JPS6357376B2 - - Google Patents

Info

Publication number
JPS6357376B2
JPS6357376B2 JP54153562A JP15356279A JPS6357376B2 JP S6357376 B2 JPS6357376 B2 JP S6357376B2 JP 54153562 A JP54153562 A JP 54153562A JP 15356279 A JP15356279 A JP 15356279A JP S6357376 B2 JPS6357376 B2 JP S6357376B2
Authority
JP
Japan
Prior art keywords
alumina cement
aluminum
spinel
residual ash
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54153562A
Other languages
Japanese (ja)
Other versions
JPS5678461A (en
Inventor
Yoshiji Koide
Hirofumi Tanaka
Masao Sato
Yukio Ikuhara
Noboru Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP15356279A priority Critical patent/JPS5678461A/en
Publication of JPS5678461A publication Critical patent/JPS5678461A/en
Publication of JPS6357376B2 publication Critical patent/JPS6357376B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミニウム合金製造工程から発生す
る産業廃棄物であるアルミニウム残灰を有効利用
して、スピネルを含む新しい高耐火性及び早強性
のアルミナセメントを製造する方法に関するもの
である。 従来、商業的に製造されるアルミナセメント
は、原料(特にアルミナ源の化学組成)及び、製
造方式の違いにより、特性、用途を異にし、早期
高強性に着目して、緊急時の構築材料として使用
される場合もあるが、近年はむしろその高温耐火
特性に着目して、キヤスタブルなどの不定形耐火
物用バインダーとしての需要が主体となり、日本
工業規格JISR5211においてもアルミナセメント
を“耐火物用”と特記して、その規格を定めてい
るのである。 CaO・Al2O3(モノアルミン酸カルシウム)を
主要構成鉱物とし、いくらかのCaO・2Al2O3(ジ
アルミン酸カルシウム)、12CaO・7Al2O3、を含
む商業的に知られるアルミナセメントでは、石灰
石又は〓焼石灰と比較的多量の鉄分を含む赤色ボ
ーキサイトあるいは白色ボーキサイト、Bayer法
で製造される比較的純度の高いアルミナ等を原料
として、これを粉砕、調合して電気炉又は反射炉
型平炉により還元熔融法か、回転窯により焼結法
で製造される。このようなアルミナセメントにあ
つては、マグネシウム化合物の含有量はきわめて
低くおさえられ(通常2wt%以下)、また本発明
以前に特許出願された“アルミニウム残灰よりア
ルミナセメントを製造する方法”(特開昭51−
124117)においてもマグネシウム化合物の含有量
はMgOとして8wt%以下と規定されている。 この理由は、実際に耐火性コンクリートとして
施工した後、炉の昇温時に耐火性コンクリートの
破壊をもたらす有害な水和膨張を引き起こすため
と考えられている。従つて、ドロマイトなど、多
量のMgOを含む鉱物は耐火性アルミナセメント
の製造、及び通常のポルトランドセメントの製造
の際には、原料として使用されていない。 一方、アルミニウム合金製造工程で副生するア
ルミニウム残灰は、主成分としてAl2O3を60〜
80wt%も含有しているにもかかわらず発生個所
が小規模に散在していること、発生地及び産出ロ
ツトごとの成分変動が大きいこと、また副成分と
して特異な化合物を含む等の原因により、大部分
は産業廃棄物として処分されていた。すなわちア
ルミニウム残灰中には製造されるアルミニウム合
金地金の種によりAl,Si,Mg,Cu,Zn,Snな
どの多様な金属分及び窒化アルミニウム
(AlN)、炭化アルミニウム等を含み、天然原料
である白ボーキサイト、赤ボーキサイトと比べか
なり異質なものである。特に、5〜15wt%含有
される窒化アルミニウムは、不安定化合物であ
り、容易に加水分解してアンモニアガスを発生さ
せるので環境上からも好ましくないものである。 本発明者らは、このようなアルミニウム残灰の
資源化につき研究を重ねた結果、アルミニウム残
灰中の諸成分をすべて酸化物として無害化し、同
時に従来のアルミナセメントに比べ高耐火性及び
早強性のアルミナセメント、すなわち“高耐火性
及び早強性のスピネル含有アルミナセメント”を
開発したものである。新しい高耐火性及び早強性
のアルミナセメントは、天然ドロマイト又は〓焼
ドロマイトと、アルミニウム残灰との均一混合物
を原料として、従来から知られる炉を含む一連の
装置により製造される。 すなわち本発明は、アルミニウム残灰80〜40重
量部とドロマイト20〜60重量部を混合粉砕または
それぞれ粉砕後均一に混合し、回転窯により1300
〜1600℃に焼成し、急冷後微粉砕することを特徴
とする高耐火性及び早強性のスピネル含有アルミ
ナセメントの製造方法である。 このアルミナセンメントは従来のアルミナセメ
ント又はアルミニウム残灰を使用するアルミナセ
メントと異なり、主要構成鉱物として耐火性成分
であるスピネル(MgO・Al2O3,mp2135℃)を
20〜60重量%の高い割合に含み、CaO・Al2O3
いくらかのCaO・2Al2O3,12CaO・7Al2O3及び
2CaO・Al2O3・SiO2を水硬性成分とするもので
ある。 このようにスピネルを主要な成分とする新しい
耐火性アルミナセメントは従来のアルミナセメン
トに比べ高耐火性であるばかりでなく、早強性に
優れて熱間強度も大きいものであつた。 本発明において原料はアルミニウム残灰80〜40
重量%、好ましくは70〜50%、ドロマイト20〜60
重量%、好ましくは30〜50%が用いられる。アル
ミニウム残灰が80%を超えると水硬性成分である
モノアルミン酸カルシウムの生成量が少なくな
り、水和硬化速度の低いジアルミン酸カルシウム
が主として生成し早強性が得られず、かつスピネ
ル含量が少なくなるので高耐火性も得られなくな
る。また、アルミニウム残灰が40%より少なくな
ると12CaO・7Al2O3が主要成分となり、瞬結性
を示し実用的セメントが得られない。 焼成温度は1300〜1600℃が適当である。1300℃
より低いと焼結反応が不完全となり、急結現象を
起したり、一方では長期強度の安定性を欠くセメ
ントになり易い。また、1600℃を超えると回転窯
でクリンカーが一部溶融し連続運転が不可能とな
る。 焼成したクリンカーを急冷した後、ブレーン値
で2500〜5000cm2/g、好ましくは3000〜4000cm2
g程度に微粉砕する。 以下に実施例を挙げて本発明を更に具体的に説
明する。以下の実施例において割合を示す部、%
は重量による。 実施例 1 天然ドロマイト35部及びアルミニウム残灰65部
をブレーン比表面積5980cm2/gに混合粉砕した、
均一混合物を回転窯で1450〜1520℃に焼成し、空
中急冷したクリンカーをブレーン比表面積4000
