JPS635592B2 - - Google Patents

Info

Publication number
JPS635592B2
JPS635592B2 JP9173082A JP9173082A JPS635592B2 JP S635592 B2 JPS635592 B2 JP S635592B2 JP 9173082 A JP9173082 A JP 9173082A JP 9173082 A JP9173082 A JP 9173082A JP S635592 B2 JPS635592 B2 JP S635592B2
Authority
JP
Japan
Prior art keywords
chamber
fluid machine
transmission shaft
heat engine
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9173082A
Other languages
Japanese (ja)
Other versions
JPS58210378A (en
Inventor
Kenichi Inota
Hideaki Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9173082A priority Critical patent/JPS58210378A/en
Publication of JPS58210378A publication Critical patent/JPS58210378A/en
Publication of JPS635592B2 publication Critical patent/JPS635592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2253/00Seals
    • F02G2253/08Stem with rolling membranes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】 本発明は、熱機関で駆動する流体機械に関し、
特に熱機関の作動流体と流体機械によつて圧縮等
の作用を受ける流体(以下流体機械の作動流体と
略称する)とが互いに混じり合わない様に隔てた
ものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid machine driven by a heat engine,
In particular, it relates to a system in which the working fluid of a heat engine and the fluid subjected to compression or the like by a fluid machine (hereinafter referred to as the working fluid of the fluid machine) are separated so that they do not mix with each other.

従来の熱機関で駆動する流体機械において熱機
関の作動流体と流体機械の作動流体を隔てる様に
したものは、第1図の様な構造であつた。第1図
において、熱機関1によつて駆動される伝動軸2
には流体機械3のピストン4が取付けられ、熱機
関1から受ける力によつて伝動軸2が軸方向に往
復運動し、それによつて往復運動するピストン4
によつてその軸方向両側の室5及び6の体積が増
減する。それによつて、流体機械3の作動流体
は、吸入通路7、吸入室8、吸入弁9又は10を
通つて室5又は6に入り、前記ピストン4の往復
運動によつて加圧され、吐出弁11又は12、吐
出室13、吐出通路14を通つて出て行く。こう
して、熱機関1は、伝動軸2、流体機械3を介し
て流体機械の作動媒体に仕事をする。
A conventional fluid machine driven by a heat engine that separates the working fluid of the heat engine from the working fluid of the fluid machine has a structure as shown in FIG. In FIG. 1, a transmission shaft 2 driven by a heat engine 1
A piston 4 of a fluid machine 3 is attached to the holder, and the transmission shaft 2 reciprocates in the axial direction due to the force received from the heat engine 1, thereby causing the piston 4 to reciprocate.
Accordingly, the volumes of chambers 5 and 6 on both sides in the axial direction increase or decrease. Thereby, the working fluid of the fluid machine 3 enters the chamber 5 or 6 through the suction passage 7, the suction chamber 8, the suction valve 9 or 10, is pressurized by the reciprocating movement of the piston 4, and is pressurized through the discharge valve. 11 or 12, a discharge chamber 13, and a discharge passage 14. In this way, the heat engine 1 performs work on the working medium of the fluid machine via the transmission shaft 2 and the fluid machine 3.

一方、熱機関1の作動流体と流体機械3の作動
流体とが互いに混じり合わない様にするため、熱
機関1と流体機械3との間の仕切室15内に可撓
性隔板16が設けられている。この可撓性隔板1
6の一方の縁17は、前記熱機関1、流体機械3
及び室15を外部に対して密閉する密閉容器18
に封止され、他方の縁19は伝動軸2に封止され
ており、熱機関1の作動流体と流体機械3の作動
流体とは互いに混じり合うことはなく、かつ伝動
軸2の往復運動は可撓性隔板16の変形によつて
許される。
On the other hand, in order to prevent the working fluid of the heat engine 1 and the working fluid of the fluid machine 3 from mixing with each other, a flexible partition plate 16 is provided in the partition chamber 15 between the heat engine 1 and the fluid machine 3. It is being This flexible partition plate 1
One edge 17 of the heat engine 1, the fluid machine 3
and an airtight container 18 that seals the chamber 15 from the outside.
The other edge 19 is sealed to the transmission shaft 2, so that the working fluid of the heat engine 1 and the working fluid of the fluid machine 3 do not mix with each other, and the reciprocating motion of the transmission shaft 2 is This is allowed by the deformation of the flexible diaphragm 16.

