JPS6351948A - Waste gas denitration catalyst - Google Patents

Waste gas denitration catalyst

Info

Publication number
JPS6351948A
JPS6351948A JP61194008A JP19400886A JPS6351948A JP S6351948 A JPS6351948 A JP S6351948A JP 61194008 A JP61194008 A JP 61194008A JP 19400886 A JP19400886 A JP 19400886A JP S6351948 A JPS6351948 A JP S6351948A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
arsenic
denitrification
waste gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61194008A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
繁 野島
Kozo Iida
耕三 飯田
Toru Seto
徹 瀬戸
Shigeaki Mitsuoka
光岡 薫明
Yoshiaki Obayashi
良昭 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61194008A priority Critical patent/JPS6351948A/en
Publication of JPS6351948A publication Critical patent/JPS6351948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prevent the diffusion and penetration of arsenic oxide into the pores of a catalyst and to keep high performance denitration action for a long period of time, by forming a waste gas denitration catalyst by supporting an active catalytic component on a catalyst carrier having a pore size of 3.6-5.8Angstrom . CONSTITUTION:A waste gas denitration catalyst is formed by supporting an active catalytic component on a catalyst carrier with a pore size of 3.6-5.8Angstrom , for example, 4A zeolite, 5A zeolite, analcime or erionite. Concretely, A-type zeolite ion-exchanged with Na is immersed in an amine solution of ammonium paratungstate to support 10wt% of tungsten oxide. Subsequently, the impregnated carrier is baked at 600 deg.C for 3hr and further immersed in an aqueous ammonium metavanadate solution to support 0.5wt% of vanadium oxide and the supported carrier is baked at 400 deg.C for 3hr to form a catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒素酸化物、ヒ素等を含有する排ガスの脱硝
触媒に関し、詳細には、窒素酸化物の他に触媒被毒とな
沙やすいヒ素等の煤じんを多量に含んだ排ガスにアンモ
ニアを添加し、窒素酸化物を接触還元させ窒素、水へと
転化するに当り、ヒ素化合物等の触媒被毒物質をほとん
ど吸着し々い脱硝触媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a denitrification catalyst for exhaust gas containing nitrogen oxides, arsenic, etc. Ammonia is added to exhaust gas containing a large amount of soot and dust such as arsenic, and when nitrogen oxides are catalytically reduced and converted into nitrogen and water, a denitrification catalyst that adsorbs almost all catalyst poisoning substances such as arsenic compounds is used. Regarding.

〔従来の技術〕[Conventional technology]

電力用大型ボイラー、自家用発電用ボイラー等の燃焼炉
、化学プラント等からの廃ガス中に含まれるNOxによ
る大気汚染が社会問題となり、その防止策として、各1
の廃ガス脱硝装置の開発が進められた結果、現在では触
媒存在下で、アンモニアを還元剤とした1択的接触還元
法が主流となっている。この脱硝装置(で用いられる触
媒は、高活性であることはもちろん、その性能を長時間
安定に維持することか要求さ比る。
Air pollution caused by NOx contained in waste gas from large power boilers, combustion furnaces for private power generation boilers, chemical plants, etc. has become a social problem, and as a preventive measure, one
As a result of progress in the development of waste gas denitrification equipment, the mainstream is now a selective catalytic reduction method using ammonia as a reducing agent in the presence of a catalyst. The catalyst used in this denitrification equipment is required not only to be highly active, but also to maintain its performance stably for a long period of time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来より、排煙脱硝用触媒としては、アルミナ(r型)
、チタニア(アナターゼ型)などの担体上に1バナジウ
ム、タングステン、モリブデンなどの活性金属を単独あ
るいは組み合わせて担持した触媒を用いてきた。しかし
、近年、ボイラー原料に供する石炭糧が鴨なることによ
り、脱硝触媒の活性が低下し、触媒寿命が大幅に短く々
るという問題点が生じた。
Conventionally, alumina (R type) has been used as a catalyst for exhaust gas denitrification.
, catalysts in which active metals such as vanadium, tungsten, and molybdenum are supported singly or in combination on a carrier such as titania (anatase type) have been used. However, in recent years, a problem has arisen in which the activity of the denitrification catalyst decreases and the life of the catalyst is significantly shortened due to the use of coal as raw material for boilers.

