JPS6351966B2 - - Google Patents

Info

Publication number
JPS6351966B2
JPS6351966B2 JP58185188A JP18518883A JPS6351966B2 JP S6351966 B2 JPS6351966 B2 JP S6351966B2 JP 58185188 A JP58185188 A JP 58185188A JP 18518883 A JP18518883 A JP 18518883A JP S6351966 B2 JPS6351966 B2 JP S6351966B2
Authority
JP
Japan
Prior art keywords
powder
reaction zone
spherical
sic
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58185188A
Other languages
Japanese (ja)
Other versions
JPS6077114A (en
Inventor
Goro Saiki
Jiro Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP58185188A priority Critical patent/JPS6077114A/en
Publication of JPS6077114A publication Critical patent/JPS6077114A/en
Publication of JPS6351966B2 publication Critical patent/JPS6351966B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はSiC焼結体等の原料となるSiC粉末の
製造法に関するものである。詳しくは、気相反応
域にて融体化かつ微細球状化したSiを生成させ、
これを炭化することによる球状SiC粉末の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing SiC powder, which is a raw material for SiC sintered bodies and the like. Specifically, we generate molten and finely spheroidized Si in the gas phase reaction zone,
This invention relates to a method for producing spherical SiC powder by carbonizing it.

(従来技術) 一般にセラミツクス焼結体の原料となる粉末の
形状はより球形に近い方が好ましいとされてい
る。これは球状粉末を用いた方が、焼結体や焼結
前の成形体の内部組織を均一にでき、ひいてはセ
ラミツクス焼結体の強度を改善できるからであ
る。そこで球状粉末を得ることが必要なのである
が、従来、酸化物系セラミツクス粉末、例えば
SiO2粉末やAl2O3粉末等では、これらを融点以上
の高温域に導入し、融体とし、その表面張力を利
用して球状化していた。
(Prior Art) Generally, it is said that it is preferable that the shape of the powder serving as a raw material for a ceramic sintered body be closer to a spherical shape. This is because the use of spherical powder makes it possible to make the internal structure of the sintered body and the compact before sintering more uniform, thereby improving the strength of the ceramic sintered body. Therefore, it is necessary to obtain spherical powder, but conventionally, oxide ceramic powder, e.g.
In the case of SiO 2 powder, Al 2 O 3 powder, etc., these were introduced into a high temperature range above the melting point to form a melt, and the surface tension of the powder was used to form spheres.

しかしSiCのように通常融点を持たず、つまり
高温に加熱しても融体化せず気化してしまうもの
は前述のような従来の方法では球状化は不可能で
ある。又通常のSiC粉末の製造法、例えば、SiC
粗粉末の粉砕、Si粉末とC粉末の固相反応、Siの
酸化物粉末とC粉末の固相反応、従来のSi源とC
源を同一の反応域に導入する気相熱分解法および
気相合成法等では、真に球状と言える程のSiC粉
末を製造するのは困難であつた。
However, materials such as SiC that do not normally have a melting point, that is, they do not melt but vaporize even when heated to high temperatures, cannot be made into spheroids using the conventional methods described above. Also, regular SiC powder manufacturing methods, such as SiC
Grinding of coarse powder, solid phase reaction between Si powder and C powder, solid phase reaction between Si oxide powder and C powder, conventional Si source and C
It has been difficult to produce truly spherical SiC powder using gas phase pyrolysis and gas phase synthesis methods in which sources are introduced into the same reaction zone.

(発明の目的) 本発明は上述の欠点を改善したもので、球状
SiC粉末を得ることを目的としたものである。
(Object of the invention) The present invention improves the above-mentioned drawbacks, and has a spherical shape.
The purpose is to obtain SiC powder.

(発明の構成) 本発明はSiCの構成元素であるSiをその融点
(1685K;JANAF'71)以上の第1反応域中にて
生成させ、これを融体として、その表面張力を利
用して球状化し、これをSiの融点以上沸点
(3492K;JANAF'71)以下の第2反応域にて、
炭素化合物と反応させ、球状SiC粉末を得ること
を特徴とする。
(Structure of the Invention) The present invention generates Si, which is a constituent element of SiC, in the first reaction zone at a temperature higher than its melting point (1685K; JANAF'71), and uses the surface tension of the Si as a melt. It is spheroidized and then heated in a second reaction zone above the melting point of Si and below the boiling point (3492K; JANAF'71).
It is characterized by reacting with a carbon compound to obtain spherical SiC powder.