ところで、この様な構成の場合、次の様な欠点
があつた。すなわち、仕切室15内の可撓性隔板
16で隔てられた室20と室21内の圧力は、時
間平均的には等しくなる様になつているが、伝動
軸2が往復運動している各瞬間には等しくない。
今、第1図において可撓性隔板16に面する室2
0内の圧力と室21内の圧力が等しいとして、こ
のとき伝動軸2が上方に変位すると、可撓性隔板
16の縁19も伝動軸2と共に上方に変位するの
で、室21の体積は減少して内圧が増加し、他方
室20の体積は増加して内圧が減少し、その結果
可撓性隔板16にこの差圧よる力が下方に働く。
これによつて可撓性隔板16には、縁19上方へ
の移動による変形と上記差圧による力によつて生
じる変形とが生じ、差圧が0になるまで変形が続
くことになる。ところが、可撓性隔板16として
この様な変形が十分に可能なものを作ることは難
しく、変形が不十分であると、室20,21間に
差圧が残り、それによつて可撓性隔板16に大き
な応力が生じる。そのため、可撓性隔板16の信
頼性が低下し、それによつて装置全体の信頼性が
低下することになる。
However, such a configuration has the following drawbacks. That is, the pressures in the chambers 20 and 21, which are separated by the flexible partition plate 16 in the partition chamber 15, are equal on a time-average basis, but the transmission shaft 2 is reciprocating. not equal at each moment.
Now, in FIG. 1, the chamber 2 facing the flexible diaphragm 16
Assuming that the pressure inside 0 and the pressure inside chamber 21 are equal, when the transmission shaft 2 is displaced upward at this time, the edge 19 of the flexible diaphragm 16 is also displaced upward together with the transmission shaft 2, so the volume of the chamber 21 is The internal pressure decreases and the internal pressure increases, while the volume of the chamber 20 increases and the internal pressure decreases, resulting in a downward force acting on the flexible diaphragm 16 due to this differential pressure.
As a result, the flexible diaphragm 16 undergoes deformation due to the upward movement of the edge 19 and deformation caused by the force due to the differential pressure, and the deformation continues until the differential pressure becomes zero. However, it is difficult to make a flexible diaphragm 16 that can sufficiently deform in this way, and if the deformation is insufficient, a pressure difference will remain between the chambers 20 and 21, which will cause the flexibility to deteriorate. A large stress is generated in the partition plate 16. This reduces the reliability of the flexible diaphragm 16, thereby reducing the reliability of the entire device.

本発明は、従来のかかる問題点に鑑み、熱機関
の作動流体と流体機械の作動流体とを隔てる機能
の信頼性を高めた熱機関で駆動する流体機械を提
供することを目的とする。
SUMMARY OF THE INVENTION In view of these conventional problems, it is an object of the present invention to provide a fluid machine driven by a heat engine that has improved reliability in the function of separating the working fluid of the heat engine and the working fluid of the fluid machine.

