JPS6353863A - Solid electrolytic fuel cell - Google Patents

Solid electrolytic fuel cell

Info

Publication number
JPS6353863A
JPS6353863A JP61196973A JP19697386A JPS6353863A JP S6353863 A JPS6353863 A JP S6353863A JP 61196973 A JP61196973 A JP 61196973A JP 19697386 A JP19697386 A JP 19697386A JP S6353863 A JPS6353863 A JP S6353863A
Authority
JP
Japan
Prior art keywords
fuel
chamber
air
fuel cell
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61196973A
Other languages
Japanese (ja)
Inventor
Yuichiro Murakami
勇一郎 村上
Shoji Morita
章二 森田
Tadashi Gengo
義 玄後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61196973A priority Critical patent/JPS6353863A/en
Publication of JPS6353863A publication Critical patent/JPS6353863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To form a solid electrolytic fuel cell so as to aim at simplification of its construction, by arranging fuel cell elements each of which is consisting of a solid electrolytic thin film formed on a ceramic base plate in a box and connecting them in series or parallel. CONSTITUTION:A fuel cell element 5 is produced by forming the films of an air pole 2, a solid electrolyte 3 and a fuel pole 4 sequentially on a porous ceramic base plate 1, while each of them is 10 to 1,000mum in thickness. Then, the elements 5 are lined up in parallel longitudinally in an element chamber 21 made of ceramic so that a pair of the base plate 1 may be faced each other and a pair of the fuel pole 4 may be faced each other. The air is sent to an air chamber 8 through holes 12 provided on the underneath of the air chamber 8, and the fuel is sent to a fuel 9 through holes 10, and 11 provided on the side of the fuel chamber 9. After the fuel and the air are used for generation of electricity, they go out through the small holes 11 and 12 provided on a ceiling partition wall 6 of each chamber 9 or 8 and burnt in a burning chamber (not shown in Figure). This heat is utilized for preheating the fuel and the air. By this, a new type solid electrolytic fuel cell can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大面、積平板型固体電解質燃料電池伊養磯に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a large, stacked plate type solid electrolyte fuel cell Iyoiso.

〔従来の技術〕[Conventional technology]

従来、固体電解質は高温で優れたイオン電導性を示すの
で、燃料電池用材料として注目されており、溶射法、化
学蒸着法などによ)゛多孔質セラミック基体管上に成膜
された固体電解質薄膜を用いだ円筒型固体電解質燃料電
池が試作されている。
Conventionally, solid electrolytes have attracted attention as materials for fuel cells because they exhibit excellent ionic conductivity at high temperatures. Cylindrical solid electrolyte fuel cells using thin films have been prototyped.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこの円筒型燃料電池は数多くの素子を積層する
ため、インターコネクター材料の成膜を必要とし、構造
も複数となり、量産化技術などに問題点が数多く残され
ていた。
However, since this cylindrical fuel cell stacks many elements, it requires the deposition of interconnector materials, resulting in multiple structures, and many problems remain in mass production technology.

特に従来の円筒型積層型構造の燃料電池は。Especially for fuel cells with conventional cylindrical stacked structure.

インターコネクターを用いるなど多くの接点ができ、そ
こでの熱膨張係数の差による熱応力による割れなどの問
題点があった。
There were many points of contact, such as the use of interconnectors, and there were problems such as cracking due to thermal stress due to differences in thermal expansion coefficients.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、従来から用いられている基体管のかわりに、多
孔質セラミックス平板を基板として用いることにより、
燃料電池の改善をした。
Therefore, by using a porous ceramic flat plate as a substrate instead of the conventionally used base tube,
Improved the fuel cell.

すなわち1本発明では、従来のように多数の基体管を用
いるのでなく 、  100X100 ilnを以上の
面積をもつ大面積平板上に、空気極。
That is, in the present invention, instead of using a large number of base tubes as in the conventional case, the air electrode is placed on a large flat plate having an area of 100 x 100 in or more.

