JPS6353225B2 - - Google Patents

Info

Publication number
JPS6353225B2
JPS6353225B2 JP17698283A JP17698283A JPS6353225B2 JP S6353225 B2 JPS6353225 B2 JP S6353225B2 JP 17698283 A JP17698283 A JP 17698283A JP 17698283 A JP17698283 A JP 17698283A JP S6353225 B2 JPS6353225 B2 JP S6353225B2
Authority
JP
Japan
Prior art keywords
parts
weight
acid
copolymer
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17698283A
Other languages
Japanese (ja)
Other versions
JPS60137958A (en
Inventor
Yoji Iizaka
Koichi Kodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP17698283A priority Critical patent/JPS60137958A/en
Publication of JPS60137958A publication Critical patent/JPS60137958A/en
Publication of JPS6353225B2 publication Critical patent/JPS6353225B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐衝撃性をはじめとする機械的特性や
耐熱性の改善された熱可塑性ポリエステル樹脂組
成物に関するものである。 熱可塑性ポリエステル、とりわけポリブチレン
テレフタレート(以下、PBTと略記する)はバ
ランスのとれた良好な物性および優れた成形加工
性を有し、機械部品、電子・電気部品、自動車部
品、その他の分野で広く利用されている。 しかしながらPBTは優れた特性と共にノツチ
衝撃強度が低いという大きな欠点も有している。
即ち、PBTはノツチ(切欠き)をつけない状態
では良好な衝撃強度を示すが、ノツチを付けると
衝撃強度が著しく低下し、実用的には成形品設計
面でシヤープエツジをなくすなどの配慮がなされ
てはいるが、成形品に傷がつき、そこで衝撃が加
わると破損しやすくなることを意味し、用途拡大
に於ける障害となつている。 従来、PBTのノツチ付衝撃強度を改善する方
法が種々検討されており、例えば、ブチルゴムを
配合する方法(特公昭46−5224号)、アクリロニ
トリル−スチレン−ブタジエン共重合体を配合す
る方法(特公昭51−25261号)、ポリエーテルエス
テルブロツク共重合体を配合する方法(特開昭50
−48059号)、アクリル系多相複合共重合を配合す
る方法(特開昭52−150466号)、α,β−不飽和
カルボン酸グラフト変性エチレン共重合体を配合
する方法(特開昭55−21430号)等数多く提案さ
れているが、耐衝撃改良効果が不十分であつた
り、或いは耐衝撃性が改良されている反面、引張
り強度、曲げ強度等の機械的物性、耐熱安定性、
耐侯性、成形性等の他の有用な特性の低下が大き
い等PBTとしての優れた諸特性のバランスがく
ずれ、満足な結果が得られていない。特に加熱溶
融時の挙動については、熱時の溶融安定性が悪く
て溶融粘度の変化が大きい為、成形機中で少し長
時間滞留すると、ある場合には流動性が低下して
シヨートシヨートになり、ひどい時は中でゲル化
する等の成形不良を起し、ある場合には樹脂の分
解が促進されて流動性が大きくなり、金型からの
バリが多くなる等の成形不良を生じ、又ある場合
は、成形物の耐衝撃性が低下して脆くなつてしま
うことすら観察された。 本発明者等は、先に耐衝撃性及び熱時の溶融安
定性の優れた熱可塑性ポリエステル組成物とし
て、不飽和カルボン酸(無水物)0.01〜10重量%
をグラフト重合したエチレンと炭素数3〜6のα
−オレフインとの共重合体及び2個以上のエポキ
シ基を含有するポリエポキシ化合物を配合して溶
融混合してなる熱可塑性ポリエステル樹脂組成物
を提案したが、その後の検討に於て、これらの溶
融成形品にセロフアンテープを貼りつけ、勢いよ
くはがすというような剥離試験を行つた場合、成
形品表面の一部の樹脂が剥離されるという現象が
認められる為、更に耐剥離性を改善すべく鋭意検
討を重ねた結果、本発明に至つたものである。 即ち、本発明は、(A)熱可塑性ポリエステル樹脂
95〜50重量部、(B)不飽和カルボン酸またはその無
水物0.01〜10重量%をグラフト重合したエチレン
と炭素数3〜6のα−オレフインとの共重合体5
〜50重量部、(C)ポリアミド樹脂2〜50重量部及び
(D)ポリエポキシ化合物からなり、(A)と(B)と(C)との
合計100重量部に対し(A)を0.1〜10重量部添加し溶
融混合してなる熱可塑性ポリエステル樹脂組成物
を提供するものである。 ここにおいて、前記熱可塑性ポリエステル樹脂
(A)とは、テレフタル酸またはそのエステル類と、
エチレングリコール、プロレングリコール、ブタ
ジオール、ペンタンジオール、ネオペンチルグリ
コール、ヘキサンジオール、オクタンジオール、
デカンジオール、シクロヘキサンジメタノール、
ハイドロキノン、ビスフエノールA、2,2−ビ