本発明は、このため密閉容器内を、その内壁に
封止された第1および第2の可撓性隔板によつ
て、これら可撓性隔板間の第1の閉空間とその両
側の第2と第3の閉空間とに区画し、前記第1の
閉空間内に流体機械を配設し、前記第2の閉空間
内に熱機関を配設し、前記熱機関と流体機械を連
結する伝動軸を前記第1及び第2の可撓性隔板を
貫通させて設けると共にその貫通部を封止し、か
つ第2の閉空間と第3の閉空間を連通させ、伝動
軸の往復運動にかかわらず第1及び第2の可撓性
隔板の各々の両側の室内の圧力が変わらない様に
した熱機関で駆動される流体機械を提供する。
For this reason, the present invention provides a first closed space between the flexible partitions and a space on both sides thereof by means of the first and second flexible partitions sealed on the inner wall of the closed container. partitioned into a second and third closed space, a fluid machine is arranged in the first closed space, a heat engine is arranged in the second closed space, and the heat engine and the fluid machine are arranged. A transmission shaft to be connected is provided to pass through the first and second flexible partitions, and the penetrating portion thereof is sealed, and the second closed space and the third closed space are communicated, and the transmission shaft is connected. To provide a fluid machine driven by a heat engine in which the pressure in chambers on both sides of each of first and second flexible partitions remains unchanged regardless of reciprocating motion.