本発明者らは、実機触媒の解析や種々の実験室試験によ
って、触媒劣化原因の究明を行ったところ、廃ガス中に
含まれるヒ素酸化物等の被毒物質が触媒に蓄積すること
ばより触媒活性が大幅に低下することを見い出した。ヒ
素化合物は、通常、自然界では硫化鉄鉱等の硫化鉱中に
含まれており、褐炭等の劣質炭にも多重に含まれている
。これらの石炭をボイラー原料に供する場合、廃ガスダ
スト中に多量のヒ素酸化物(As、 03 )が分子状
で存在する。このAS、03は触媒側孔内部にまで拡散
侵入し、毛管凝縮作用、または触媒成分との反応による
複合ヒ素酸化物の形成により安定に細孔内部に沈着する
。さらK、活性金属の酸化作用によりAs103 が蒸
気圧の低いA 830@へと変化するため、活性金属表
面Ic As40gが沈着し、活性点を覆うため、活性
が急激に低下すると考えられる。
The inventors investigated the cause of catalyst deterioration through analysis of actual catalysts and various laboratory tests. It was found that the activity was significantly reduced. Arsenic compounds are normally contained in sulfide ores such as pyrite sulfide in nature, and are also contained in multiple amounts in inferior coal such as lignite. When these coals are used as boiler raw materials, a large amount of arsenic oxide (As, 03) is present in molecular form in the exhaust gas dust. This AS, 03 diffuses into the catalyst side pores and is stably deposited inside the pores by capillary condensation or by reaction with catalyst components to form a complex arsenic oxide. Furthermore, due to the oxidation effect of the active metal, As103 changes to A830@ with a low vapor pressure, and 40 g of Ic As is deposited on the active metal surface and covers the active sites, resulting in a rapid decrease in activity.

石炭等の原料中に多量のヒ素化合物を含んでいる場合、
ヒ素化合物の沈着による脱硝触媒の劣化を防止する方法
として ■ 石炭等の原料中から、前処理としてヒ素化合物を除
去法の検討 ■ ヒ素化合物吸着剤の開発 ■ ヒ素化合物を吸着しない触媒の開発■ 耐ヒ素性に
優れた触媒の開発 等のヒ素化合物の被毒に対する対策が検討されている。
If raw materials such as coal contain large amounts of arsenic compounds,
As a method to prevent the deterioration of denitrification catalysts due to the deposition of arsenic compounds ■ Consideration of methods for removing arsenic compounds from raw materials such as coal as a pretreatment ■ Development of arsenic compound adsorbents ■ Development of catalysts that do not adsorb arsenic compounds ■ Durability Countermeasures against poisoning by arsenic compounds, such as the development of catalysts with excellent arsenic properties, are being considered.

ただし、■の原料の前処理は原料の水洗、乾燥等の工程
追加により多大な労力と費用を要し、■の吸着剤の開発
は、触媒層上に吸着剤を置くことにより圧力損失が大と
なり、さらに、ヒ素化合物を長時間捕捉するにけ高性能
々吸着剤を多量に要すことになる。また、■の耐As 
性に富む触媒の開発に「剥しては、現触媒のAs は細
孔内壁を均一に覆っているため、初期活性の向上を狙っ
ても活性劣化の程度を抑えることは峻しいと考えられる
。上記理由により、■のヒ素化合物を吸着しない触媒の
開発が現プロセスを変更することなく、最も低コストで
容易に開発可能なヒ素被毒防止法であると思われる。
However, the pretreatment of the raw material in (■) requires a great deal of labor and cost due to additional steps such as washing and drying the raw material, and the development of the adsorbent (■) requires a large pressure loss due to placing the adsorbent on the catalyst layer. Furthermore, in order to capture arsenic compounds for a long period of time, a large amount of high-performance adsorbent is required. In addition, ■ As resistance
Developing a catalyst with rich properties: ``If you peel it off, As in the current catalyst uniformly covers the inner walls of the pores, so even if you aim to improve the initial activity, it will be difficult to suppress the degree of activity deterioration.'' For the above reasons, it is believed that the development of a catalyst that does not adsorb arsenic compounds (ii) is the lowest cost and easiest method for preventing arsenic poisoning without changing the current process.

本発明者等は、上述したように、排煙脱硝触媒の劣化原
因を究明したところ、廃ガス中に含まれるヒ素酸化物等
の被毒物質が触媒に蓄積することKより触媒活性が大幅
に低下することに着目し、さらに、廃ガス中に含まれて
いるヒ素酸化物(ASvOs)が分子状で存在し、この
ヒ素酸化物が触媒の細孔内部にまで拡散侵入し、毛管凝
縮作用、または触媒成分との反応による複合ヒ素酸化物
の形成により触媒の細孔内部に沈着し、その結果、触媒
活性が急激に低下することに着目して本発明を完成した
ものである。そして、本発明は、上記知見に基づき、触
媒の細孔内部にヒ素酸化物等が拡散侵入するのを防止し
、高性能の脱硝作用を長時間維持することができる排煙
脱硝触媒を提供しようとするものである。
As mentioned above, the present inventors investigated the cause of the deterioration of the exhaust gas denitrification catalyst and found that the catalytic activity was significantly reduced due to the accumulation of poisonous substances such as arsenic oxides contained in the exhaust gas in the catalyst. In addition, we focused on the fact that arsenic oxide (ASvOs) contained in the exhaust gas exists in molecular form, and this arsenic oxide diffuses into the pores of the catalyst, causing capillary condensation. The present invention was completed by focusing on the fact that a composite arsenic oxide is formed by reaction with a catalyst component and deposits inside the pores of the catalyst, resulting in a rapid decrease in catalytic activity. Based on the above findings, the present invention aims to provide a flue gas denitrification catalyst that can prevent arsenic oxides from diffusing into the pores of the catalyst and maintain high-performance denitrification for a long period of time. That is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するため、触媒担体の細孔径
が五6 A −a 8 Aである担体を使用する点にあ
る。すなわち、本発明は、窒素酸化物の他ンこと素等の
煤じんを多量に含んだ排ガスにアンモニアを添加し、該
ガス中の窒素酸化物を還元し無害化する触媒において、
触媒担体の細孔径が!−6λ〜5−8^でちる担体に活
性金属を担持してなることを特徴とする排煙脱硝触媒で
ある。
In order to achieve the above object, the present invention uses a catalyst carrier having a pore diameter of 56 A-a8 A. That is, the present invention provides a catalyst that adds ammonia to exhaust gas containing a large amount of soot and dust such as nitrogen oxides and elements, and reduces and renders the nitrogen oxides in the gas harmless.
The pore diameter of the catalyst carrier! This is a flue gas denitrification catalyst characterized in that an active metal is supported on a carrier of -6λ to 5-8^.

As 酸化物の吸着は触媒細孔内への内部拡散および毛
管凝縮作用によると考えられるため触媒の活性金属の種
類による吸着性能の差はあまり生じないものと予想され
、主に、触媒の細孔径等の物理形状がAs酸化物の吸着
能を支配するものと考えられる。通常、As酸化物は脱
硝反応温度域(中350℃)では、平衡的にAs103
(三酸化二ヒ素)が安定であり、気体分子構造はAs4
0g分子で構成されており平均分子径は約a8Aである
。すなわち、ミクロボアの細孔入口径が5.8A以下の
触媒には、ヒ素酸化物はミクロボア中には侵入すること
ができず、粒子間のマイクボアのみの吸着と予想される
。そこで、本発明者らは、上記予想に基づいて、触媒の
担体にモレキュラーシープ−4Aを使用したところ、ミ
クロボア内部はヒ素酸化物に全く被毒されず、触媒全体
にもほとんどヒ素酸化物が吸着されないことが判明した
。なお、キュラージ−ブー4Aの細孔径はNHs−?N
oの分子径よりも十分大きいため、従来の触媒と同様の
初期脱硝性能を有することを確認している。
Adsorption of As oxide is thought to be due to internal diffusion into the catalyst pores and capillary condensation, so it is expected that there will be little difference in adsorption performance depending on the type of active metal of the catalyst, and it is mainly due to the pore size of the catalyst. It is thought that the physical shape of As oxide controls the adsorption ability of As oxide. Normally, As oxide has As103 in equilibrium in the denitrification reaction temperature range (mid 350°C).
(diarsenic trioxide) is stable, and the gas molecular structure is As4
It is composed of 0g molecules and has an average molecular diameter of about a8A. That is, in a catalyst having a micropore entrance diameter of 5.8 A or less, arsenic oxide cannot enter into the micropores, and is expected to be adsorbed only in the micropores between particles. Therefore, based on the above prediction, the present inventors used Molecular Sheep-4A as a catalyst carrier, and found that the inside of the micropores was not poisoned by arsenic oxide at all, and almost no arsenic oxide was adsorbed on the entire catalyst. It turned out that it wasn't. In addition, the pore diameter of Curage-Boo 4A is NHs-? N
It has been confirmed that the catalyst has the same initial denitrification performance as conventional catalysts because it is sufficiently larger than the molecular diameter of the catalyst.

本発明において、排煙脱硝触媒の担体としては、換言す
れば、ヒ素酸化物の吸着抑制触媒の担体としては、約S
8A以下の均一々細孔径を有すゼオライト担体が好まし
く、上記4Aゼオライト以外に、5Aゼオライト、アナ
ルサイム、エリオナイト、チャバザイト、グメリナイト
、オフレタイト、Z8M−5等のゼオライトが好ましい
。さらに、X型、Y型、モルデナイト等の細孔入口径が
6A以上のゼオライトでも、有機シランのCVD処理に
より細孔入口径修飾し、平均細孔径を約S8A以下にし
たゼオライトも使用することができる。
In the present invention, as a carrier for the exhaust gas denitrification catalyst, in other words, as a carrier for the arsenic oxide adsorption suppression catalyst, about S
A zeolite carrier having a uniform pore diameter of 8A or less is preferred, and in addition to the above-mentioned 4A zeolite, zeolites such as 5A zeolite, analcyme, erionite, chabazite, gmelinite, offretite, and Z8M-5 are preferred. Furthermore, even for zeolites with a pore entrance diameter of 6A or more, such as X-type, Y-type, mordenite, etc., zeolites whose pore entrance diameter is modified by CVD treatment with organic silane to have an average pore diameter of about S8A or less can also be used. can.

また、脱硝反応(4NO+4NH3+o!→4N鵞+6
H10)に必要な分子(NOe NHs * o、、 
H2O)が充分に侵入でき、細孔内が活性の場となる細
孔径の下限は、上記の分子の分子径が、No : 1.
6〜2.6A。
In addition, denitrification reaction (4NO + 4NH3 + o! → 4N + 6
Molecules necessary for H10) (NOe NHs * o,,
The lower limit of the pore diameter at which H2O) can sufficiently penetrate and the inside of the pore becomes an active field is the molecular diameter of the above molecule: No. 1.
6-2.6A.

O雪:五6A、N雪:2.8A、馬O及びNH,: 5
 A以下であるところから、i6Aとすることが好まし
い。
O snow: 56A, N snow: 2.8A, horse O and NH,: 5
Since it is below A, it is preferable to set it to i6A.

結局、本発明の排煙脱硝触媒の担体としては細孔径を五
6A−a8Aとする必要がちる。
In the end, the carrier for the exhaust gas denitrification catalyst of the present invention needs to have a pore diameter of 56A-8A.

〔実施例1〕 N−1でイオン交換したA型ゼオライト(モレキュラシ
ープ4A平均細孔径4A)を担体とする。
[Example 1] Type A zeolite (Molecular Sheep 4A average pore diameter 4A) ion-exchanged with N-1 is used as a carrier.

この担体をパラタングステン酸アンモニウムのアεン溶
液に浸漬して酸化タングステンを10重!1%担持し6
00℃、3時間焼成後、さらに、メタバナジン酸アンモ
ニウム水溶液に浸漬し、酸化バナジウムを15重量%担
持し、600℃で5時間焼成した。この触媒(Mhos
 ((!、5)−Wt)3(10)/4A)を触媒1と
する。
This carrier was immersed in an atom solution of ammonium paratungstate and 10 layers of tungsten oxide was added! 1% support 6
After firing at 00°C for 3 hours, it was further immersed in an aqueous ammonium metavanadate solution to support 15% by weight of vanadium oxide, and fired at 600°C for 5 hours. This catalyst (Mhos
Let ((!, 5)-Wt)3(10)/4A) be catalyst 1.

〔実施例2〕 Caでイオン交換したA型ゼオライト(平均細孔径5A
)を担体として、実施例1と同様の調製手順、組成にて
調製した触媒(VzOa ([15) −WO。
[Example 2] Type A zeolite ion-exchanged with Ca (average pore diameter 5A
) was used as a carrier, and the catalyst (VzOa ([15) -WO.

(10)/ 5 A )を触媒2とする。(10)/5A) is designated as catalyst 2.

〔実施例3〕 フェリエライト(平均細孔径4,3λXS、SA)、エ
リオナイト(平均細孔径五6λX5.2A)、シャパサ
イト(平均細孔径五6^×五7A)、グメリナイト(平
均細孔径五7^X4.1λ)、オフレタイト(平均細孔
径五6λXa2λ)の各ゼオライトを担体として実施例
1と同様の活性金属担持法で調製し、触媒(’/*O@
(α5)−WtJ、(10) /フェリエライト、VI
Os((L5)−To、(10)/エリオナイト、VI
Os(115)−WOs (10)/ シャバサイト、
V、0.((L5)−WO3(10)/グメリナイト、
v!0. ((15) −WO3(10)、/オレフタ
イト)を各々触媒5、触媒4、触媒5、触媒6、触媒7
とする。
[Example 3] Ferrierite (average pore diameter 4.3 λXS, SA), erionite (average pore diameter 56 λ The catalyst ('/*O@
(α5)-WtJ, (10) / Ferrierite, VI
Os((L5)-To, (10)/erionite, VI
Os(115)-WOs(10)/ Shabasite,
V, 0. ((L5)-WO3(10)/gmelinite,
v! 0. ((15) -WO3(10), /oleftite) respectively as catalyst 5, catalyst 4, catalyst 5, catalyst 6, catalyst 7
shall be.

なお、細孔径は、2次元構造をした有効細孔径(空どう
)の対角線の直径(A)として表示した。
Note that the pore diameter was expressed as the diagonal diameter (A) of the effective pore diameter (empty hole) having a two-dimensional structure.

〔実施列4〕 H型モルデナイト(参照触媒JRC−Z−HM10平均
細孔径5.q 〜7.1 A )を520℃で脱気し、
これに320℃で81(OCHs)4  を室温蒸気圧
で供給し、重量増加が停止するまで気相担持した。担持
後、炭化水素を除くべく、400℃で01により焼成し
た。上記、気相担持法(CVD法)によりシラン化を行
い、細孔入口径の修飾を行った結果種々の吸着実験によ
り細孔入口径が約a OA VC狭まっていることが確
認された。このCVD法によるシラン化処理したモルデ
ナイトを担体として実施例1と同様の活性金属担持法で
調製した触媒(V、O,((L5)−Wi)、(10)
 / C’VD−モルデナイト)を触媒8とする。
[Implementation row 4] H-type mordenite (reference catalyst JRC-Z-HM10 average pore diameter 5.q ~ 7.1 A) was degassed at 520 ° C.
81(OCHs)4 was supplied to this at room temperature vapor pressure at 320°C, and supported in the vapor phase until the weight stopped increasing. After supporting, it was calcined at 400°C using 01 in order to remove hydrocarbons. Silanization was carried out by the above-mentioned gas phase loading method (CVD method), and as a result of modifying the pore entrance diameter, it was confirmed through various adsorption experiments that the pore entrance diameter was narrowed by about a OA VC. A catalyst (V, O, ((L5)-Wi), (10) prepared by the same active metal supporting method as in Example 1 using this CVD-silanized mordenite as a carrier.
/C'VD-mordenite) as catalyst 8.

〔比較例〕[Comparative example]

実施例4で使用したH型モルデナイ)、Naでイオン交
換したX型ゼオライ) : 10X(平均細孔径9A)
、Caでイオン交換したX型ゼオライ) : 13)C
(平均細孔径10A)、さらに通常の脱硝触媒等で使用
されているアセターゼ型チタ=ア(平均細孔径的SOO
λ)を担体として実施例1と同様の活性金属担持法によ
り調製した5触媒(’Vt Os (α5 )−WO3
(10)/ モルデナイト、V2O4(Cl3)−WO
I(10)/ 10 X 、 Vl’)1((15)−
WO3(10)/ Bx 、 v、o、−wo、(1o
)/ TIO,)を各々触媒9、触媒10゜触媒11、
触媒12とする。
H-type zeolite used in Example 4), X-type zeolite ion-exchanged with Na): 10X (average pore diameter 9A)
, X-type zeolite ion-exchanged with Ca): 13)C
(average pore diameter 10A), and acetase-type tita-a (average pore diameter SOO
5 catalyst ('Vt Os (α5)-WO3) prepared by the same active metal supporting method as in Example 1 using λ) as a carrier
(10)/ Mordenite, V2O4(Cl3)-WO
I(10)/10X, Vl')1((15)-
WO3(10)/Bx, v, o, -wo, (1o
)/TIO,) respectively as catalyst 9, catalyst 10° catalyst 11,
Let it be catalyst 12.

(As*Osの吸着試験および脱硝活性評価試験〕触媒
1〜触媒12を用いて、触媒被毒物質であるAS103
の吸着試験を実施した。試験方法は第1図に示す試験装
置(この装置は第1図に示すように、加熱炉内のAS!
(’)3粉末を加熱しζ触媒または吸収剤に吸収された
lを残存AS103捕集部より逆算して測定するAsh
O3吸着試験装置である。)を用いて表1に記す試験条
件にて実施した。AIJO3吸着試、験結果を表2に記
す。さらに上記、触媒1〜触媒12のAs103吸着前
後の脱硝活性評価試験を実施した。活性評価状、v!条
件を表3に、脱硝活性試験結果を表4に記す。
(As*Os adsorption test and denitrification activity evaluation test) Using catalysts 1 to 12, AS103, which is a catalyst poisoning substance,
An adsorption test was conducted. The test method is as shown in Figure 1 using the test equipment (as shown in Figure 1, this equipment is an AS!
Ash
This is an O3 adsorption test device. ) under the test conditions shown in Table 1. The AIJO3 adsorption test and test results are shown in Table 2. Further, a denitrification activity evaluation test was conducted before and after As103 adsorption for Catalysts 1 to 12 described above. Activity evaluation letter, v! The conditions are shown in Table 3, and the denitrification activity test results are shown in Table 4.

(表1)(As鵞03吸着試験条件〕 (表5)〔脱硝活性計価試験条件〕 表2に示すAs103吸着試験結果より、As103(
AS40@)分子径より小さい平均細孔径を有する担体
の触媒1〜触媒8はAs103はミクロボアに侵入吸着
することができず、粒子間のマクロポア間にわずかに吸
着するのみである。一方、As103 (Aside)
分子径より大きい平均細孔径を有する担体の触媒9〜触
媒12は、ミクロボア中にも浸入拡散するため60X以
上のA81’)3を吸着する。上記触媒を用いて、脱硝
活性評価試1験を行い、その結果を表4に示す。表4よ
抄、AS、O,をあまり吸着していない触媒1〜触媒8
株触媒活性の劣化権度が低いが、A3103を多量に吸
着している触媒9〜触媒12は活性劣化度合が大きく、
As101の被毒作用が顕著に認められる。以上の実施
例より平均細孔径が約a 8 A以下のゼオライト担体
を脱硝触媒に用いることによりヒ素酸化物等の被毒物質
の吸着を防ぎ、高活性で長寿命は脱硝触媒を調整するこ
とができることが明らかにつつた。
(Table 1) (As 03 adsorption test conditions) (Table 5) [Denitrification activity measurement test conditions] From the As103 adsorption test results shown in Table 2, As103 (
AS40@) In Catalysts 1 to 8, which are carriers having an average pore diameter smaller than the molecular diameter, As103 cannot penetrate into the micropores and be adsorbed, but is only slightly adsorbed between the macropores between the particles. On the other hand, As103 (Aside)
Catalysts 9 to 12, which are carriers having an average pore diameter larger than the molecular diameter, adsorb A81')3 of 60X or more because they penetrate and diffuse into the micropores. A denitrification activity evaluation test was conducted using the above catalyst, and the results are shown in Table 4. Table 4 shows that catalysts 1 to 8 do not adsorb much AS and O.
Although the degree of deterioration of the stock catalyst activity is low, catalysts 9 to 12, which adsorb a large amount of A3103, have a high degree of deterioration of their activity.
The poisoning effect of As101 is clearly observed. From the above examples, it is possible to prevent the adsorption of poisonous substances such as arsenic oxides by using a zeolite carrier with an average pore diameter of about a 8 A or less as a denitrification catalyst, and to prepare a denitrification catalyst with high activity and long life. It was clear that it could be done.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上詳記したようK、細孔径五6λ〜18λ
の触媒担体を用いた触媒であり、この本発明の触媒は、
触媒細孔内部にヒ素酸化物等が拡散侵入することが防止
でき、高活性で長寿命の脱硝作用を生ずる効果を奏する
As described in detail above, the present invention has K, a pore diameter of 56λ to 18λ,
The catalyst of the present invention is a catalyst using a catalyst carrier of
It is possible to prevent arsenic oxides and the like from diffusing into the catalyst pores, resulting in a highly active and long-life denitrification effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、As103吸 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 傳 夫 Figure 1 shows As103 absorption. Sub-agent: 1) Akira Sub-agent Ryo Hagi Hara - Sub-Agent Denio Yasu Nishi

Claims (1)

【特許請求の範囲】[Claims] 窒素酸化物の他にヒ素等の煤じんを多量に含んだ排ガス
にアンモニアを添加し、該ガス中の窒素酸化物を還元し
無害化する触媒において、触媒担体の細孔径が3.6Å
〜5.8Åである担体に活性金属を担持してなることを
特徴とする排煙脱硝触媒。
In a catalyst that adds ammonia to exhaust gas containing a large amount of soot such as arsenic in addition to nitrogen oxides, and reduces the nitrogen oxides in the gas to render it harmless, the catalyst carrier has a pore diameter of 3.6 Å.
A flue gas denitrification catalyst comprising an active metal supported on a carrier having a thickness of ~5.8 Å.
JP61194008A 1986-08-21 1986-08-21 Waste gas denitration catalyst Pending JPS6351948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61194008A JPS6351948A (en) 1986-08-21 1986-08-21 Waste gas denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61194008A JPS6351948A (en) 1986-08-21 1986-08-21 Waste gas denitration catalyst

Publications (1)

Publication Number Publication Date
JPS6351948A true JPS6351948A (en) 1988-03-05

Family

ID=16317430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61194008A Pending JPS6351948A (en) 1986-08-21 1986-08-21 Waste gas denitration catalyst

Country Status (1)

Country Link
JP (1) JPS6351948A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519037A (en) * 2007-02-27 2010-06-03 ビーエーエスエフ、カタリスツ、エルエルシー SCR on low heat capacity filter substrate
JP2011519722A (en) * 2008-05-07 2011-07-14 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for reducing nitrogen oxides in exhaust gases containing hydrocarbons using SCR catalysts based on molecular sieves
CN104291354A (en) * 2013-07-20 2015-01-21 东北大学 Method for preparation of zeolite 4A and vanadium-titanium catalyst from vanadium slag
US10001053B2 (en) 2008-06-27 2018-06-19 Umicore Ag & Co. Kg Method and device for the purification of diesel exhaust gases
JP2020182898A (en) * 2019-05-07 2020-11-12 株式会社キャタラー Ammonia oxidation catalyst device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519037A (en) * 2007-02-27 2010-06-03 ビーエーエスエフ、カタリスツ、エルエルシー SCR on low heat capacity filter substrate
JP2011519722A (en) * 2008-05-07 2011-07-14 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for reducing nitrogen oxides in exhaust gases containing hydrocarbons using SCR catalysts based on molecular sieves
US10001053B2 (en) 2008-06-27 2018-06-19 Umicore Ag & Co. Kg Method and device for the purification of diesel exhaust gases
US10316739B2 (en) 2008-06-27 2019-06-11 Umicore Ag & Co. Kg Method and device for the purification of diesel exhaust gases
CN104291354A (en) * 2013-07-20 2015-01-21 东北大学 Method for preparation of zeolite 4A and vanadium-titanium catalyst from vanadium slag
JP2020182898A (en) * 2019-05-07 2020-11-12 株式会社キャタラー Ammonia oxidation catalyst device

Similar Documents

Publication Publication Date Title
Khivantsev et al. Molecular level understanding of how oxygen and carbon monoxide improve NO x storage in palladium/SSZ-13 passive NO x adsorbers: The role of NO+ and Pd (II)(CO)(NO) species
JP5354903B2 (en) Catalyst and nitrogen oxide reduction method
US20090126353A1 (en) Oxidation Catalyst for NH3 and an Apparatus for Treating Slipped or Scripped NH3
Heo et al. Effect of hydrocarbon on DeNOx performance of selective catalytic reduction by a combined reductant over Cu-containing zeolite catalysts
JPS6059004B2 (en) Removal of nitrogen oxides from flue gas
Jeong et al. Selective catalytic reduction of NO by NH3 over a bulk sulfated CuO/γ-Al2O3 catalyst
JP2008240568A (en) Exhaust emission control device
US10799832B2 (en) Catalyst article for use in an emission treatment system
WO2019132611A1 (en) Hydrocarbon adsorbent
Putluru et al. Selective catalytic reduction of NOx with NH3 on Cu‐, Fe‐, and Mn‐zeolites prepared by impregnation: comparison of activity and hydrothermal stability
JPS60106535A (en) Catalyst for treating waste gas
Yu et al. Activation of passive NOx adsorbers by pretreatment with reaction gas mixture
EP0908230A2 (en) Nitrogen dioxide absorbent and its use for purifying ventilation gas
BR112020018712A2 (en) CATALYST ARTICLE TO TREAT A FLOW FROM COMBUSTION EXHAUST GAS, EMISSION TREATMENT SYSTEM TO TREAT A FLOW FROM COMBUSTION EXHAUST GAS, AND, METHODS FOR TREATING A FLOW FROM COMBUSTION AND GAS EXHAUST GAS FLOW A CATALYST ARTICLE
JPS6351948A (en) Waste gas denitration catalyst
EA021965B1 (en) Catalyst for removing detrimental hydrocarbons present in effluent or process gases and method for manufacture of such catalyst
EP1027930B1 (en) Exhaust emission control catalyst
JPS637826A (en) Removing method for nitrous oxide in gas mixture
Lee et al. Regeneration of a sulfur-poisoned selective catalytic reduction catalyst at ambient conditions
JPH01299642A (en) Adsorbent for nitrogen oxide having low concentration
Yang et al. Decomposition of nitrous oxide over a low‐cost catalyst
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JPS6321536B2 (en)
JPH09313946A (en) Catalyst for cleaning nox-containing exhaust gas and cleaning method
JPS63126560A (en) Catalyst for catalytic reduction of nox