ス(4−ヒドロキシエトキシフエニル)プロパ
ン、1,4−ジメチロールテトラブロモベンゼン
またはTBA−EOなどの如きグリコール類とから
得られるポリエステルのことであり、通常は、フ
エノールと四塩化エタンとの6対4なる重量比の
混合溶媒中、30℃で測定した固有粘度〔η〕が
0.3〜1.5dl/gなる範囲のものが用いられる。 このほかにも、全酸成分の40モル%以下をイソ
フタル酸、オルソフタル酸、ナフタレンジカルボ
ン酸、4,4′−ジフエニルジカルボン酸、ジフエ
ニルエーテルジカルボン酸、α,β−ビス(4−
カルボキシフエノキシ)エタン、アジピン酸、セ
バチン酸、アゼライン酸、デカンジカルボン酸、
シクロヘキサンジカルボン酸もしくはダイマー酸
の如き他のジカルボン酸、またはグリコール酸、
ヒドロキシ酪酸、ヒドロキシカプロン酸、ヒドロ
キシ安息香酸、ヒドロキシフエニル酢酸もしくは
ナフチルグリコール酸の如きヒドロキシカルボン
酸などで置き換えたものでもよく、他方、全グリ
コール成分の40モル%以下を、ポリエチレングリ
コールもしくはポリテトラメチレンエーテルグリ
コールの如きポリアルキレンエーテルグリコール
類や両末端が水酸基であるような脂肪族ポリエス
テル・オリゴマーなどで置き換えてもよい。 また、コモノマー成分としてプロピオラクト
ン、ブチロラクトン、バレロラクトンもしくはカ
プロラクトンの如きラクトン化合物またはそれら
のポリマー類を全モノマー成分中に40モル%以下
で含んでいてもよく、あるいは熱可塑性を保持し
うる範囲内で、トリメチロールプロパン、トリメ
チロールエタン、グリセリン、ペンタエリスリト
ール;トリメリツト酸、トリメシン酸、ピロメリ
ツト酸などの如き多官能エステル形成成分を含ん
でいてもよい。 また末端に水酸基を有する低分子量のポリアル
キレンテレフタレート(〔η〕=0.1〜0.5dl/g)
を多官能性イソシアネート類で高分子量化せしめ
たポリエステルポリウレタンも本発明に包含され
るものである。 これらの熱可塑性ポリエステルの中でも、特に
PBT、ポリエチレンテレフタレートに於て望ま
しい効果が発揮される。 本発明に用いられる(B)成分は衝撃性改良剤とし
て用いられるもの(以下、不飽和酸グラフトエチ
レン系共重合体と称す)であり、不飽和カルボン
酸またはその無水物0.01〜10重量%をグラフト重
合したエチレンと炭素数3〜6のα−オレフイン
との共重合体である。幹ポリマーとして用いられ
るエチレンと炭素数3〜6の共重合体(以下、単
にエチレン系共重合体と称す)としては、プロピ
レン、ブテン−1、イソブテン、ペンテン−1、
4−メチルペンテン−1、ヘキセン−1等の炭素
数3〜6のα−オレフインとの共重合体、または
更に1種以上の他の共重合性モモノマーが共重合
されているもので、具体的にはエチレン/プロピ
レン共重合体、エチレン/ブテン−1共重合体、
エチレン/4−メチルペンテン−1共重合体、エ
チレン/ヘキセン−1共重合体、エチレン/プロ
ピレン/ブテン−1共重合体、、エチレン/プロ
ピレン/4−メチルペンテン−1共重合体、エチ
レン/プロピレン/ヘキセン−1共重合体、エチ
レン/プロピレン/エチリデンノルボルネン共重
合体、エチレン/プロピレン/ジシクロペンタジ
エン共重合体、エチレン/ブテン−1/エチリデ
ンノルボルネン共重合体、エチレン/ブテン−
1/ジシクロペンタジエン共重合体等が挙げられ
る。 また、これらのエチレン系共重合体にグラフト
重合する不飽和カルボン酸またはその無水物とし
ては、マレイン酸、フマール酸、イタコン酸、メ
チルマレイン酸、3,6−エンドメチレン−デル
タ−4−テトラヒドロフタル酸、アクリル酸、メ
タクリル酸、クロトン酸、シトラコン酸、無水マ
レイン酸、無水イタコン酸、無水メチルマレイン
酸、3,6−エンドメチレン−デルタ−4−テト
ラヒドロフタル酸無水物、2−メチル−3,6−
エンドメチレン−デルタ−4−テトラヒドロフタ
ル酸無水物、3−メチル−4−シクロヘキセン−
1,2−ジカルボン酸無水物等が挙げられる。 また、これらの不飽和カルボン酸またはその無
水物と共に、これらの酸のエステル、アミド、イ
ミド、ニトリル等の誘導体を併用してもよい。 幹となるエチレン系共重合体に不飽和カルボン
酸またはその無水物をグラフトする重合反応は溶
融状態、懸濁状態、スラリー状態または溶融状態
で公知の手段によつて行うことができる。 例えばトルエンやヘキサンのような溶媒にエチ
レン系共重合体を溶解した溶液に不飽和カルボン
酸(無水物)と有機パーオキサイドを添加し加熱
撹拌下でグラフト重合させた後、脱溶媒ないしは
非溶媒との接触によりグラフト重合したエチレン
系共重合体を得るか、あるいはエチレン系共重合
体、不飽和カルボン酸(無水物)及び有機パーオ
キサイドの配合物を押出機、混練機等を用いて加
熱溶融混練下にグラフト重合を行う方法がとられ
る。 グラフト重合させる不飽和カルボン酸またはそ
の無水物の量は、エチレン系共重合体に対し0.01
〜10重量%、好ましくは0.1〜7重量%グラフト
され、この量が0.01重量%より少ないと熱可塑性
ポリエステルに対する衝撃改良効果が小さく、逆
にあまり多くなると、熱可塑性ポリエステル樹脂
組成物が着色したり、溶融状態における溶融粘度
の変化が大きくなり好ましくない。 不飽和酸グラフトエチレン系共重合体(B)の配合
量は熱可塑性ポリエステル樹脂(A)、ポリアミド樹
脂(C)及び(B)の合計100重量部中5〜50重量部、好
ましくは10〜50重量部であり、5重量部より少な