以下、本発明の一実施例を第2図に基づいて説
明すると、23は熱機関、24は圧縮機、ポンプ
等の流体機械であり、熱機関23と流体機械24
にまたがつて伝動軸25が設けられている。この
伝動軸25は熱機関23から受ける力によつて軸
方向に往復運動し、これに流体機械24のピスト
ン26が取付けられている。また、流体機械24
には、吸入通路27、吸入室28、吸入弁29,
30、前記ピストン26両側の室31,32、吐
出弁33,34、吐出室35、吐出通路36が設
けられている。さらに、熱機関23と流体機械2
4との間に仕切室37が設けられ、この室37に
第1の可撓性隔板38が設けられている。この第
1の可撓性隔板38の一方の縁39は、前記熱機
関23、流体機械24、仕切室37及び後述の仕
切室44とクツシヨン室45を一体的に囲んで外
部に対して密閉する密閉容器40の内壁に封止さ
れている。第1の可撓性隔板38の他方の縁41
は、伝動軸25に封止されている。こうして室3
7は第1の可撓性隔板38によつて、流体機械2
4側の第1の閉空間の一部となる室42と熱機関
23側の第2の閉空間の一部となる室43とに連
通しない状態で2分されている。また流体機械2
4の熱機関23とは反対側に仕切室44とクツシ
ヨン室45がこの順で設けられており、仕切室4
4に第2の可撓性隔板46が設けられている。こ
の第2の可撓性隔板46の一方の縁47は密閉容
器40の内壁に封止され、他方の縁48は仕切室
44を貫通する伝動軸25に封止されている。こ
うして仕切室44は第2の可撓性隔板46によつ
て流体機械24側の第1の閉空間の一部となる室
49と前記クツシヨン室45と共に第3の閉空間
を構成する室50の2つに互いに連通しない様に
2分されている。さらに、室43と室50とは流
通抵抗の小さい均圧管51で連通され、室42と
室49とは流通抵抗の小さい均圧管52で連通さ
れている。尚、第2図においては、伝動軸25は
往復運動の振幅の中心位置にあり、この位置で室
42,49,43,50の内圧はほゞ等しくなる
ようになつている。また、伝動軸25が往復運動
したときには、室42と49の体積が背反的に増
減するがその増減分がほゞ等しくて室42と49
の体積の和はほとんど変化せずかつ増減分の流体
が均圧管52を通つて移動する様に構成され、室
43と50についても同様に構成されている。こ
れは、室42,43,49,50と第1及び第2
の可撓性隔板38,46を適当な形状に設計し、
かつ均圧管51,52の流通抵抗を小さくするこ
とによつて可能であり、こうすることによつて伝
動軸25が往復運動しても第1及び第2の可撓性
隔板38,46に大きな応力が働かない様にして
いる。また、伝動軸25の往復運動によつて、ク
ツシヨン室45内の体積が変化する様になつてお
り、これによつて伝動軸25が上方に移動して室
45内に侵入してくると室45内の圧力が上昇し
て伝動軸25に侵入を阻止する様な力が働き、逆
に伝動軸25が下方に運動して室45内から出て
行くと室45内の圧力が減少し、伝動軸25に出
て行くのを阻止する様な力が働くようになつてい
る。
Hereinafter, one embodiment of the present invention will be described based on FIG. 2. 23 is a heat engine, 24 is a fluid machine such as a compressor, a pump, etc.
A transmission shaft 25 is provided astride the two. This transmission shaft 25 reciprocates in the axial direction by the force received from the heat engine 23, and a piston 26 of the fluid machine 24 is attached to it. In addition, the fluid machine 24
includes a suction passage 27, a suction chamber 28, a suction valve 29,
30, chambers 31 and 32 on both sides of the piston 26, discharge valves 33 and 34, a discharge chamber 35, and a discharge passage 36 are provided. Furthermore, the heat engine 23 and the fluid machine 2
4, a partition chamber 37 is provided, and a first flexible partition plate 38 is provided in this chamber 37. One edge 39 of the first flexible partition plate 38 integrally surrounds the heat engine 23, the fluid machine 24, the partition chamber 37, and the partition chamber 44 and cushion chamber 45, which will be described later, and is sealed from the outside. The inner wall of the airtight container 40 is sealed. The other edge 41 of the first flexible diaphragm 38
is sealed to the transmission shaft 25. Thus room 3
7 is connected to the fluid machine 2 by the first flexible diaphragm 38.
It is divided into two without communicating with a chamber 42 which becomes part of the first closed space on the 4 side and a chamber 43 which becomes part of the second closed space on the heat engine 23 side. Also, fluid machine 2
A partition chamber 44 and a cushion chamber 45 are provided in this order on the opposite side of the heat engine 23 of No. 4.
4 is provided with a second flexible diaphragm 46. One edge 47 of this second flexible partition 46 is sealed to the inner wall of the closed container 40, and the other edge 48 is sealed to the transmission shaft 25 passing through the partition 44. In this way, the partition chamber 44 is connected to the chamber 49 which becomes a part of the first closed space on the fluid machine 24 side by means of the second flexible partition 46, and the chamber 50 which forms a third closed space together with the cushion chamber 45. It is divided into two parts so that they do not communicate with each other. Furthermore, the chambers 43 and 50 are communicated with each other through a pressure equalizing pipe 51 with low flow resistance, and the chambers 42 and 49 are communicated with each other through a pressure equalizing pipe 52 with low flow resistance. In FIG. 2, the transmission shaft 25 is located at the center of the amplitude of the reciprocating motion, and at this position the internal pressures of the chambers 42, 49, 43, and 50 are approximately equal. Further, when the transmission shaft 25 reciprocates, the volumes of the chambers 42 and 49 increase and decrease contrary to each other, but the increases and decreases are almost equal, and the volumes of the chambers 42 and 49 increase and decrease contrary to each other.
The sum of the volumes of the chambers 43 and 50 is configured in a similar manner so that the sum of the volumes of the chambers 43 and 50 hardly changes and the fluid corresponding to the increase or decrease moves through the pressure equalizing pipe 52. This includes chambers 42, 43, 49, 50 and the first and second chambers.
The flexible diaphragms 38 and 46 of are designed in an appropriate shape,
This is possible by reducing the flow resistance of the pressure equalizing pipes 51 and 52, so that even when the transmission shaft 25 reciprocates, the first and second flexible partitions 38 and 46 are not affected. I try not to put too much stress on it. Further, the volume inside the cushion chamber 45 changes due to the reciprocating motion of the transmission shaft 25, and as a result, when the transmission shaft 25 moves upward and enters the chamber 45, the chamber The pressure inside the chamber 45 increases and a force acts on the transmission shaft 25 to prevent it from entering, and conversely, when the transmission shaft 25 moves downward and leaves the chamber 45, the pressure inside the chamber 45 decreases. A force acts on the transmission shaft 25 to prevent it from moving out.