なおJANAFとは、種々の熱力学データを
JANAF THERMOCHEMICAL TABLES(米
国政府刊行物〔PB REPORT〕)として公表され
たものである。
JANAF refers to the collection of various thermodynamic data.
It was published as JANAF THERMOCHEMICAL TABLES (US government publication [PB REPORT]).

以下本発明の詳細を図面に基づいて説明する。 The details of the present invention will be explained below based on the drawings.

第1図は本発明で目的とする球状SiC粉末を製
造するための装置の断面図の一例である。これは
直流プラズマを利用し高温を発生させる反応装置
であるが、本発明において高温の発生方法はこれ
に限定されるものではない。第1図の装置では陰
極1と陽極2の間で放電させ、プラズマ用ガス導
入管3から導入したプラズマ用ガスをプラズマ化
し、第1反応域4にSiの融点以上の高温を発生さ
せる。ここへSi導入管5よりCを含まないSi化合
物を導入し、融体化かつ微細球化したSiを生成さ
せる。このSiはプラズマ用ガスの流れにより第2
反応域6へ運ばれ、炭素導入管7より導入された
炭素化合物と反応し、球状SiC粉末が生成され
る。この時第2反応域6がSiの融点以上沸点以下
に保たれていることが重要である。これは融体化
かつ微細球状化したSiを炭化する際、その1粒に
注目すると、完全に炭化が終り、球状SiC粉末と
なるまでは、未反応のSi部は融体化したままの状
態が必要だからである。
FIG. 1 is an example of a sectional view of an apparatus for producing spherical SiC powder, which is the object of the present invention. Although this is a reaction device that generates high temperature using direct current plasma, the method of generating high temperature in the present invention is not limited to this. In the apparatus shown in FIG. 1, a discharge is caused between a cathode 1 and an anode 2, the plasma gas introduced from the plasma gas introduction tube 3 is turned into plasma, and a high temperature higher than the melting point of Si is generated in the first reaction zone 4. A C-free Si compound is introduced from the Si introduction pipe 5 to produce molten and finely spheroidized Si. This Si is transferred to the second layer by the flow of plasma gas.
It is transported to the reaction zone 6 and reacts with the carbon compound introduced through the carbon introduction tube 7 to produce spherical SiC powder. At this time, it is important that the second reaction zone 6 is maintained at a temperature above the melting point and below the boiling point of Si. This is because when carbonizing Si that has been molten and made into fine spherules, if you focus on a single particle, the unreacted Si portion remains molten until carbonization is complete and a spherical SiC powder is formed. This is because it is necessary.

こうして製造された球状SiC粉末は粉末取出口
8より取り出される。
The spherical SiC powder thus produced is taken out from the powder outlet 8.

第2図は直流プラズマの代わりに外部電気炉9
により第1反応域4をSiの融点以上に、第2反応
域をSiの融点以上沸点以下に保つ反応装置の例で
ある。球状SiC粉末の製造法は第1図の場合と同
様であり、Si導入管5より不活性ガス又はH2
のキヤリアーガスとCを含まないSi化合物を導入
し、炭素導入管7から炭素化合物を導入し、粉末
取り出し口8より球状SiC粉末を取り出す。原料
としては、Si化合物ではSiH4、塩化シラン、
SiCl4等が、炭素化合物としてはメタン、アセチ
レン、エチレン、プロパン、ブタン、ベンゼン、
ナフタリンなどの炭化水素等を用いることができ
る。
Figure 2 shows an external electric furnace 9 instead of DC plasma.
This is an example of a reactor in which the first reaction zone 4 is maintained at a temperature above the melting point of Si, and the second reaction zone is maintained at a temperature above the melting point of Si and below the boiling point. The method for producing spherical SiC powder is the same as that shown in Fig. 1, in which an inert gas or a carrier gas such as H 2 and a Si compound containing no C are introduced from the Si introduction tube 5, and a carbon compound is introduced from the carbon introduction tube 7. is introduced, and the spherical SiC powder is taken out from the powder take-out port 8. As raw materials, Si compounds include SiH 4 , chlorosilane,
SiCl 4 etc. are carbon compounds such as methane, acetylene, ethylene, propane, butane, benzene,
Hydrocarbons such as naphthalene can be used.