いと耐衝撃改良効果が殆んどなく、一方、50重量
部より多くなると熱可塑性ポリエステル樹脂の優
れた諸特性が発揮されず、もはや本発明の目的と
するエンジニアリングプラスチツクとは言いえな
い。 本発明に用いられるアミド基を含有する樹脂(C)
は、ラクタム開環重合物、ジアミンと二塩基酸の
重縮合物、ω−アミノ酸の自己重縮合物など、ま
たはそれらの共重合により得られるもので、具体
的にはポリカプラミド、ポリウンデカミド、ポリ
ラウラミド、ポリヘキサメチレン・アジパミド、
ポリヘキサメチレン・セバカミド、ポリヘキサメ
チレン・ラウラミド、ポリキシリレン・アジパミ
ド、テレフタル酸及び/またはイソフタル酸とト
リメチルヘキサメチレンジアミン或いはキシリレ
ンジアミンからなるポリアミド又はそれらの共重
合物等全ての公知のポリアミド樹脂が挙げられ
る。また本発明に使用するポリアミド樹脂には、
アミド基と共にエステル基、エーテル基、ウレタ
ン基、イミド基、尿素基、カーボネート基、ケト
ン基、酸無水物基、スルホン基等の連結基を含
み、アミド成分とランダム共重合、プロツク共重
合、グラフト共重合ないしは熱可塑性を失わない
程度に網状化していてもよく、ポリエーテルアミ
ド、ポリエステルアミド、ポリアミドイミド、ア
イオノマー変性ポリアミド、メトキシメチル化ポ
リアミド等が含まれる。 ポリアミド樹脂(C)の配合量は熱可塑性ポリエス
テル樹脂(A)、不飽和酸グラフトエチレン系共重合
体(B)及び該成分(C)の合計100重量部中2〜50重量
部、好ましくは5〜50重量部であり、2重量部よ
り少ないと耐剥離性の改善効果が殆どなく、他方
50重量部より多くなると熱可塑性ポリエステル樹
脂の優れた諸特性が発揮されず好ましくない。 尚、熱可塑性ポリエステル樹脂(A)の配合量は(A)
と(B)と(C)との合計100重量部中、95〜50重量部の
範囲から選ばれる。 本発明に於ける必須成分として添加される2個
以上のエポキシ基を含有するポリエポキシ化合物
(D)は、本組成物の溶融安定性を高めると共に、耐
衝撃性、曲げ強度をはじめとする機械的強度の改
善に相乗的効果を発揮するもので、適当なポリエ
ポキシ化合物としてはビスフエノールAジグリシ
ジルエーテル、ナイドロキノンジグリシジルエー
テル、レゾルシノールジグリシジルエーテル、
4,4′−ビフエニルジグリシジルエーテル、4,
4′−ジフエニルスルホンジグリシジルエーテル、
トリヒドロキシフエニルプロパンのトリグリシジ
ルエーテル、テトラヒドロキシフエニルエタンの
テトラグリシジルエーテル、ノボラツクのポリグ
リシジルエーテル、ジエチレングリコールジグリ
シジルエーテル、グリセリントリグリシジルエー
テル、トリメチロールプロパントリグリシジルエ
ーテル、シクロオクタジエン−(1,5)−ジエポ
キシド、ジシクロペンタジエンジエポキシド、ビ
シクロヘプタジエンジエポキシド、1,2,5,
6−ジエポキシシクロドデカン−9、エポキシ化
大豆油等が挙げられる。また、前記ポリエポキシ
化合物とポリフエノールまたはポリオール類とを
付加重合させたオリゴマー状のポリエポキシ化合
物も含まれる。 ポリエポキシ化合物(D)の配合量は樹脂成分(A)(B)
及び(C)の合計100重量部に対し0.1〜10重量部、好
ましくは1〜8重量部であり、0.1重量部より少
ないと殆ど改善効果がなく、一方、10重量部より
多く添加しても改善効果の向上はみられず、逆に
機械的特性や溶融流動性が低下する場合もあり好
ましくない。 尚、本発明の組成物には、ガラス繊維、チタン
酸カリ繊維、金属繊維、セラミツク繊維;炭酸カ
ルシウム、珪酸カルシウム、珪酸マグネシウム、
硫酸カルシウム、硫酸バリウム、酸化鉄、黒鉛、
カーボンブラツク、雲母、アスベスト、セラミツ
ク、金属フレーム、ガラス・ビーズまたはガラ
ス・パウダーなどの強化充填剤をはじめ、結晶核
剤、顔料、染料、可塑剤、離型剤、滑剤、耐熱安
定剤、酸化防止剤、紫外線吸収剤、発泡剤、難燃
剤、カツプリング剤等を併用してもよい。 而して、本発明の組成物は例えば、以上に掲げ
られたすべての成分を予め均一に混合されたの
ち、単軸または多軸の押出機に供給され、150〜
300℃で溶融され、混練され、次いで冷却され、
ペレツトとして調製される。 本発明の熱可塑性ポリエステル樹脂組成物はノ
ツチ付衝撃強度が著しく向上し、溶融粘度が安定
で成形性に優れ、成形品表面の耐剥離性が増し、
且つ諸物性のバランスが良である為工業的有用性
が極めて大きく、電気・電子部品、機械機構部
品、自動車部品、建材部品等の従来からの用途に
加え、工具格納箱、電動工具外套品、スポーツ用
品、ベアリング、キア等の高い靭性を要する分
野、事務機ハウジング、自動車バンパー等の大型
成形品用途、寒冷地で使用される機器等の用途、
繊維、フイルム、接着剤等の分野の用途にも使用
できる。 次に本発明を参考例、実施例および比較例によ
り具体的に説明するが、以下において「部」及び
「%」は特に断りのない限り。すべて「重量部」
及び「重量%」を意味するものとする。 参考例 1 エチレン・ブテン−1共重合体(三井石油化学
工業(株)製、商標名タフマーA−4085)100部、1,
3−ビス(t−ブチルパーオキシイソプロピル)
ベンゼン(化薬ヌーリー(株)製、商標名パーカドツ
クス14−40)0.1部及び無水マレイン酸0.5部をヘ
ンシエルミキサーで混合した後、スクリユー径50
mmφ、完全噛み合い型の2軸押出機を用い230℃
で溶融重合させペレツト化して無水マレイン酸グ
ラフトエチレン・ブテン−1共重合体(a)を得た。 このペレツトの一部を粉砕し、ソツクスレー抽
出器を用いアセトンにて未反応無水マレイン酸を
抽出した。未反応物を除いた共重合体をシクロヘ
キサンに溶解し、1/10Nアルコール性KOH溶液
で滴定し酸価を測定したところ酸価は5.2であり、
無水マレイン酸に換算すると0.45%の無水マレイ
ン酸がグラフトしていることが判明した。 参考例 2 エチレン・ブテン−1共重合体(商標名タフマ
ーA−4085)100部をトルエン400部に80℃にて加
熱撹拌下溶解後、無水マレイン酸5部を添加して
溶解した。次いで、内容物を110℃迄昇温した後、
第三級ブチルパーオキシベンゾエート(日本油脂
(株)製、パーブチルZ)0.15部/トルエン20部の溶
液を1時間かけて滴下し、110℃で10時間重合を
行つた。得られたグラフト重合体溶液をトルエン
で5%濃度に希釈した後、同等量以上の45〜55℃
のメタノール中に少量ずつ添加してグラフト重合
体(b)を析出させ、洗浄、乾燥した。 酸価の測定により無水マレイン酸は4.7%グラ
フトしていることが判明した。 実施例 1 固有粘度〔η〕1.0のPBT75部、参考例1で得
られた無水マレイン酸グラフトエチレン・ブテン
−1共重合体(a)15部、商標名グリロンELY−60
(EMS−Chemie社製、ポリエーテルポリアミド
エラストマー)10部、商標名エピクロン3050(大
日本インキ化学工業(株)製、ビスフエノールA型ジ
エポキシ化合物)2部および商標名イルガノツク
ス1010(チバ・ガイギー社製、酸化防止剤)0.2部
を予め均一に混合した後、この混合物をダルメー
ジ型スクリユーを装着した40mmφ単軸押出機にて
240℃で混練し、冷却細断して樹脂ペレツトを得
た。 次いで射出成形機を用いて、このペレツトから
物性測定用試験片を成形しASTMD−256に従つ
て常温(23℃)及び−40℃に於けるノツチ付アイ
ゾツト衝撃強度(試験片厚み:3mm)、ASTMD
−7900に従つて曲げ強度、曲げ強性率を測定し
た。剥離テストは射出成形シート表面に巾18mmの
セロフアンテープを長さ3cmにわたりよく貼りつ
け勢いよくひきはがした後セロフアンテープの粘
着面を観察し、樹脂が粘着面に付着した場合×、
付着しなかつた場合〇と判定を行つた。結果はま
とめて第1表に示す。 比較例 1 実施例1の組成配合に於てジエポキシ化合物を
除いた組成物を同様にして調製して成形し、評価
した。 比較例1の組成物は実施例1の組成物に比べ耐
衝撃性、曲げ強度が低いものであつた。結果は第
1表に示す。 比較例 2 実施例1の組成配合に於て無水マレイン酸グラ
フトエチレン・ブテン−1共重合体(a)を除き、商
標名グリロンELY−60を25部に増量したほかは
同じ組成物を同様にして調製して成形し、評価し
た。 比較例2の組成物は実施例1の組成物に比べ耐
衝撃性がかなり低いものであつた。結果は第1表
に示す。 比較例 3 実施例1の配合組成に於て、商標名グリロン
ELY−60を除き、無水マレイン酸グラフトエチ
レン・ブテン−1共重合体(a)を25部に増量したほ
かは同じ組成物を同様にして調製して成形し、評
価した。 比較例3の組成物は物性的には実施例1と遜色
ないが、剥離テストでセロフアンテープ側に樹脂
が一部付着し、耐剥離性の劣るものであつた。結
果は第1表に示す。 実施例 2 個有粘度〔η〕1.0のPBT70部、参考例1で得
られた無水マレイン酸グラフトエチレン・ブテン
−1共重合体(a)20部、ナイロン−6(東洋紡(株)製、
T−803)10部、商標名エピクロン3050 2部及び
商標名イルガノツクス1010 0.2部からなる組成物
を実施例1と同様にして調製して成形し、評価し
た。その結果は第1表に示す。 実施例 3 実施例2に於て、PBT60部、ナイロン−6
20部と量比を変えたほかは同様にして成形して評
価した。 実施例 4 実施例2に於て、ナイロン−6の代りにナイロ
ン−66(東レ(株)製、CM−3001N)を10部用いた
ほかは同様にして成形して評価した。その結果は
第1表に示す。 実施例 5 実施例2に於て、グラフト共重合体(a)の代り
に、参考例2で得たグラフト共重合体(b)を10部用
いたほかは同様にして成形して評価した。その結
果は第1表に示す。
The present invention relates to a thermoplastic polyester resin composition with improved mechanical properties including impact resistance and heat resistance. Thermoplastic polyester, especially polybutylene terephthalate (hereinafter abbreviated as PBT), has well-balanced physical properties and excellent moldability, and is widely used in mechanical parts, electronic/electrical parts, automobile parts, and other fields. It's being used. However, although PBT has excellent properties, it also has the major drawback of low notch impact strength.
In other words, PBT shows good impact strength without a notch, but when a notch is added, the impact strength decreases significantly, and in practical terms, consideration must be given to eliminating sharp edges in molded product design. However, this means that the molded product is scratched and is more likely to be damaged if an impact is applied to it, which is an obstacle to expanding its use. In the past, various methods have been studied to improve the notched impact strength of PBT. 51-25261), a method of blending polyether ester block copolymers (Japanese Patent Application Laid-open No. 1983
-48059), a method of blending an acrylic multiphase composite copolymer (JP-A-52-150466), a method of blending an α,β-unsaturated carboxylic acid graft-modified ethylene copolymer (JP-A-55- 21430), but the impact resistance improvement effect is insufficient, or while the impact resistance has been improved, mechanical properties such as tensile strength and bending strength, heat resistance stability,
Other useful properties such as weather resistance and moldability are significantly reduced, and the balance of the excellent properties of PBT is lost, resulting in unsatisfactory results. In particular, regarding the behavior during heating and melting, the melt stability during heating is poor and the change in melt viscosity is large, so if it stays in the molding machine for a slightly longer period of time, fluidity may decrease in some cases, resulting in shortening. In severe cases, molding defects such as gelation may occur, and in some cases, resin decomposition is accelerated and fluidity increases, resulting in molding defects such as increased burrs from the mold. In some cases, it was even observed that the impact resistance of the molded product decreased and it became brittle. The present inventors have previously developed a thermoplastic polyester composition with excellent impact resistance and thermal melt stability, containing 0.01 to 10% by weight of an unsaturated carboxylic acid (anhydride).
Ethylene graft-polymerized with α of 3 to 6 carbon atoms
- We proposed a thermoplastic polyester resin composition made by blending and melt-mixing a copolymer with olefin and a polyepoxy compound containing two or more epoxy groups. When performing a peel test by attaching cellophane tape to a molded product and peeling it off vigorously, it was observed that some of the resin on the surface of the molded product peeled off, so we decided to further improve the peel resistance. As a result of extensive research, we have arrived at the present invention. That is, the present invention provides (A) thermoplastic polyester resin
Copolymer of ethylene and α-olefin having 3 to 6 carbon atoms graft-polymerized with 95 to 50 parts by weight and 0.01 to 10% by weight of (B) an unsaturated carboxylic acid or its anhydride 5
~50 parts by weight, (C) 2 to 50 parts by weight of polyamide resin, and
(D) A thermoplastic polyester resin composition consisting of a polyepoxy compound, which is obtained by adding 0.1 to 10 parts by weight of (A) to a total of 100 parts by weight of (A), (B), and (C) and melt-mixing them. It provides: Here, the thermoplastic polyester resin
(A) means terephthalic acid or its esters;
Ethylene glycol, prolene glycol, butadiol, pentanediol, neopentyl glycol, hexanediol, octanediol,
Decanediol, cyclohexanedimethanol,
It is a polyester obtained from glycols such as hydroquinone, bisphenol A, 2,2-bis(4-hydroxyethoxyphenyl)propane, 1,4-dimethyloltetrabromobenzene, or TBA-EO, and is usually has an intrinsic viscosity [η] measured at 30°C in a mixed solvent of phenol and tetrachloroethane in a weight ratio of 6:4.
A range of 0.3 to 1.5 dl/g is used. In addition, less than 40 mol% of the total acid components are composed of isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, diphenyl ether dicarboxylic acid, α,β-bis(4-
carboxyphenoxy)ethane, adipic acid, sebacic acid, azelaic acid, decanedicarboxylic acid,
other dicarboxylic acids such as cyclohexanedicarboxylic acid or dimer acid, or glycolic acid,
Hydroxycarboxylic acids such as hydroxybutyric acid, hydroxycaproic acid, hydroxybenzoic acid, hydroxyphenyl acetic acid or naphthyl glycolic acid may be substituted, while up to 40 mol% of the total glycol component may be replaced by polyethylene glycol or polytetramethylene. It may be replaced with polyalkylene ether glycols such as ether glycol or aliphatic polyester oligomers having hydroxyl groups at both ends. In addition, a lactone compound such as propiolactone, butyrolactone, valerolactone, or caprolactone or a polymer thereof may be contained as a comonomer component in an amount of 40 mol% or less in the total monomer component, or within a range that can maintain thermoplasticity. It may also contain polyfunctional ester-forming components such as trimethylolpropane, trimethylolethane, glycerin, pentaerythritol; trimellitic acid, trimesic acid, pyromellitic acid, and the like. Also, low molecular weight polyalkylene terephthalate with a hydroxyl group at the end ([η] = 0.1 to 0.5 dl/g)
Also included in the present invention are polyester polyurethanes obtained by increasing the molecular weight with polyfunctional isocyanates. Among these thermoplastic polyesters, especially
Desired effects are exhibited in PBT and polyethylene terephthalate. Component (B) used in the present invention is used as an impact modifier (hereinafter referred to as unsaturated acid grafted ethylene copolymer), and contains 0.01 to 10% by weight of unsaturated carboxylic acid or its anhydride. It is a copolymer of graft-polymerized ethylene and α-olefin having 3 to 6 carbon atoms. Copolymers of ethylene and 3 to 6 carbon atoms (hereinafter simply referred to as ethylene copolymers) used as the backbone polymer include propylene, butene-1, isobutene-1, pentene-1,
A copolymer with an α-olefin having 3 to 6 carbon atoms such as 4-methylpentene-1 or hexene-1, or a copolymer with one or more other copolymerizable monomers. Ethylene/propylene copolymer, ethylene/butene-1 copolymer,
Ethylene/4-methylpentene-1 copolymer, ethylene/hexene-1 copolymer, ethylene/propylene/butene-1 copolymer, ethylene/propylene/4-methylpentene-1 copolymer, ethylene/propylene /hexene-1 copolymer, ethylene/propylene/ethylidene norbornene copolymer, ethylene/propylene/dicyclopentadiene copolymer, ethylene/butene-1/ethylidene norbornene copolymer, ethylene/butene-1
Examples include 1/dicyclopentadiene copolymer. In addition, examples of unsaturated carboxylic acids or anhydrides thereof to be graft-polymerized to these ethylene copolymers include maleic acid, fumaric acid, itaconic acid, methylmaleic acid, and 3,6-endomethylene-delta-4-tetrahydrophthal. Acid, acrylic acid, methacrylic acid, crotonic acid, citraconic acid, maleic anhydride, itaconic anhydride, methylmaleic anhydride, 3,6-endomethylene-delta-4-tetrahydrophthalic anhydride, 2-methyl-3, 6-
Endomethylene-delta-4-tetrahydrophthalic anhydride, 3-methyl-4-cyclohexene-
Examples include 1,2-dicarboxylic acid anhydride. Further, derivatives of these acids such as esters, amides, imides, and nitriles may be used together with these unsaturated carboxylic acids or their anhydrides. The polymerization reaction of grafting an unsaturated carboxylic acid or its anhydride onto the main ethylene copolymer can be carried out in a molten state, a suspended state, a slurry state, or a molten state by known means. For example, unsaturated carboxylic acid (anhydride) and organic peroxide are added to a solution of an ethylene copolymer dissolved in a solvent such as toluene or hexane, and graft polymerization is carried out under heating and stirring, followed by removal of the solvent or removal of the nonsolvent. Alternatively, a mixture of the ethylene copolymer, unsaturated carboxylic acid (anhydride), and organic peroxide is heated and melt-kneaded using an extruder, kneader, etc. A method of performing graft polymerization is used below. The amount of unsaturated carboxylic acid or its anhydride to be graft-polymerized is 0.01 to ethylene copolymer.