さらに密閉容器40内の熱機関23及び室43
(第2の閉空間)の方には水素、ヘリウム等の熱
機関の作動流体が、流体機械24及び室42,4
9(第1の閉空間)の方には流体機械24の作動
流体がそれぞれ充填されている。熱機関23の作
動流体は、また均圧管51を介して室50及びク
ツシヨン室45(第3の閉空間)内にも閉じ込め
られている。従つて、熱機関23の作動流体と流
体機械24の作動流体とは、第1の閉空間と第
2・第3の閉空間を分離する第1及び第2の可撓
性隔板38,46によつて互いに混じり合うこと
の無い様に隔てられていることになる。また、ク
ツシヨン室45と仕切室44の室50、流体機械
24の室31と仕切室44の室49および流体機
械24の室32と仕切室37の室42とは、密閉
容器40と伝動軸25との間の狭い隙間を介して
連通しており、流体機械24の前記室31と32
とは密閉容器40とピストン26との間の狭い隙
間を介して連通している。これら狭い隙間を介し
て連通している2つの室は流体が自由に出入りで
きるようになつているので、2つの室間に差圧が
あれば流体は圧力の高い室から圧力の低い室の方
へ差圧がなくなるまで流動し続けるが、この狭い
隙間は流通抵抗が大きいので、2室間の時間平均
圧力に差がなくかつ各室内の圧力が高い周波数で
変動して瞬間的に差圧が生じる様な場合にはこの
狭い隙間を介して連通している2室間を移動する
流体の流量は0と見なせる位少い様になつてい
る。また、熱機関23内の時間平均圧力と流体機
械24内の時間平均圧力とは、図外装置で等しく
なる様に構成されている。
Furthermore, the heat engine 23 and the chamber 43 in the closed container 40
(second closed space) contains the working fluid of the heat engine, such as hydrogen or helium, and the fluid machine 24 and the chambers 42 and 4.
9 (first closed space) is filled with the working fluid of the fluid machine 24, respectively. The working fluid of the heat engine 23 is also confined within the chamber 50 and the cushion chamber 45 (third closed space) via the pressure equalizing pipe 51. Therefore, the working fluid of the heat engine 23 and the working fluid of the fluid machine 24 are connected to the first and second flexible partitions 38 and 46 that separate the first closed space and the second and third closed spaces. They are separated so that they cannot mix with each other. Further, the cushion chamber 45 and the chamber 50 of the partition chamber 44, the chamber 31 of the fluid machine 24 and the chamber 49 of the partition chamber 44, and the chamber 32 of the fluid machine 24 and the chamber 42 of the partition chamber 37 are connected to the closed container 40 and the transmission shaft 25. The chambers 31 and 32 of the fluid machine 24 communicate with each other through a narrow gap between the chambers 31 and 32 of the fluid machine 24.
The closed container 40 and the piston 26 are in communication with each other through a narrow gap between the container 40 and the piston 26. Fluid can freely enter and exit the two chambers that communicate through these narrow gaps, so if there is a pressure difference between the two chambers, the fluid will flow from the high pressure chamber to the low pressure chamber. The flow continues until the differential pressure disappears, but this narrow gap has a large flow resistance, so there is no difference in the time-averaged pressure between the two chambers, and the pressure in each chamber fluctuates at a high frequency, causing an instantaneous differential pressure. In such a case, the flow rate of the fluid moving between the two chambers communicating through this narrow gap is so small that it can be considered zero. Further, the time average pressure within the heat engine 23 and the time average pressure within the fluid machine 24 are configured to be equal by a device not shown.

