thiosulfate, and then dried to remove 7% bromide of the weight of the dry felt. Zinc and 9% ammonium thiosulfate were deposited.

このフェルトを窒素ガス中290℃の温度で10分間処
理し、続いてフェルトが処理されるのに充分な容量の水
蒸気中で850℃の温度で7分間処理した。このように
して得られた炭素繊維フェルトの性質を第1表に示す。
The felt was treated in nitrogen gas at a temperature of 290°C for 10 minutes, followed by a temperature of 850°C for 7 minutes in a volume of steam sufficient to treat the felt. Table 1 shows the properties of the carbon fiber felt thus obtained.

比較例1 実施例1で用いたのと同じ銅アンモニアレーヨン糸のか
せに5%の臭化亜鉛のみ、6%のチオ尿素のみを付着さ
せたものをそれぞれ調製した。これらのかぜと臭化亜鉛
及びチオ尿素を付着させないかぜを実施例1と同じ熱処
理及び水蒸気処理をした。
Comparative Example 1 A skein of the same copper ammonia rayon thread as used in Example 1 was prepared by adhering only 5% zinc bromide and only 6% thiourea. These colds and colds to which zinc bromide and thiourea were not attached were subjected to the same heat treatment and steam treatment as in Example 1.

得られた活性炭素繊維の諸性質を後掲第2表にまとめて
示す。
Various properties of the obtained activated carbon fibers are summarized in Table 2 below.

比較例2 実施例2で用いたのと同じビスコースレーヨン糸のかせ
で、実施例2と同じような処理で9%の臭化マグネシウ
ムのみ、9%のスルファミン酸アンモニウムのみを付着
させたものをそれぞれ調製した。この各々のかぜを実施
例2と同じように熱処理した後水蒸気処理を施した。一
方、臭化マグネシウム及びスルファミン酸アンモニウム
を付着させないかぜを同じように熱□処理した省水蒸気
処理をした。
Comparative Example 2 A skein of the same viscose rayon thread as used in Example 2 was treated in the same manner as in Example 2 to which only 9% magnesium bromide and 9% ammonium sulfamate were attached. Each was prepared. Each cold was heat treated in the same manner as in Example 2, and then subjected to steam treatment. On the other hand, the cold that did not deposit magnesium bromide and ammonium sulfamate was subjected to the same heat treatment and steam-saving treatment.

得られた活性炭素繊維の性質を第2表にまとめて示す。The properties of the obtained activated carbon fibers are summarized in Table 2.

比較例3 実施例3で用いたのと同じビスココ)軍誓布で、10係
の臭化バリウムのみ、11%の硫酸アンモニウムのみを
付着させたものをそれぞれ調製した。
Comparative Example 3 Using the same Viscoco (military oath) as used in Example 3, samples were prepared in which only 10% barium bromide and 11% ammonium sulfate were attached.

これらの織物と臭化バリウム及び硫酸アンモニウム両者
を付着させない織物を実施例3と同じように熱処理、続
いて水蒸気処理をした。ここに得られた炭素繊維平織布
の性質を第2表にまとめて示す0 比較例4 実施例4で用いたのと同じ銅アンモニアレーヨン糸よシ
なる不織布で、15係の臭化カルシウムのみ、19係の
ジシアンジアミドのみを付着させたものをそれぞれ調製
した。一方、臭化カルシウム及びジシアンジアミドを付
着しない実施例4と同じ不織布を調製した。
These fabrics and fabrics to which neither barium bromide nor ammonium sulfate were attached were heat treated in the same manner as in Example 3, followed by steam treatment. The properties of the carbon fiber plain woven fabric obtained here are summarized in Table 2. Comparative Example 4 The same nonwoven fabric made of copper ammonia rayon thread as used in Example 4, but only calcium bromide of ratio 15. and No. 19 to which only dicyandiamide was attached were prepared. On the other hand, the same nonwoven fabric as in Example 4 without adhering calcium bromide and dicyandiamide was prepared.

これらの不織布を実施例4と同じように、熱処理及び水
蒸気処理をした。
These nonwoven fabrics were subjected to heat treatment and steam treatment in the same manner as in Example 4.

得られた炭素繊維不織布の性質を第2表に示す。The properties of the obtained carbon fiber nonwoven fabric are shown in Table 2.

第    2    表 以上の実施例及び比較例から明らかなように、本発明の
方法は、高い吸着性能と優れた強度、伸度を持つセルロ
ース系活性炭素繊維を与える。また、本発明の方法は、
従来法に比べて短時間の熱処理及び水蒸気処理で済み、
工業的に極めて有利である。
As is clear from the Examples and Comparative Examples in Table 2 and above, the method of the present invention provides cellulose-based activated carbon fibers with high adsorption performance and excellent strength and elongation. Moreover, the method of the present invention
Compared to conventional methods, it requires shorter heat treatment and steam treatment,
It is extremely advantageous industrially.