~10% by weight, preferably 0.1 to 7% by weight. If this amount is less than 0.01% by weight, the effect of improving the impact on the thermoplastic polyester will be small, and if it is too large, the thermoplastic polyester resin composition may be colored. , the change in melt viscosity in the molten state becomes large, which is undesirable. The amount of the unsaturated acid-grafted ethylene copolymer (B) is 5 to 50 parts by weight, preferably 10 to 50 parts by weight, based on the total of 100 parts by weight of the thermoplastic polyester resin (A), polyamide resin (C), and (B). If it is less than 5 parts by weight, there is almost no effect of improving impact resistance, while if it is more than 50 parts by weight, the excellent properties of the thermoplastic polyester resin will not be exhibited, and it is no longer the object of the present invention. It cannot be called an engineering plastic. Resin containing amide group used in the present invention (C)
are obtained by ring-opening lactam polymers, polycondensates of diamines and dibasic acids, self-polycondensates of ω-amino acids, or copolymerization thereof, and specifically include polycapramide, polyundecamide, polylauramide, and hexamethylene adipamide,
All known polyamide resins include polyhexamethylene sebaamide, polyhexamethylene lauramide, polyxylylene adipamide, polyamides made of terephthalic acid and/or isophthalic acid and trimethylhexamethylene diamine or xylylene diamine, or copolymers thereof. It will be done. In addition, the polyamide resin used in the present invention includes
Contains linking groups such as ester groups, ether groups, urethane groups, imide groups, urea groups, carbonate groups, ketone groups, acid anhydride groups, and sulfone groups in addition to amide groups, and is suitable for random copolymerization, block copolymerization, and grafting with amide components. They may be copolymerized or reticulated to the extent that thermoplasticity is not lost, and include polyetheramide, polyesteramide, polyamideimide, ionomer-modified polyamide, methoxymethylated polyamide, and the like. The blending amount of the polyamide resin (C) is 2 to 50 parts by weight, preferably 5 parts by weight, based on the total of 100 parts by weight of the thermoplastic polyester resin (A), the unsaturated acid-grafted ethylene copolymer (B), and the component (C). ~50 parts by weight, and if it is less than 2 parts by weight, there is almost no effect of improving peeling resistance;
If it exceeds 50 parts by weight, the excellent properties of the thermoplastic polyester resin will not be exhibited, which is undesirable. In addition, the blending amount of thermoplastic polyester resin (A) is (A)
95 to 50 parts by weight out of a total of 100 parts by weight of (B) and (C). Polyepoxy compound containing two or more epoxy groups added as an essential component in the present invention
(D) increases the melt stability of this composition and has a synergistic effect on improving mechanical strength including impact resistance and bending strength, and suitable polyepoxy compounds include bisphenol. A diglycidyl ether, nidroquinone diglycidyl ether, resorcinol diglycidyl ether,
4,4'-biphenyl diglycidyl ether, 4,
4′-diphenylsulfone diglycidyl ether,
Triglycidyl ether of trihydroxyphenylpropane, tetraglycidyl ether of tetrahydroxyphenylethane, polyglycidyl ether of Novolak, diethylene glycol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, cyclooctadiene-(1, 5)-diepoxide, dicyclopentadiene diepoxide, bicycloheptadiene diepoxide, 1,2,5,
Examples include 6-diepoxycyclododecane-9 and epoxidized soybean oil. Also included are oligomeric polyepoxy compounds obtained by addition polymerizing the above polyepoxy compounds and polyphenols or polyols. The amount of polyepoxy compound (D) is the same as resin components (A) and (B).
and (C) in an amount of 0.1 to 10 parts by weight, preferably 1 to 8 parts by weight, and if it is less than 0.1 part by weight, there is almost no improvement effect; No improvement in the improvement effect is observed, and on the contrary, mechanical properties and melt fluidity may deteriorate, which is not preferable. The composition of the present invention includes glass fibers, potassium titanate fibers, metal fibers, ceramic fibers; calcium carbonate, calcium silicate, magnesium silicate,
Calcium sulfate, barium sulfate, iron oxide, graphite,
Including reinforcing fillers such as carbon black, mica, asbestos, ceramics, metal frames, glass beads or glass powder, crystal nucleating agents, pigments, dyes, plasticizers, mold release agents, lubricants, heat stabilizers, and antioxidants. A UV absorber, a blowing agent, a flame retardant, a coupling agent, etc. may be used in combination. Thus, the composition of the present invention can be prepared, for example, by uniformly mixing all the above-mentioned components in advance, and then supplying the mixture to a single-screw or multi-screw extruder.