反応装置は第1図、第2図に限らず、第1反応
域をSiの融点以上に保つことができ、ここでは融
体化かつ微細球状化したSiが生成され、第2反応
域をSiの融点以上沸点以下に保つことができ、こ
こで該Siを炭化し球状SiC粉末が得られるもので
あれば、どのようなものでもよい。したがつて第
1反応域の加熱法は、高周波プラズマ、誘導加
熱、マイクロ波加熱、赤外線加熱、レーザー加熱
等いかなる加熱法でもよい。第2反応域において
もいかなる加熱法でも良く、さらに加熱せずとも
Siの融点以上沸点以下に保たれるならば加熱は不
要であり、又逆に冷却が必要なこともある。
The reactor is not limited to those shown in Figures 1 and 2, and can maintain the first reaction zone above the melting point of Si, where molten and fine spheroidal Si is produced, and the second reaction zone is heated to Si. Any material may be used as long as it can be maintained at a temperature above the melting point and below the boiling point of SiC, and where the Si can be carbonized to obtain spherical SiC powder. Therefore, the first reaction zone may be heated by any heating method such as high frequency plasma, induction heating, microwave heating, infrared heating, laser heating, etc. Any heating method may be used in the second reaction zone, and no further heating is required.
If the temperature is kept above the melting point of Si and below the boiling point, heating is not necessary, and conversely, cooling may be necessary.

又第1反応域と第2反応域の間に隔壁等の障害
物がある方が良い場合もある。ただ、第1反応域
で融体化かつ微細球状化したSiが生成するまで
は、炭素化合物が第1反応域に侵入しないように
しなければならない。
Further, it may be better to have an obstacle such as a partition between the first reaction zone and the second reaction zone. However, it is necessary to prevent the carbon compound from entering the first reaction zone until molten and finely spheroidized Si is produced in the first reaction zone.

さらに第1、第2反応域は非酸化性雰囲気であ
ることが望ましい。なぜならば酸素が多い場合は
SiO2が生成する可能性があるからである。
Furthermore, it is desirable that the first and second reaction zones be in a non-oxidizing atmosphere. Because if there is a lot of oxygen
This is because SiO 2 may be generated.

実施例 第1図の装置を使つて、プラズマ用ガス導入管
3からArガスを20/min導入し、陰極1と陽
極2の間で30V、400Aの条件で放電させ、プラ
ズマを発生させたのち、Si導入管5よりSiH4
1/min導入して第1反応域4にて融体化かつ
微細球状化したSiを生成させた。この段階で採取
した球状化Siの透過電子顕微鏡による写真(6万
倍)を第3図に示す。
Example Using the device shown in Figure 1, Ar gas was introduced from the plasma gas introduction tube 3 at 20/min, and discharged between the cathode 1 and anode 2 at 30V and 400A to generate plasma. , SiH 4 was introduced from the Si introduction tube 5 at 1/min to generate Si that was molten and made into fine spherules in the first reaction zone 4. Figure 3 shows a transmission electron micrograph (60,000x) of the spheroidized Si collected at this stage.

なお、この第1反応域4の直径は40mmで、温度
は2000℃以上である。
Note that the diameter of this first reaction zone 4 is 40 mm, and the temperature is 2000° C. or higher.

さらに、融体化かつ微細球状化したSiを第2反
応域に送り、炭素導入管7よりCH4を1/min
導入し、約2000℃の第2反応域6にて前記Siを炭
化しSiCを合成した。得られた球状SiCを粉末取
出口8より回収した。
Furthermore, the molten and finely spheroidized Si is sent to the second reaction zone, and CH 4 is added at 1/min from the carbon introduction pipe 7.
The Si was introduced and carbonized in the second reaction zone 6 at about 2000°C to synthesize SiC. The obtained spherical SiC was collected from the powder outlet 8.