固体電解質および燃料色を成膜し、大面積燃料電池素子
を形成させ、この素子をセラミックス製などのボックス
中に直列または並列に配列接続することにより、固体電
解質燃料電池を形成させ、燃料電池構造の簡素化を計っ
た。
A solid electrolyte fuel cell is formed by depositing a solid electrolyte and a fuel color to form a large-area fuel cell element, and arranging and connecting these elements in series or parallel in a box made of ceramics, etc. to form a fuel cell structure. We aimed to simplify the .

更に本発明を詳述すると、アルミナ質またはカルシミア
安定化ジルコニア質多孔質基板上に空気極、固体電解質
、燃料極を順次成膜した素子を直列もしくは平行に配列
し、基板側と基板制汗燃料極側と燃料極側とをそれぞれ
交互に向い合わせ、基板にかこまれた空間に空気を、燃
料極にかこまれた空間に燃料を送る手段を設けて、空気
は素子室側から予熱した後、穴を通して空気室に入れ、
燃料は燃料室側から穴を通して燃料室に入れた後、上記
素子室から出た上記燃料は上記空気と燃焼させて、新し
い空気や新しい燃料の予備加熱に用いるようにした固体
電解質燃料電池である。
To further explain the present invention in detail, elements in which an air electrode, a solid electrolyte, and a fuel electrode are sequentially formed on a porous substrate made of alumina or calcium stabilized zirconia are arranged in series or in parallel, and the substrate side and the substrate antiperspirant fuel are arranged in series or in parallel. The electrode side and the fuel electrode side are faced alternately, and a means is provided to send air to the space surrounded by the substrate and fuel to the space surrounded by the fuel electrode, and after preheating the air from the element chamber side, into the air chamber through the hole,
In this solid electrolyte fuel cell, fuel is introduced into the fuel chamber through a hole from the fuel chamber side, and the fuel that comes out of the element chamber is combusted with the air and used for preheating new air and new fuel. .

〔実施例〕〔Example〕

第1図から第3図は2本発明に係わる一実施例を示す図
である。第1図は大面積平板型燃料電池素子の断面を示
す断面図で、第2図は本発明に係わる一実施例である固
体電解質燃料電池の素子室を上側から見た模形図で、 
 。
FIGS. 1 to 3 are diagrams showing two embodiments of the present invention. FIG. 1 is a cross-sectional view showing a cross section of a large-area flat plate fuel cell element, and FIG. 2 is a schematic diagram of an element chamber of a solid electrolyte fuel cell according to an embodiment of the present invention viewed from above.
.

第3図は本発明の一実施例である固体電解質燃料電池の
構成を示す斜視図である。以下。
FIG. 3 is a perspective view showing the structure of a solid electrolyte fuel cell which is an embodiment of the present invention. below.

本発明により得られた一実施例である固体電解質燃料電
池の構造を図を参照して説明する。
The structure of a solid electrolyte fuel cell which is an example obtained by the present invention will be explained with reference to the drawings.

先ず、第1図に図示するように2面積100×100〜
500X500 mm”、厚さ1〜5Tnr!tのアル
ミナ質又はカルシア安定化ジルコニア質の多孔質セラミ
ックス基板1上に、空気極2.固体電解質3.燃料極4
を、それぞれ厚さ10〜1000μmだけ順次成膜し、
燃料電池素子5を製造した。この素子5の両端には図示
省略のリード線またはニッケルフェルトに接続して、電
流を取シ出すようにした。次に第2図に図示するよつに
、セラミックス製の素子室21中に、上記素子5を縦に
平行に並べ。
First, as shown in Figure 1, two areas of 100 x 100 ~
On a porous ceramic substrate 1 made of alumina or calcia-stabilized zirconia and having a size of 500×500 mm and a thickness of 1 to 5 Tnr!t, an air electrode 2.a solid electrolyte 3.a fuel electrode 4 were disposed.
were sequentially formed to a thickness of 10 to 1000 μm, respectively,
A fuel cell element 5 was manufactured. Both ends of this element 5 were connected to lead wires or nickel felt (not shown) to extract current. Next, as shown in FIG. 2, the elements 5 are arranged vertically in parallel in a ceramic element chamber 21.