Melted at 300℃, kneaded, then cooled,
Prepared as pellets. The thermoplastic polyester resin composition of the present invention has significantly improved notched impact strength, stable melt viscosity, excellent moldability, and increased peeling resistance on the surface of molded products.
In addition, due to its well-balanced physical properties, it is extremely useful industrially, and in addition to traditional uses such as electrical and electronic parts, mechanical parts, automobile parts, and building material parts, it can also be used as tool storage boxes, power tool jackets, Fields that require high toughness such as sporting goods, bearings, and Kia, large molded products such as office machine housings and automobile bumpers, and equipment used in cold regions.
It can also be used in fields such as textiles, films, and adhesives. Next, the present invention will be specifically explained using Reference Examples, Examples, and Comparative Examples. In the following, "parts" and "%" are used unless otherwise specified. All “weight parts”
and "% by weight" shall be meant. Reference Example 1 Ethylene-butene-1 copolymer (manufactured by Mitsui Petrochemical Industries, Ltd., trade name Tafmer A-4085) 100 parts, 1,
3-bis(t-butylperoxyisopropyl)
After mixing 0.1 part of benzene (manufactured by Kayaku Nury Co., Ltd., trade name Percadox 14-40) and 0.5 part of maleic anhydride in a Henschel mixer, a screw with a diameter of 50
mmφ, 230℃ using a fully intermeshing type twin screw extruder
The mixture was melt-polymerized and pelletized to obtain a maleic anhydride-grafted ethylene/butene-1 copolymer (a). A portion of this pellet was pulverized, and unreacted maleic anhydride was extracted with acetone using a Soxhlet extractor. The copolymer from which unreacted substances were removed was dissolved in cyclohexane, and the acid value was measured by titration with a 1/10N alcoholic KOH solution.The acid value was 5.2.
It was found that 0.45% maleic anhydride was grafted in terms of maleic anhydride. Reference Example 2 100 parts of ethylene-butene-1 copolymer (trade name: TAFMER A-4085) was dissolved in 400 parts of toluene at 80° C. with stirring, and then 5 parts of maleic anhydride was added and dissolved. Next, after raising the temperature of the contents to 110°C,
Tertiary butyl peroxybenzoate (NOF
A solution of 0.15 parts of Perbutyl Z (manufactured by Co., Ltd.)/20 parts of toluene was added dropwise over 1 hour, and polymerization was carried out at 110°C for 10 hours. After diluting the obtained graft polymer solution with toluene to a concentration of 5%, the same amount or more was heated at 45-55℃.
Graft polymer (b) was precipitated by adding it little by little to methanol, followed by washing and drying. Acid value measurement revealed that 4.7% maleic anhydride was grafted. Example 1 75 parts of PBT with intrinsic viscosity [η] 1.0, 15 parts of maleic anhydride-grafted ethylene-butene-1 copolymer (a) obtained in Reference Example 1, trade name Grilon ELY-60
(manufactured by EMS-Chemie, polyether polyamide elastomer) 10 parts, trade name Epiclon 3050 (manufactured by Dainippon Ink & Chemicals Co., Ltd., bisphenol A type diepoxy compound) 2 parts, and trade name Irganox 1010 (manufactured by Ciba-Geigy) After uniformly mixing 0.2 parts of antioxidant) in advance, this mixture was passed through a 40mmφ single-screw extruder equipped with a Dalmage type screw.
The mixture was kneaded at 240°C, cooled and shredded to obtain resin pellets. Next, using an injection molding machine, a test piece for measuring physical properties was formed from this pellet, and the notched Izo impact strength (test piece thickness: 3 mm) at room temperature (23°C) and -40°C was determined according to ASTMD-256. ASTMD
-7900, bending strength and bending strength ratio were measured. In the peel test, a cellophane tape with a width of 18 mm and a length of 3 cm was firmly pasted on the surface of the injection molded sheet, and after being vigorously peeled off, the adhesive surface of the cellophane tape was observed. If the resin adhered to the adhesive surface,
If it did not adhere, it was judged as 〇. The results are summarized in Table 1. Comparative Example 1 A composition was prepared in the same manner as in Example 1 except that the diepoxy compound was removed, molded, and evaluated. The composition of Comparative Example 1 had lower impact resistance and bending strength than the composition of Example 1. The results are shown in Table 1. Comparative Example 2 The same composition as in Example 1 was prepared except that the maleic anhydride grafted ethylene/butene-1 copolymer (a) was removed and the amount of the brand name Grilon ELY-60 was increased to 25 parts. It was prepared, molded, and evaluated. The composition of Comparative Example 2 had significantly lower impact resistance than the composition of Example 1. The results are shown in Table 1. Comparative Example 3 In the formulation of Example 1, the brand name Grillon
The same composition was prepared, molded, and evaluated in the same manner except that ELY-60 was removed and the maleic anhydride grafted ethylene/butene-1 copolymer (a) was increased to 25 parts. Although the composition of Comparative Example 3 was comparable to Example 1 in terms of physical properties, a portion of the resin adhered to the cellophane tape side in a peel test, and its peel resistance was poor. The results are shown in Table 1. Example 2 70 parts of PBT with an inherent viscosity [η] of 1.0, 20 parts of the maleic anhydride-grafted ethylene-butene-1 copolymer (a) obtained in Reference Example 1, and nylon-6 (manufactured by Toyobo Co., Ltd.,
A composition consisting of 10 parts of T-803), 2 parts of Epicron 3050 (trade name), and 0.2 parts of Irganox 1010 (trade name) was prepared, molded, and evaluated in the same manner as in Example 1. The results are shown in Table 1. Example 3 In Example 2, 60 parts of PBT, nylon-6
It was molded and evaluated in the same manner except that the quantity ratio was changed to 20 parts. Example 4 Molding and evaluation were carried out in the same manner as in Example 2, except that 10 parts of nylon-66 (manufactured by Toray Industries, Inc., CM-3001N) was used instead of nylon-6. The results are shown in Table 1. Example 5 Molding and evaluation were carried out in the same manner as in Example 2, except that 10 parts of the graft copolymer (b) obtained in Reference Example 2 was used instead of the graft copolymer (a). The results are shown in Table 1.