cm2/gに粉砕した。
The present invention relates to a method for producing a new highly refractory and early-strength alumina cement containing spinel by effectively utilizing aluminum residual ash, which is an industrial waste generated from an aluminum alloy production process. Traditionally, commercially produced alumina cement has different properties and uses depending on the raw materials (particularly the chemical composition of the alumina source) and manufacturing methods. Focusing on its early high strength, it has been used as a construction material in emergencies. However, in recent years, attention has been focused on its high-temperature refractory properties, and the demand has mainly focused on it as a binder for castables and other unshaped refractories, and the Japanese Industrial Standard JISR5211 has also designated alumina cement as "for refractories". The standards are specifically stated as follows. Commercially known alumina cements have CaO.Al 2 O 3 (monocalcium aluminate) as the main constituent mineral and also contain some CaO.2Al 2 O 3 (calcium dialuminate), 12CaO.7Al 2 O 3 , limestone Or: Use burnt lime, red bauxite or white bauxite containing a relatively large amount of iron, or relatively high-purity alumina produced by the Bayer method as raw materials, crush and mix them, and then use an electric furnace or reverberatory open hearth furnace. It is manufactured by the reduction melting method or the sintering method using a rotary kiln. In such alumina cement, the content of magnesium compounds is kept extremely low (usually 2wt% or less), and the “method for producing alumina cement from aluminum residual ash” (specially applied) was patented before the present invention. 1977-
124117) also stipulates that the content of magnesium compounds is 8wt% or less as MgO. The reason for this is thought to be that after it is actually constructed as fire-resistant concrete, harmful hydration expansion occurs when the temperature of the furnace rises, leading to the destruction of the fire-resistant concrete. Therefore, minerals containing large amounts of MgO, such as dolomite, are not used as raw materials in the production of refractory alumina cement and in the production of ordinary Portland cement. On the other hand, aluminum residual ash, which is produced as a by-product in the aluminum alloy manufacturing process, contains Al 2 O 3 as the main component.
Despite containing 80wt%, the occurrence locations are scattered on a small scale, the composition varies greatly depending on the location and production lot, and it contains unique compounds as subcomponents. Most of it was disposed of as industrial waste. In other words, aluminum residual ash contains various metals such as Al, Si, Mg, Cu, Zn, and Sn, as well as aluminum nitride (AlN) and aluminum carbide, depending on the type of aluminum alloy ingot produced, and is a natural raw material. It is quite different from white bauxite and red bauxite. In particular, aluminum nitride, which is contained in an amount of 5 to 15 wt%, is an unstable compound and easily hydrolyzed to generate ammonia gas, which is unfavorable from an environmental standpoint. As a result of repeated research on the recycling of aluminum residual ash, the inventors of the present invention have made