次に作用を説明すると、熱機関23が及ぼす力
によつて伝動軸25は軸方向に往復運動し、それ
によつて伝動軸25に取付けられたピストン26
も往復運動する。すると、室31と室32の体積
は、このピストン26の往復運動に伴なつて増減
する。例えばピストン26が第2図に示す位置か
ら上方に移動して室31内の体積が減少すると、
室31内の流体機械の作動流体は圧縮されて室3
1内の圧力は増加する。そして、室31内の圧力
が吐出室35の圧力より高くなると吐出弁33が
開いて室31内の流体は吐出弁33、吐出室35
を通つて吐出通路36の方へ送出されて行く。次
に伝動軸25が最高点まで行つて下がり始める
と、室31内の圧力は下がり始め、室31内の圧
力が吐出室35内の圧力より低くなると、吐出弁
33が閉じ、吐出室35から室31への流体の流
入が阻止される。さらに伝動軸25が下がつて室
31内の圧力が吸入室28内の圧力より下がる
と、吸入弁29が開き、吸入通路27、吸入室2
8、吸入弁29を通つて流体が室31へ流入す
る。次に伝動軸25が最低点へ行つて上がり始め
ると、室31内の圧力は上がり始め、室31内の
圧力が吸入室28内の圧力より高くなると、吸入
弁29が閉じて室31から吸入室28への流出が
阻止される。さらに伝動軸25が上がつて室31
内の圧力が吐出室35内の圧力より高くなると吐
出弁33が開き、以上の過程を伝動軸25の往復
運動に伴なつて繰り返し、その結果として吸入通
路27を通じて流体機械24の作動流体を吸入加
圧して吐出通路36を通じて送り出す。また室3
2についても室31を同様に伝動軸25の往復運
動に伴なつて吸入室28の流体を吸入弁30を通
じて室32内に流入させ、室32内の流体を加圧
して吐出弁34、吐出室35、吐出通路36を通
じて送り出す。従つて伝動軸25の往復運動によ
つて流体機械24の作動流体が吸入通路27を通
じて吸入され、加圧され、吐出通路36を通じて
吐出される。この様にして、熱機関23は伝動軸
25及び流体機械24を介して流体機械24の作
動流体に仕事をする。
Next, the operation will be explained. The force exerted by the heat engine 23 causes the transmission shaft 25 to reciprocate in the axial direction, thereby causing the piston 25 attached to the transmission shaft 25 to move back and forth in the axial direction.
It also moves back and forth. Then, the volumes of the chambers 31 and 32 increase or decrease as the piston 26 reciprocates. For example, when the piston 26 moves upward from the position shown in FIG. 2 and the volume within the chamber 31 decreases,
The working fluid of the fluid machine in the chamber 31 is compressed and transferred to the chamber 3.
The pressure within 1 increases. When the pressure in the chamber 31 becomes higher than the pressure in the discharge chamber 35, the discharge valve 33 opens and the fluid in the chamber 31 is discharged from the discharge valve 33 and the discharge chamber 35.
It is sent out towards the discharge passage 36 through the. Next, when the transmission shaft 25 reaches the highest point and starts to fall, the pressure inside the chamber 31 starts to drop, and when the pressure inside the chamber 31 becomes lower than the pressure inside the discharge chamber 35, the discharge valve 33 closes and the Fluid entry into chamber 31 is prevented. When the transmission shaft 25 is further lowered and the pressure in the chamber 31 becomes lower than the pressure in the suction chamber 28, the suction valve 29 opens, and the suction passage 27 and the suction chamber 2
8. Fluid flows into chamber 31 through suction valve 29. Next, when the transmission shaft 25 reaches its lowest point and begins to rise, the pressure in the chamber 31 begins to rise, and when the pressure in the chamber 31 becomes higher than the pressure in the suction chamber 28, the suction valve 29 closes and suction is drawn from the chamber 31. Outflow into chamber 28 is prevented. Furthermore, the transmission shaft 25 rises and the chamber 31
When the pressure inside becomes higher than the pressure inside the discharge chamber 35, the discharge valve 33 opens, and the above process is repeated as the transmission shaft 25 reciprocates, and as a result, the working fluid of the fluid machine 24 is sucked through the suction passage 27. It is pressurized and sent out through the discharge passage 36. Also room 3
2, the fluid in the suction chamber 28 flows into the chamber 32 through the suction valve 30 as the transmission shaft 25 reciprocates, and the fluid in the chamber 32 is pressurized to open the discharge valve 34 and the discharge chamber. 35, and send it out through the discharge passage 36. Therefore, due to the reciprocating motion of the transmission shaft 25, the working fluid of the fluid machine 24 is sucked through the suction passage 27, pressurized, and discharged through the discharge passage 36. In this way, the heat engine 23 performs work on the working fluid of the fluid machine 24 via the transmission shaft 25 and the fluid machine 24.

一方、以上の動作中、熱機関23の作動流体と
流体機械24の作動流体とは、仕切室37及び4
4内に設けられた第1の可撓性隔板38及び第2
の可撓性隔板46で隔てられている。しかも上述
の如く、第2図の様に伝動軸25が往復運動の振
巾の中心位置にあるとき、室42,43,49,
50の内圧がほゞ等しく、又伝動軸25が往復運
動しても室43と50の体積の和及び室42と4
9の体積の和がほとんど変化せずかつ室43と5
0及び室42と49がそれぞれ流通抵抗の小さい
均圧管51及び52で連通されているため、伝動
軸25が往復運動しても第1及び第2の可撓性隔
板38,46には大きな応力は働かず、これによ
つて可撓性隔板の信頼性が向上する。
On the other hand, during the above operation, the working fluid of the heat engine 23 and the working fluid of the fluid machine 24 are
A first flexible diaphragm 38 and a second flexible diaphragm provided within 4
They are separated by a flexible partition plate 46. Moreover, as mentioned above, when the transmission shaft 25 is at the center position of the amplitude of the reciprocating motion as shown in FIG.
Even if the internal pressures of chambers 50 are approximately equal and the transmission shaft 25 reciprocates, the sum of the volumes of chambers 43 and 50 and the volumes of chambers 42 and 4
The sum of the volumes of chambers 43 and 5 remains almost unchanged.
0 and chambers 42 and 49 are communicated with each other through pressure equalizing pipes 51 and 52 with low flow resistance, so even if the transmission shaft 25 reciprocates, there is no significant impact on the first and second flexible partitions 38 and 46. No stress is exerted, which improves the reliability of the flexible diaphragm.

本発明の熱機関で駆動する流体機械によると、
以上の説明から明らかな様に、熱機関と流体機械
を連結する伝動軸が往復運動しても、熱機関の作
動流体と流体機械の作動流体とを隔てる第1及び
第2の可撓性隔板に大きな応力が生じないので、
これら可撓性隔板の信頼性が従来に比べて向上
し、そのため全体装置である熱機関で駆動される
流体機械の信頼性が向上する。
According to the fluid machine driven by the heat engine of the present invention,
As is clear from the above description, even if the transmission shaft connecting the heat engine and the fluid machine reciprocates, the first and second flexible partitions separating the working fluid of the heat engine and the working fluid of the fluid machine Since there is no large stress on the plate,
The reliability of these flexible diaphragms is improved compared to the conventional one, and therefore the reliability of the entire device, a fluid machine driven by a heat engine, is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の概略構成図、第2図は本発明
の一実施例の概略構成図である。 23は熱機関、24は流体機械、25は伝動
軸、26はピストン、37,44は仕切室、38
は第1の可撓性隔板、40は密閉容器、42,4
3,49,50は室、46は第2の可撓性隔板、
51,52は均圧管。
FIG. 1 is a schematic diagram of a conventional example, and FIG. 2 is a schematic diagram of an embodiment of the present invention. 23 is a heat engine, 24 is a fluid machine, 25 is a transmission shaft, 26 is a piston, 37, 44 is a partition chamber, 38
is a first flexible partition, 40 is a closed container, 42, 4
3, 49, 50 are chambers, 46 is a second flexible diaphragm,
51 and 52 are pressure equalizing pipes.