【表】 (注) * 実質的に破断せず
[Table] (Note) * Virtually no breakage

Claims (1)

【特許請求の範囲】[Claims] 1 (A)熱可塑性ポリエステル樹脂95〜50重量部、
(B)不飽和カルボン酸またはその無水物0.01〜10重
量%をグラフト重合したエチレンと炭素数3〜6
のα−オレフインとの共重合体5〜50重量部、(C)
ポリアミド樹脂2〜50重量部及び(D)ポリエポキシ
化合物からなり、(A)と(B)と(C)との合計100重量部
に対し(D)を0.1〜10重量部添加し、溶融混合して
なる熱可塑性ポリエステル樹脂組成物。
1 (A) 95 to 50 parts by weight of thermoplastic polyester resin,
(B) Ethylene graft-polymerized with 0.01-10% by weight of unsaturated carboxylic acid or its anhydride and carbon number 3-6
5 to 50 parts by weight of a copolymer with α-olefin, (C)
Consisting of 2 to 50 parts by weight of a polyamide resin and (D) a polyepoxy compound, 0.1 to 10 parts by weight of (D) is added to a total of 100 parts by weight of (A), (B), and (C), and melt-mixed. A thermoplastic polyester resin composition.
JP17698283A 1983-09-27 1983-09-27 Thermoplastic polyester resin composition Granted JPS60137958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17698283A JPS60137958A (en) 1983-09-27 1983-09-27 Thermoplastic polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17698283A JPS60137958A (en) 1983-09-27 1983-09-27 Thermoplastic polyester resin composition

Publications (2)

Publication Number Publication Date
JPS60137958A JPS60137958A (en) 1985-07-22
JPS6353225B2 true JPS6353225B2 (en) 1988-10-21

Family

ID=16023106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17698283A Granted JPS60137958A (en) 1983-09-27 1983-09-27 Thermoplastic polyester resin composition

Country Status (1)

Country Link
JP (1) JPS60137958A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062871B2 (en) * 1986-02-28 1994-01-12 東洋紡績株式会社 Polyester resin composition
DE3641499A1 (en) * 1986-12-04 1988-06-16 Basf Ag THERMOPLASTIC MOLDS BASED ON POLYESTERS AND POLYAMIDS
US5177144A (en) * 1987-07-17 1993-01-05 Ems-Inventa Ag Impact-resistant and rigid polyamide compositions
BR8900992A (en) * 1988-03-16 1989-10-24 Polyplastics Co PROCESS FOR THE PRODUCTION OF PERFECTED THERMOPLASTIC POLYESTER RESIN AND PRODUCED THERMOPLASTIC POLYESTER RESIN
US5095063A (en) * 1988-03-31 1992-03-10 Sumitomo Chemical Company, Limited Polypropylene composition
CA1329435C (en) * 1988-03-31 1994-05-10 Takayuki Okada Modified polypropylene resin composition
US4981896A (en) * 1988-03-31 1991-01-01 Sumitomo Chemical Company Thermoplastic resin composition
CA2035827A1 (en) * 1991-02-06 1992-08-07 Masashi Yamamoto Thermoplastic resin composition
US5548013A (en) * 1991-02-27 1996-08-20 Sumitomo Chemical Company, Limited Thermoplastic resin composition
JP6098521B2 (en) * 2012-05-28 2017-03-22 東洋紡株式会社 Resin composition for sealing electric and electronic parts, method for producing sealed electric and electronic parts, and sealed electric and electronic parts

Also Published As

Publication number Publication date
JPS60137958A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
US5300572A (en) Moldable polyester resin compositions and molded articles formed of the same
JPS6353225B2 (en)
JPH0452300B2 (en)
JPH0585581B2 (en)
JP2771902B2 (en) Polyarylene sulfide resin composition and method for producing the same
JP2648025B2 (en) Polyester resin composition and method for producing the same
US5177144A (en) Impact-resistant and rigid polyamide compositions
EP0779307A1 (en) Graft ethylene-vinyl acetate copolymer and resin composition containing the same
JPS6173753A (en) Resin composition
JP2546409B2 (en) Thermoplastic resin composition
JPS62277462A (en) Impact-resistant resin composition
KR100409068B1 (en) Composition of thermoplastic polyesteric resin improved mechanical strength
JPH0563504B2 (en)
JPS62283146A (en) Impact-resistant resin composition
JPH08134315A (en) Thermoplastic polymer composition
JPS6023441A (en) Thermoplastic polyester resin composition
JPH0241355A (en) Resin composition containing polyether imide
JPH04146956A (en) Polybutylene terephthalate resin composition
JP3270147B2 (en) Polycarbonate resin composition
JPS63314270A (en) Impact-resistant resin composition
JPH02261858A (en) Impact-resistant resin composition
JPH01315465A (en) Polyether-imide-containing resin composition
JPH02218738A (en) Resin composition
JPS62275156A (en) Resin composition
JPH06220274A (en) Thermoplastic resin composition