え 一対の上記基板1と基板1とて燃料極4と燃料極4←+
とを向い合わせた。第2図 中、一対の基板1と基板′1とにかこまれた空間が空気
室8で、一対の燃料極4と燃料極4とにかこまれた空間
が燃料室9である。
A pair of the above substrates 1 and 1 are connected to the fuel electrode 4 and the fuel electrode 4←+
We faced each other. In FIG. 2, the space surrounded by the pair of substrates 1 and 1 is the air chamber 8, and the space surrounded by the pair of fuel electrodes 4 and the fuel electrode 4 is the fuel chamber 9.

空気は空気室8の下にある穴12がら空気室8へ送られ
、燃料は燃料室9の横側にある穴10.11から燃料室
9へ送られる。燃料および空気は発電に使用された後、
それぞれ。
Air is conveyed into the air chamber 8 through holes 12 below the air chamber 8, and fuel is conveyed into the fuel chamber 9 through holes 10.11 on the side of the fuel chamber 9. After the fuel and air are used to generate electricity,
Each.

燃料室9または空気室8の天井隔壁6の小さな穴11.
12から出て2図示省略の燃料室で燃焼し、その熱は燃
料および空気の予備加熱に用いられる。このようにして
新しい型の固体電解質燃料電池が形成された。電流は各
素子5の両端から図示省略のニッケルフェルトまたはリ
ード線に接続し、素子室21外へシ出した。第2図中、
7はセラミックス製隔壁を示す。なお、基板1上に燃料
極4.固体電解質3.空気極2の順に成膜した場合。
A small hole 11 in the ceiling bulkhead 6 of the fuel chamber 9 or air chamber 8.
12 and is burned in a fuel chamber 2 (not shown), and the heat is used for preheating the fuel and air. A new type of solid electrolyte fuel cell was thus formed. The current was connected to nickel felt or lead wires (not shown) from both ends of each element 5, and was conducted out of the element chamber 21. In Figure 2,
7 indicates a ceramic partition wall. Note that a fuel electrode 4. is provided on the substrate 1. Solid electrolyte 3. When the films are formed in the order of air electrode 2.

基板1中での生成した水の拡散が発電効率に影響するの
で、第1図に示したような素子5の構成とした。また本
発明の他実施例として。
Since the diffusion of generated water in the substrate 1 affects the power generation efficiency, the element 5 was configured as shown in FIG. 1. Also, as another embodiment of the present invention.

第1図と同様な構成により1面積150 X 1502
111!、厚さ21n2I!の多孔質アルミナ基板1上
に。
With the same configuration as in Figure 1, one area is 150 x 1502
111! , thickness 21n2I! on a porous alumina substrate 1.

空気極2としてLaCo0.を約300ttmp固体電
解質3としてZrO,−12%¥20.を約100μm
、燃料極4としてNi−ZrO2サーメットを約300
μm成膜し、素子5を製造した。この素子5を第2図に
示したように配列し、燃料電池を組みあげた。次に本発
明で実施した固体電解質燃料電池の構成を第3図を参照
して説明する。燃料ガスは排ガスと熱交換した後。
As the air electrode 2, LaCo0. About 300 ttmp solid electrolyte 3 as ZrO, -12% ¥20. about 100μm
, about 300% Ni-ZrO2 cermet was used as the fuel electrode 4.
A film of μm was formed, and element 5 was manufactured. The elements 5 were arranged as shown in FIG. 2, and a fuel cell was assembled. Next, the structure of the solid electrolyte fuel cell implemented in the present invention will be explained with reference to FIG. After the fuel gas exchanges heat with the exhaust gas.