得られたSiC粉末は第4図に示す透過電子顕微
鏡写真より判るように直径が0.1〜1.0μm程度の球
状粉末であり、主としてβ―SiCであつた。
As can be seen from the transmission electron micrograph shown in FIG. 4, the obtained SiC powder was a spherical powder with a diameter of about 0.1 to 1.0 μm, and was mainly β-SiC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直流プラズマ利用の球状SiC粉末製造
装置の略図、第2図は外部電気炉利用の球状SiC
粉末装置の略図である。第3図は球状Si、第4図
は球状SiC粉末の粒子構造を示す透過電子顕微鏡
写真図である。 1…陰極、2…陽極、3…プラズマ用ガス導入
管、4…第1反応域、5…Si導入管、6…第2反
応域、7…炭素導入管、8…粉末取出口、9…外
部電気炉。
Figure 1 is a schematic diagram of spherical SiC powder production equipment using DC plasma, and Figure 2 is a schematic diagram of spherical SiC powder production equipment using an external electric furnace.
1 is a schematic diagram of a powder apparatus. FIG. 3 is a transmission electron micrograph showing the particle structure of spherical Si powder, and FIG. 4 is a transmission electron micrograph showing the particle structure of spherical SiC powder. DESCRIPTION OF SYMBOLS 1... Cathode, 2... Anode, 3... Gas introduction tube for plasma, 4... First reaction zone, 5... Si introduction tube, 6... Second reaction zone, 7... Carbon introduction tube, 8... Powder outlet, 9... External electric furnace.

Claims (1)

【特許請求の範囲】[Claims] 1 Siの融点以上の第1反応域にCを含まないSi
化合物を導入して、融体化かつ球状化したSiを生
成させ、この球状化SiをSiの融点以上沸点以下の
第2反応域で炭素化合物と反応させることを特徴
とする球状SiC粉末の製造法。
1 Si that does not contain C in the first reaction zone above the melting point of Si
Production of spherical SiC powder characterized by introducing a compound to generate molten and spheroidized Si, and reacting the spheroidized Si with a carbon compound in a second reaction zone above the melting point of Si and below the boiling point. Law.
JP58185188A 1983-10-05 1983-10-05 Production of spherical sic powder Granted JPS6077114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58185188A JPS6077114A (en) 1983-10-05 1983-10-05 Production of spherical sic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185188A JPS6077114A (en) 1983-10-05 1983-10-05 Production of spherical sic powder

Publications (2)

Publication Number Publication Date
JPS6077114A JPS6077114A (en) 1985-05-01
JPS6351966B2 true JPS6351966B2 (en) 1988-10-17

Family

ID=16166387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185188A Granted JPS6077114A (en) 1983-10-05 1983-10-05 Production of spherical sic powder

Country Status (1)

Country Link
JP (1) JPS6077114A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3650539T2 (en) * 1985-04-04 1996-10-31 Nippon Steel Corp Process for producing silicon carbide particles and a silicon carbide sintered body
CN103833035B (en) * 2014-03-06 2017-01-11 台州市一能科技有限公司 Preparation method of silicon carbide

Also Published As

Publication number Publication date
JPS6077114A (en) 1985-05-01

Similar Documents

Publication Publication Date Title
JPS6221867B2 (en)
US4605542A (en) Process for producing silicon carbide whisker
US4661335A (en) Novel silicon powder having high purity and density and method of making same
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US6699450B2 (en) Carbide material by electromagnetic processing
JPS61232269A (en) Manufacture of boron-containing silicon carbide powder
Gitzhofer Induction plasma synthesis of ultrafine SiC
US5324494A (en) Method for silicon carbide production by reacting silica with hydrocarbon gas
JPS6351966B2 (en)
JPS5939708A (en) Manufacture of fine silicon carbide powder
JP2794173B2 (en) Method of forming composite carbon coating
JPS6225605B2 (en)
US20050019567A1 (en) Process for producing silicon carbide fibrils and product
JPS6332841B2 (en)
JP3154773B2 (en) Method for producing particulate silicon carbide
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
RU2789998C1 (en) Method for obtaining silicon carbide
Vogt et al. Novel Rf-Plasma System for the Synthesis of Ultrafine, Ultrapure Sic and Si3N4
CA2020510A1 (en) Method for producing carbide products
JPH03187998A (en) Production of aluminum nitride whisker
JPS60127213A (en) Production of ultrafine particulate silicon carbide
JP2001294409A (en) Method for manufacturing hollow particulate of fullerene-shaped boron nitride
JPS6046912A (en) Production of ultrafine granule of silicon carbide
JPH04149017A (en) Silicon carbide powder and its production