Claims (1)

【特許請求の範囲】[Claims] 1 密閉容器内を、その内壁に封止された第1お
よび第2の可撓性隔板によつて、これら可撓性隔
板間の第1の閉空間とその両側の第2と第3の閉
空間とに区画し、前記第1の閉空間内に流体機械
に配設し、前記第2の閉空間内に熱機関を配設
し、前記熱機関と流体機械を連結する伝動軸を前
記第1及び第2の可撓性隔板を貫通させて設ける
と共にその貫通部を封止し、かつ第2の閉空間と
第3の閉空間を連通させた熱機関で駆動する流体
機械。
1. The inside of the sealed container is separated by first and second flexible partitions sealed on the inner wall thereof into a first closed space between these flexible partitions and a second and third space on both sides thereof. a closed space, a fluid machine is arranged in the first closed space, a heat engine is arranged in the second closed space, and a transmission shaft connecting the heat engine and the fluid machine is arranged. A fluid machine driven by a heat engine, which is provided with the first and second flexible partitions penetrating therethrough, the penetrating portion thereof is sealed, and a second closed space and a third closed space are communicated with each other.
JP9173082A 1982-05-29 1982-05-29 Fluid machinery driven by heat engine Granted JPS58210378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9173082A JPS58210378A (en) 1982-05-29 1982-05-29 Fluid machinery driven by heat engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9173082A JPS58210378A (en) 1982-05-29 1982-05-29 Fluid machinery driven by heat engine

Publications (2)

Publication Number Publication Date
JPS58210378A JPS58210378A (en) 1983-12-07
JPS635592B2 true JPS635592B2 (en) 1988-02-04

Family

ID=14034623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9173082A Granted JPS58210378A (en) 1982-05-29 1982-05-29 Fluid machinery driven by heat engine

Country Status (1)

Country Link
JP (1) JPS58210378A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086936B (en) * 2009-12-08 2013-06-19 张意立 Novel matching device with improved fluid sealing structure
CN102128270A (en) * 2011-03-16 2011-07-20 丰城向华水基科学技术有限公司 Differential pressure sealing leakage prevention method

Also Published As

Publication number Publication date
JPS58210378A (en) 1983-12-07

Similar Documents

Publication Publication Date Title
JP4464135B2 (en) Suction silencer for reciprocating hermetic compressor
US5173034A (en) Discharge muffler for refrigeration compressor
US6692238B2 (en) Muffler of compressor
US4534710A (en) Swash-plate-type compressor having suction and discharge damping chambers
EP0431753B1 (en) Reciprocating pump
EP1553294A2 (en) Linear compressor
JPH07293440A (en) Compressor
US7156626B2 (en) Double side action type reciprocating compressor
US4781540A (en) Piston type compressor for air conditioning unit having asymmetric valve mechanism
US4764091A (en) Piston type compressor for air conditioning unit with asymmetric valve mechanisms
JPH062971A (en) Stirling engine integral type compressor
US3050237A (en) Compressor valve service
JPS635592B2 (en)
JP3278982B2 (en) pump
US5678983A (en) Discharge fluid actuated assist for opening an outlet reed valve of a hermetic compressor system
CN217152282U (en) Steady flow output diaphragm pump cavity structure and steady flow water outlet device
CN101680440B (en) Head cover for a hermetic compressor and working-fluid discharging apparatus using the same
US5141409A (en) Compression machine
US3473726A (en) Compressor for a mechanical refrigerator
JP3710152B2 (en) Piston pump / motor
JP3755917B2 (en) Compressor valve device
JP2995883B2 (en) Stirling cycle device
JPH08506173A (en) Starter for small refrigeration system
US3704964A (en) Hermetic refrigeration compressor
JPH062654A (en) Compressor