バ 燃料予備加熱室14に入り、隔壁60暴11を通して燃
料室9に入る。空気は同じく排ガそこで素宇ゐ基板1側
に空気が、燃料極4側に燃料ガスが流れ、燃料電池が作
動する。使、2− 用済みの燃料は燃料室の天井隔壁の穴18から燃焼室に
入り、空気は空気室8天井$16の穴19から燃焼室に
入り、そこで燃料を燃焼させる。排ガスは空気および熱
料と熱交換をして排出させる。電池は各素子5の両端か
ら図示省略のリード線によシ取シ出し。
The fuel enters the fuel preheating chamber 14 and enters the fuel chamber 9 through the partition wall 60 and the fuel chamber 11. Similarly, air flows to the exhaust gas, where air flows to the substrate 1 side and fuel gas flows to the fuel electrode 4 side, and the fuel cell operates. Use, 2- Spent fuel enters the combustion chamber through the hole 18 in the ceiling bulkhead of the fuel chamber, and air enters the combustion chamber through the hole 19 in the ceiling $16 of the air chamber 8, where the fuel is combusted. Exhaust gas exchanges heat with air and heating charge and is discharged. The battery is taken out from both ends of each element 5 by lead wires (not shown).

直列に接続して電力を取り出した。第3図中。Connected in series to extract power. In Figure 3.

15はセラミックス製隔壁を示す。15 indicates a ceramic partition wall.

〔発明の効果〕〔Effect of the invention〕

大面積平板型燃料電池を試作することにより、従来の円
筒型燃料電池に比較して、構造や素子製造工程が簡単と
なり、製造コストの低減に効果があった。このように本
発明による新しい型の固体電解質燃料電池は、利用価値
が高い等産業の発達に寄与するところが大きい。また、
従来の如く積層構造素子を用いていないことにより、電
池内部抵抗の低減や熱応力の減少による電池長寿命化に
有用である。
Prototyping a large-area flat plate fuel cell made the structure and element manufacturing process simpler than conventional cylindrical fuel cells, and was effective in reducing manufacturing costs. As described above, the new type of solid electrolyte fuel cell according to the present invention has high utility value and greatly contributes to the development of industry. Also,
By not using a laminated structure element as in the past, it is useful for extending the life of the battery by reducing internal resistance of the battery and reducing thermal stress.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は2本発明に係わる一実施例を示す図
である。第1図は、大面積平板型燃料電池素子の断面を
示す断面図で、第2図は2本発明に係わる一実施例であ
る固体電解質燃料電池の素子室を上側から見た模式図で
、第3図は2本発明の一実施例である固体電解質燃料電
池の構成を示す斜視図である。 1・・・多孔質セラミックス(多孔質アルミナ)基板、
2・・・空気極(薄膜)、3・・・固体電解質(薄膜)
、4・・・燃料極(薄膜)、5・・・空気ジ。 固体電解質、燃料極からなる燃料電池(薄膜)素子、6
・・・素子質と燃料予備加熱室の隔壁。 7・・・セラミックス製隔壁、8・・空気室、9・・・
燃料室、10.11・・・燃料導入のための穴。 12・・・空気導入のための穴、13・・空気予備加熱
室、14・・・燃料予備加熱室、15・・・セラミック
ス製隔壁、16・・・素子室の天井(素子室と燃料室の
隔壁)、17・・・空気予熱室と素子室の隔壁、18・
・・燃料流出用の穴、19・・・空気流出用の穴。
FIGS. 1 to 3 are diagrams showing two embodiments of the present invention. FIG. 1 is a cross-sectional view showing the cross section of a large-area flat plate fuel cell element, and FIG. 2 is a schematic diagram of the element chamber of a solid electrolyte fuel cell according to an embodiment of the present invention viewed from above. FIG. 3 is a perspective view showing the structure of a solid electrolyte fuel cell which is an embodiment of the present invention. 1... Porous ceramic (porous alumina) substrate,
2... Air electrode (thin film), 3... Solid electrolyte (thin film)
, 4...Fuel electrode (thin film), 5...Air di. Fuel cell (thin film) element consisting of solid electrolyte and fuel electrode, 6
...Partition between element material and fuel preheating chamber. 7... Ceramic partition wall, 8... Air chamber, 9...
Fuel chamber, 10.11... Hole for fuel introduction. 12... Hole for introducing air, 13... Air preheating chamber, 14... Fuel preheating chamber, 15... Ceramic partition wall, 16... Ceiling of element chamber (element chamber and fuel chamber) partition wall), 17... partition wall between the air preheating chamber and the element chamber, 18.
... Hole for fuel outflow, 19... Hole for air outflow.