all of the various components in aluminum residual ash harmless as oxides, and at the same time have achieved higher fire resistance and early strength than conventional alumina cement. The company has developed a highly refractory alumina cement, a spinel-containing alumina cement with high fire resistance and early strength. The new high refractory and early strength alumina cement is produced from a homogeneous mixture of natural or calcined dolomite and aluminum residual ash in a series of conventionally known equipment including furnaces. That is, in the present invention, 80 to 40 parts by weight of aluminum residual ash and 20 to 60 parts by weight of dolomite are mixed and pulverized or homogeneously mixed after each pulverization, and the mixture is heated to 1300 parts by weight in a rotary kiln.
This is a method for producing spinel-containing alumina cement with high fire resistance and early strength, which is characterized by firing at ~1600°C, quenching, and then pulverizing. Unlike conventional alumina cement or alumina cement that uses aluminum residual ash, this alumina cement contains spinel (MgO・Al 2 O 3 , mp2135℃), which is a refractory component, as the main constituent mineral.
Contains a high proportion of 20-60% by weight, including CaO.Al 2 O 3 and some CaO.2Al 2 O 3 , 12CaO.7Al 2 O 3 and
The hydraulic component is 2CaO・Al 2 O 3・SiO 2 . As described above, the new fire-resistant alumina cement containing spinel as a main component not only has higher fire resistance than conventional alumina cement, but also has excellent early strength and high hot strength. In the present invention, the raw material is aluminum residual ash 80 to 40
Weight%, preferably 70-50%, dolomite 20-60
Weight percentages are used, preferably 30-50%. When the aluminum residual ash exceeds 80%, the amount of monocalcium aluminate, which is a hydraulic component, is reduced, and calcium dialuminate, which has a low hydration hardening rate, is mainly produced, making it impossible to obtain early strength, and the spinel content is low. As a result, high fire resistance cannot be obtained. Furthermore, if the residual aluminum ash is less than 40%, 12CaO.7Al 2 O 3 becomes the main component, exhibiting instant setting properties and making it impossible to obtain a practical cement. A suitable firing temperature is 1300 to 1600°C. 1300℃
If it is lower, the sintering reaction will be incomplete, leading to rapid setting, and on the other hand, the cement will tend to lack stability in long-term strength. Additionally, if the temperature exceeds 1600℃, some of the clinker in the rotary kiln will melt, making continuous operation impossible. After rapidly cooling the fired clinker, the Blaine value is 2500 to 5000 cm 2 /g, preferably 3000 to 4000 cm 2 /g.
Finely pulverize to about 100 g. The present invention will be explained in more detail with reference to Examples below. Parts showing percentages in the following examples, %
depends on weight. Example 1 35 parts of natural dolomite and 65 parts of aluminum residual ash were mixed and ground to a Blaine specific surface area of 5980 cm 2 /g.
The homogeneous mixture was fired in a rotary kiln to 1450-1520℃, and the clinker was rapidly cooled in the air to a Blaine specific surface area of 4000.
It was ground to cm 2 /g.

【表】 得られたスピネル含有アルミナセメントは高耐
火性成分であるスピネル(MgO・Al2O3)44%と
主要水硬性成分であるCaO・Al2O340%といくら
かのゲーレナイト(2CaO・SiO2・Al2O3)から
構成されていた。 これをJISR2521―1959に従つて物理試験した
結果を次に示す。
[Table] The obtained spinel-containing alumina cement contains 44% spinel (MgO・Al 2 O 3 ), which is a highly refractory component, 40% CaO・Al 2 O 3 , which is the main hydraulic component, and some gehlenite (2CaO・It was composed of SiO 2・Al 2 O 3 ). The results of physical testing of this according to JISR2521-1959 are shown below.

【表】 このようにスピネル含有アルミナセメントは、
通常の凝結性を示し、比較的速硬性で、同時に
SK27(1610℃)の耐火度を持つていた。 また、このものの熱間曲げ強度を従来のアルミ
ナセメントと比較して下表に示す。
[Table] As shown above, spinel-containing alumina cement is
Shows normal setting, relatively fast hardening, and at the same time
It had a fire resistance of SK27 (1610℃). In addition, the hot bending strength of this product is compared with conventional alumina cement and is shown in the table below.

【表】 この高耐火及び早強性のセメントは次のような
特徴をもつている。 産業廃棄物であるアルミニウム残灰を有効活
用するため、従来のアルミナセメントに比べ、
より低コストであり、安価に供給できる。 高融点鉱物であるスピネルを30〜60%という
高い割合に含むため従来のアルミナセメントに
比べより高耐火性である。 キヤスタブル用バインダーとして使用する場
合、電融コランダムなどの高価な耐火性骨材の
使用量を通常より少なくできる。 水和必要水量は従来のアルミナセメントより
少ないため、耐火コンクリートとして施工後の
水和硬化及びその後の焼成に伴う収縮が小さ
い。また焼成時に水和物の脱水により生ずる内
部からの熱蒸気の噴出(いわゆる爆裂)の危険
性が小さい。 硬化後、加熱過程での強度低下(温度領域
600〜1000℃)が小さい。 早強性である。 このようにして本発明は、産業廃棄物としてそ
の処分に苦慮していたアルミニウム残灰を資源化
し、また従来、最大8%以下と制限されて来たア
ルミナセメント中MgO分をスピネルとして30〜
60%も含有させたりして前述のすぐれた効果を得
たものである。 本発明の新しい高耐火性及び早強性のアルミナ
セメントは、高耐火性であり、また早強性に優れ
て熱間強度も数段上まわつている。更に産業廃棄
物であるアルミニウム残灰を原料とすることか
ら、より安価に製造でき、同時に省資源の立場か
らも好ましいものである。
[Table] This highly refractory and early strength cement has the following characteristics. In order to effectively utilize aluminum residual ash, which is industrial waste, compared to conventional alumina cement,
It has a lower cost and can be supplied at a lower cost. Because it contains a high proportion of spinel, a high-melting point mineral, at 30-60%, it has higher fire resistance than conventional alumina cement. When used as a castable binder, the amount of expensive refractory aggregates such as fused corundum can be reduced. Since the amount of water required for hydration is smaller than that of conventional alumina cement, shrinkage due to hydration hardening after construction and subsequent firing as a fireproof concrete is small. In addition, there is little risk of hot steam ejecting from the inside (so-called explosion) caused by dehydration of hydrates during firing. After curing, strength decreases during heating process (temperature range
600~1000℃) is small. It is early resistant. In this way, the present invention recycles residual aluminum ash, which had been difficult to dispose of as industrial waste, and converts the MgO content in alumina cement, which has conventionally been limited to a maximum of 8%, into spinel.
The above-mentioned excellent effects were obtained by containing as much as 60%. The new high refractory and early strength alumina cement of the present invention is highly refractory, has excellent early strength, and has several steps higher hot strength. Furthermore, since aluminum residual ash, which is an industrial waste, is used as a raw material, it can be manufactured at a lower cost, and is also preferable from the standpoint of resource conservation.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム残灰80〜40重量部とドロマイト
20〜60重量部を混合粉砕またはそれぞれ粉砕後均
一に混合し、回転窯により1300〜1600℃に焼成
し、急冷後微粉砕することを特徴とする高耐火性
及び早強性のスピネル含有アルミナセメントの製
造方法。
1 80 to 40 parts by weight of aluminum residual ash and dolomite
Highly refractory and early strength spinel-containing alumina cement characterized by mixing and pulverizing 20 to 60 parts by weight or homogeneously mixing each after pulverizing, firing in a rotary kiln at 1300 to 1600°C, quenching, and then finely pulverizing. manufacturing method.
JP15356279A 1979-11-29 1979-11-29 Manufacture of highly refractory alumina cement Granted JPS5678461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15356279A JPS5678461A (en) 1979-11-29 1979-11-29 Manufacture of highly refractory alumina cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15356279A JPS5678461A (en) 1979-11-29 1979-11-29 Manufacture of highly refractory alumina cement

Publications (2)

Publication Number Publication Date
JPS5678461A JPS5678461A (en) 1981-06-27
JPS6357376B2 true JPS6357376B2 (en) 1988-11-11

Family

ID=15565201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15356279A Granted JPS5678461A (en) 1979-11-29 1979-11-29 Manufacture of highly refractory alumina cement

Country Status (1)

Country Link
JP (1) JPS5678461A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995315B2 (en) * 2012-09-04 2016-09-21 黒崎播磨株式会社 Irregular refractory
WO2015132848A1 (en) * 2014-03-03 2015-09-11 黒崎播磨株式会社 Castable refractory
CN108101562B (en) * 2017-12-29 2021-01-01 武汉科技大学 Steel ladle castable for high manganese steel smelting and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152928A (en) * 1976-06-16 1977-12-19 Keiichi Akiyama Method of manufacturing alumina cement from ash in aluminium industry
JPS5465726A (en) * 1977-11-04 1979-05-26 Nippon Aruminiumu Goukin Kiyou Method of making lowwlime aluminaacement from aluminum residual ash

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152928A (en) * 1976-06-16 1977-12-19 Keiichi Akiyama Method of manufacturing alumina cement from ash in aluminium industry
JPS5465726A (en) * 1977-11-04 1979-05-26 Nippon Aruminiumu Goukin Kiyou Method of making lowwlime aluminaacement from aluminum residual ash

Also Published As

Publication number Publication date
JPS5678461A (en) 1981-06-27

Similar Documents

Publication Publication Date Title
Lee et al. Castable refractory concretes
CN102329143B (en) Anti-skinning unshaped refractory material made of magnesium aluminate spinel used for cement kiln and preparation method and application of anti-skinning unshaped refractory material
JP2006282486A (en) Alumina cement, alumina cement composition, and monolithic refractory
JP2008303087A (en) Method of manufacturing alumina cement, and monolithic refractory
JPH08198649A (en) Calcium aluminate, cement composition and prepared unshaped refractory containing the same
US3923531A (en) Carbon composition and shaped article made therefrom
JPS6357376B2 (en)
US4222786A (en) Ferrochromium slag for uses requiring refractoriness and mechanical strength
US3248239A (en) Process of making magnesia chrome refractory brick of increased strength at elevated temperatures
JP3526315B2 (en) Alumina cement composition and amorphous refractory using the same
JPH0776122B2 (en) Alumina cement composition
JP3027593B2 (en) Manufacturing method of special cement
JPH09165239A (en) Alumina cement material, alumina cement containing the same, and monolithic refractory using the alumina cement
JP3807773B2 (en) Alumina cement, alumina cement composition, and amorphous refractory using the same
JPH06321608A (en) Cement composition and monolithic refractories incorporating the same
US3377177A (en) Metallurgical furnace lining
JPS6112871B2 (en)
JPH09165240A (en) Alumina cement and monolithic refractory using the same
SU1418322A1 (en) Raw mixture for producing light-weight heat-resistant concrete
KR890000624B1 (en) Refractory
JP3531946B2 (en) Cement composition
JPS5845157A (en) Antislaking calcia refractories
RU1796600C (en) Raw materials mixture for clinker production
JPH02175638A (en) Alumina cement and low-cement castable binder
JPH07232956A (en) Alumina cement composition