特許出願人  旭化成工業株式会社 代理人 阿 形  明Patent applicant: Asahi Kasei Industries, Ltd. Agent Akira Agata

Claims (1)

【特許請求の範囲】 1 セルロース系繊維に、周期表H族の金属の臭化物及
び窒素含有化合物を付与したのち、該繊維を不活性雰囲
気中で加熱して脱水炭化処理し、次いで上記脱水炭化処
理温度より高い温度条件下で水蒸気と接触させることを
特徴とする活性炭素繊維の製法。 2 周期表■族の金属の臭化物の付与量が繊維の重量に
基いて2〜15重量係でかつ窒素含有化合物の付与量が
上記臭化物の1−1.5重量倍である特許請求の範囲第
1項記載の製法。 3 不活性雰囲気中での脱水炭化処理を250〜400
℃の温度で行なう特許請求の範囲第1項又は第2項記載
の製法。 4 水蒸気と接触させる加熱処理を700〜1000℃
温度で行う特許請求の範囲第1〜3項のいずれかに記載
の製法。
[Scope of Claims] 1. After adding a bromide of a metal of group H of the periodic table and a nitrogen-containing compound to a cellulose fiber, the fiber is heated in an inert atmosphere to undergo a dehydration carbonization treatment, and then the dehydration carbonization treatment described above is carried out. A method for producing activated carbon fiber characterized by contacting it with water vapor under conditions of a temperature higher than the temperature. 2. Claim No. 2, wherein the amount of the bromide of a metal in Group I of the periodic table is 2 to 15 times the weight of the fiber, and the amount of the nitrogen-containing compound is 1 to 1.5 times the weight of the bromide. The manufacturing method described in Section 1. 3 Dehydration carbonization treatment in an inert atmosphere from 250 to 400
The manufacturing method according to claim 1 or 2, which is carried out at a temperature of °C. 4 Heat treatment to contact with water vapor at 700-1000℃
The manufacturing method according to any one of claims 1 to 3, which is carried out at temperature.
JP56108971A 1981-07-13 1981-07-13 Production of activated carbon fiber Granted JPS5813722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108971A JPS5813722A (en) 1981-07-13 1981-07-13 Production of activated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108971A JPS5813722A (en) 1981-07-13 1981-07-13 Production of activated carbon fiber

Publications (2)

Publication Number Publication Date
JPS5813722A true JPS5813722A (en) 1983-01-26
JPS6357525B2 JPS6357525B2 (en) 1988-11-11

Family

ID=14498287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108971A Granted JPS5813722A (en) 1981-07-13 1981-07-13 Production of activated carbon fiber

Country Status (1)

Country Link
JP (1) JPS5813722A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227315A (en) * 1985-07-24 1987-02-05 Osaka Gas Co Ltd Production of activated carbon fiber
JPS62141126A (en) * 1985-12-10 1987-06-24 Agency Of Ind Science & Technol Production of activated carbon fiber
JPH05156674A (en) * 1991-12-11 1993-06-22 Inax Corp Faucet device
JP2002146636A (en) * 2000-11-10 2002-05-22 Tokai Senko Kk Activated carbon fibers using natural cellulosic fibers as precursor
KR100398062B1 (en) * 2001-05-11 2003-09-19 한국과학기술연구원 High functional viscose rayon activated carbon and a process of making them
JP2016535175A (en) * 2013-10-29 2016-11-10 コーロン インダストリーズ インク Activated carbon fiber and method for producing the same
WO2021234152A1 (en) * 2020-05-22 2021-11-25 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Continuous fibres based on cellulose and/or cellulose derivatives, method for the production thereof and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950929B (en) * 2014-05-23 2016-02-17 福建农林大学 A kind of chemical method prepares the method for granulated active carbon

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227315A (en) * 1985-07-24 1987-02-05 Osaka Gas Co Ltd Production of activated carbon fiber
JPS62141126A (en) * 1985-12-10 1987-06-24 Agency Of Ind Science & Technol Production of activated carbon fiber
JPH0112852B2 (en) * 1985-12-10 1989-03-02 Kogyo Gijutsuin
JPH05156674A (en) * 1991-12-11 1993-06-22 Inax Corp Faucet device
JP2002146636A (en) * 2000-11-10 2002-05-22 Tokai Senko Kk Activated carbon fibers using natural cellulosic fibers as precursor
KR100398062B1 (en) * 2001-05-11 2003-09-19 한국과학기술연구원 High functional viscose rayon activated carbon and a process of making them
JP2016535175A (en) * 2013-10-29 2016-11-10 コーロン インダストリーズ インク Activated carbon fiber and method for producing the same
WO2021234152A1 (en) * 2020-05-22 2021-11-25 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Continuous fibres based on cellulose and/or cellulose derivatives, method for the production thereof and use thereof

Also Published As

Publication number Publication date
JPS6357525B2 (en) 1988-11-11

Similar Documents

Publication Publication Date Title
CA1159810A (en) Process for the production of fibrous activated carbon
JP6470750B2 (en) Activated carbon fiber and method for producing the same
JP3357080B2 (en) Method for producing active fabric made of carbon fiber
JPS5813722A (en) Production of activated carbon fiber
US3413094A (en) Method of decreasing the metallic impurities of fibrous carbon products
US3661616A (en) Process for carbonizing cellulose fiber or the products thereof
US3639140A (en) Process for carbonized cellulose fiber or the products thereof
JPS60231843A (en) Carbonizable cloth
RU2016146C1 (en) Method of carbon fibrous material preparing
EP0179415B1 (en) Precursor for production of preoxidized fibers or carbon fibers
US3847833A (en) Flexible activated carbon fibers manufactured from salt impregnated cellulosic fibers
JPS6245164B2 (en)
JPS59116422A (en) Treatment of gas discharged from flame resistant treatment process in manufacture of carbon fiber
JPH02242920A (en) Carbon fiber containing composite metal
KR0151987B1 (en) Method of manufacturing carbon fiber
US3661503A (en) Process for dehydrating cellulosic textile material
RU2679265C2 (en) Method for finishing lyocell hydrated cellulose fiber in producing precursor of carbon fiber material
EP0489133B1 (en) Method for manufacturing activated carbon from cellulosic material
JPS6025528B2 (en) activated carbon fiber
KR100206488B1 (en) The manufacture method of the active carbon fiber
JPH06146168A (en) Fibrillation preventing processing of melt spun cellulose fiber
JPS6158403B2 (en)
JPS6316485B2 (en)
JPH0114343B2 (en)
US393391A (en) Gilbert scott eam