Claims (1)

【特許請求の範囲】[Claims] 大面積多孔質セラミックス基板上に、成膜した固体電解
質薄膜からなる燃料電池素子が、ボックス中に直列もし
くは平行に配列接続されてなることを特徴とする固体電
解質燃料電池。
A solid electrolyte fuel cell characterized in that fuel cell elements each consisting of a solid electrolyte thin film formed on a large-area porous ceramic substrate are arranged and connected in series or in parallel in a box.
JP61196973A 1986-08-22 1986-08-22 Solid electrolytic fuel cell Pending JPS6353863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61196973A JPS6353863A (en) 1986-08-22 1986-08-22 Solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61196973A JPS6353863A (en) 1986-08-22 1986-08-22 Solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPS6353863A true JPS6353863A (en) 1988-03-08

Family

ID=16366724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61196973A Pending JPS6353863A (en) 1986-08-22 1986-08-22 Solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPS6353863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414270A2 (en) * 1989-08-24 1991-02-27 Kabushiki Kaisha Meidensha Fuel cell utilizing solidous electrolyte
WO1996008052A1 (en) * 1994-09-03 1996-03-14 Forschungszentrum Jülich GmbH Solid electrolyte, high temperature fuel cell arrangement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414270A2 (en) * 1989-08-24 1991-02-27 Kabushiki Kaisha Meidensha Fuel cell utilizing solidous electrolyte
US5151334A (en) * 1989-08-24 1992-09-29 Kabushiki Kaisha Meidensha Fuel cell utilizing solidous electrolyte
WO1996008052A1 (en) * 1994-09-03 1996-03-14 Forschungszentrum Jülich GmbH Solid electrolyte, high temperature fuel cell arrangement

Similar Documents

Publication Publication Date Title
EP0222880B1 (en) Electrochemical converters and combined cycle systems
CA2063518C (en) Solid electrolyte type fuel cell
US4910100A (en) Solid electrolyte fuel cell
US4510212A (en) Solid oxide fuel cell having compound cross flow gas patterns
US5185219A (en) Solid oxide fuel cells
US5145754A (en) Solid oxide fuel cell
US9608285B2 (en) Stack for a solid oxide fuel cell using a flat tubular structure
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JPH04237962A (en) Flat type solid electrolyte fuel cell
JP3516325B2 (en) Honeycomb structure solid oxide fuel cell
JP4192017B2 (en) Cell stack and fuel cell
JPS6353863A (en) Solid electrolytic fuel cell
JP3346784B2 (en) Vertical stripe cylindrical solid electrolyte fuel cell
JPH10134829A (en) Solid electrolyte fuel cell, solid electrolyte fuel cell assembly, manufacture of solid electrolyte fuel cell, and manufacture of solid electrolyte fuel cell assembly unit
JPH02273465A (en) Manufacture of solid electrolyte fuel cell
JPH05275096A (en) Close board for solid electrolytic fuel cell, and solid electrolytic fuel cell using same and manufacture thereof
JPH1167243A (en) Support for electrochemical cell, electrochemical cell, and its manufacture
JPH0589901A (en) Solid electrolyte type fuel cell
JPH0294365A (en) Solid electrolyte fuel cell
JPH0529010A (en) Solid electrolyte fuel cell device
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH06196196A (en) Solid electrolyte type fuel cell
JPH0412468A (en) High-temperature fuel cell
JPH0541224A (en) Solid electrolyte type fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell