JPS6350382A - Formation of metal coating for ceramic - Google Patents

Formation of metal coating for ceramic

Info

Publication number
JPS6350382A
JPS6350382A JP19085786A JP19085786A JPS6350382A JP S6350382 A JPS6350382 A JP S6350382A JP 19085786 A JP19085786 A JP 19085786A JP 19085786 A JP19085786 A JP 19085786A JP S6350382 A JPS6350382 A JP S6350382A
Authority
JP
Japan
Prior art keywords
ceramic
metal
metal coating
silicate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19085786A
Other languages
Japanese (ja)
Inventor
静安 吉田
慎司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19085786A priority Critical patent/JPS6350382A/en
Publication of JPS6350382A publication Critical patent/JPS6350382A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、コージェライトセラミックを対象に該セラ
ミック材の表面に高融点の金属被膜を形成する方法に関
する。
The present invention relates to a method for forming a high melting point metal coating on the surface of a cordierite ceramic material.

【従来技術とその問題点】[Prior art and its problems]

セラミック材と金属材と接合したセラミックー金属接合
体を構成する場合に、あらかじめセラミック材の接合面
に高融点の金属被膜を形成した上で、セラミック材と金
属材とを硬ろう付けして両音間を気密接合する方法が従
来より広く行われている。この場合にセラミック材の表
面に高融点の金属被膜を形成する方法として、高融点金
属であるモリブデンまたはタングステンの粉末とマンガ
ン、チタンの粉末との混合粉末をセラミ、り材の表面に
分散付着させた上で、加熱処理により焼結させて金属被
膜を形成する方法が知られており、特にアルミナセラミ
ックではMo −Mn法として広く採用されている。ま
たこの方法によって形成された金属被膜はろう付は性に
優れ、気密性、接合強度の高いセラミックー金属接合体
を得ることができる。 ところで前記した従来の−o−11n法でセラミック材
に金属被膜を形成させる場合には、セラミックの純度に
もよるが一般にその焼結温度が弱酸化性の還元雰囲気中
で1350〜1500℃の温度を必要とする。 一方、セラミックとしてコージェライトセラミンクが知
られている。このコージェライトセラミックは熱膨張係
数が1.1〜2.8X10−フ/℃と低く、特に耐熱衝
撃性の高い絶縁材として電気機器の分野に多用されてい
る。ところでかかるコージェライトセラミック材と金属
材とをろう付は接合してセラミックー金属接合体を得る
場合に、従来の方法ではまずコージェライトセラミック
材の表面にi艮焼付法により銀被膜を形成した上で、次
に前記の銀被膜と接合金属材との間を例えば鉛−錫半田
等の軟ろう材を用いて接合する方法が一般に採用されて
いる。しかしてこの方法では接合面の気密性に乏しく、
かつ接合強度も低い等の欠点がありその改善策が望まれ
ている。 そこでコージェライトセラミックを対象に、本発明者は
前述したMo−Mn法を採用し、その材料としてMo−
Mn、 Mo−Mn−Ti、 Mo−Mn−5iOzの
組成に付いて金属被膜の形成を試みた。しかしながら前
記組成で金属被膜を焼結形成するにはその焼結温度が少
なくとも1350℃以上の温度であることを必要とし、
コージェライトセラミックの耐熱温度である1300℃
を超えることから、金属被膜形成を形成する焼結[程で
セラミックに膨れ、変形、溶融等が発生して変質する不
具合の生じることが認められた。
When configuring a ceramic-metal bonded body in which a ceramic material and a metal material are bonded, a high-melting point metal film is formed on the bonding surface of the ceramic material in advance, and then the ceramic material and the metal material are hard-soldered. Conventionally, a method of airtightly sealing the space has been widely used. In this case, as a method of forming a high melting point metal film on the surface of the ceramic material, a mixed powder of molybdenum or tungsten powder, which is a high melting point metal, and manganese or titanium powder is dispersed and adhered to the surface of the ceramic material. A method is known in which a metal film is formed by sintering the metal film by heat treatment, and the Mo-Mn method is widely used especially for alumina ceramics. Further, the metal coating formed by this method has excellent brazing properties, and a ceramic-metal bonded body with high airtightness and bonding strength can be obtained. By the way, when forming a metal coating on a ceramic material by the above-mentioned conventional -o-11n method, the sintering temperature is generally 1350 to 1500°C in a weakly oxidizing reducing atmosphere, although it depends on the purity of the ceramic. Requires. On the other hand, cordierite ceramink is known as a ceramic. This cordierite ceramic has a low coefficient of thermal expansion of 1.1 to 2.8 x 10-f/°C, and is widely used in the field of electrical equipment as an insulating material with particularly high thermal shock resistance. By the way, when brazing or joining such a cordierite ceramic material and a metal material to obtain a ceramic-metal bonded body, the conventional method is to first form a silver coating on the surface of the cordierite ceramic material by a baking method. Next, a method is generally adopted in which the silver coating and the bonding metal material are bonded using a soft brazing material such as lead-tin solder. However, with this lever method, the airtightness of the joint surface is poor,
Furthermore, there are drawbacks such as low bonding strength, and improvements are desired. Therefore, the present inventor adopted the above-mentioned Mo-Mn method for cordierite ceramic, and used Mo-Mn as the material.
Attempts were made to form metal films with compositions of Mn, Mo-Mn-Ti, and Mo-Mn-5iOz. However, in order to sinter and form a metal coating with the above composition, the sintering temperature needs to be at least 1350 ° C.
The heat-resistant temperature of cordierite ceramic is 1300℃
It was observed that during the sintering process to form a metal film, problems such as blistering, deformation, and melting of the ceramic occurred, resulting in deterioration of quality.

【発明の目的] この発明は上記の点にかんがみなされたものであり、コージェライトセラミックを対象に該セラミック材の表面に高融点の金属被膜を焼結形成するに際し、コージェライトセラミックに変質を来すことない耐熱温度以下の温度での焼結により強固で緻密な金属被膜を形成することを可能とし、しかも硬ろう材のろう付けにより気密性、接合強度の高いセラミックー金属接合体が得られるようしたコージェライトセラミックの汎用性拡大化に有用なセラミックへの金属被膜の形成方法を提供することを目的とする。 【発明の要点】[Purpose of the invention] This invention has been made in consideration of the above points, and it is possible to sinter and form a high-melting point metal coating on the surface of cordierite ceramic material at a heat resistant temperature that does not cause deterioration of the cordierite ceramic material. Cordierite ceramic is capable of forming a strong and dense metal coating by sintering at the following temperatures, and also allows a ceramic-metal joint with high airtightness and bonding strength to be obtained by brazing a hard solder metal. The purpose of the present invention is to provide a method for forming metal coatings on ceramics that is useful for expanding versatility. [Key points of the invention]

上記目的を達成するために、この発明は高融点金属であ
るモリブデンもしくはタングステンの粉末に珪酸塩の粉
末を添加した混合物を前記コージェライトセラミック材
の表面に分散付着させた後に、弱酸化性の還元雰囲気と
コージェライトセラミンクの耐熱温度以下の温度の条件
で加熱することにより、コージェライトセラミックに硬
ろう付けの可能な強固で緻密な高融点の金属被膜を形成
するようにしたものである。 すなわち本発明者は、コージェライトセラミック材の表
面にモリブデンまたはタングステンの高融点金属被膜を
形成するに当たり、これら高融点金属の粉末にその溶融
温度がコージェライトセラミックの耐熱温度以下の温度
でかつ硬ろう付は作業温度より充分高い珪酸マンガンま
たは珪酸鉄、ないしはこれらを主成分として含む珪酸塩
の粉末を添加し、かつこの混合粉末の有機溶剤懸濁液を
セラミック材の面に塗布ないし吹付けして分散付着させ
た上で弱酸化性の還元雰囲気中で加熱焼結することによ
り、コージェライトセラミックの耐熱温度以下の焼結温
度で強固、緻密な金属被膜を形成できることを見い出し
た。 なおこの場合の焼結温度はコージェライトセラミックの
耐熱温度以下の1200〜1300℃、特に珪酸マンガ
杵使用の場合には焼結温度は1250〜1300℃h)
へ がを効である。また高融点金属粉末に添加する珪酸塩の
添加割合は15〜40重量%である場合に良好な結果が
得られ、一方その添加割合が15%以下ではセラミック
上の高融点金属粉末の付着性が低下し、逆に添加割合が
40%を超えると金属被膜へメッキ、硬ろう付けを施す
場合のメッキの付着性および硬ろう付けの接合強度が低
下することが実験結果から確認されている。さらに焼結
工程での雰囲気は弱酸化性の水素雰囲気が良好であり、
例えば湿気を含む水素、また工業的にはアンモニア分解
ガスが使用される。おなこの場合に弱酸化性の水素雰囲
気を作るには水蒸気が存効であり、加温した水中に水素
ガスをバブリングしその水温により雰囲気中の濃度3P
!!!するのが良く、この方法により珪酸塩を還元する
ことなく高融点の金属被膜が形成できる。また前記方法
によって形成された高融点金属被膜は、そのままでは硬
ろう材に対する濡れ性が充分でなく、かつ空気中で酸化
を受は昌いために、金属被膜を形成した後は直ちに金属
被膜層の上にニッケル等のメッキ処理を施すのが良い。 なお本発明者は、前記したこの発明の方法とは別に珪m
マンガンの代わりに珪酸マンガンを形成する成分、例え
ばMnOとSiJの混合物を高融点金属粉末に添加して
焼結する実験も行ったが、MnOがSingと反応して
珪酸マンガンとなる際には少なくとも1350℃以上の
温度を必要とするためにコージェライトセラミックの耐
熱温度1300℃を超えてしまい、初期の目的が達成で
きなかった。またガラス類を添加する方法も試みたが、
この方法ではアルカリ土類金属イオンがセラミック界面
に拡散するためにセラミックの強度を低下させる等の難
点のあることが認められた。さらに焼結の際の雰囲気を
完全な還元性で行った実験では、珪酸塩中に酸化物の形
で存在するMnまたはFeが還元され、これらの金属単
体が高融点金属の焼結を阻害する他、コージェライトセ
ラミックとの濡れ性が悪化し強固な金属被膜が形成でき
なかった。したがって前記本発明の方法のように当初が
ら珪酸塩の化合物の形で高融点金属に添加することによ
り初期の目的が達成されることになる。
In order to achieve the above object, the present invention involves dispersing and adhering a mixture of molybdenum or tungsten powder, which is a high melting point metal, and adding silicate powder to the surface of the cordierite ceramic material, and then By heating the cordierite ceramic in an atmosphere at a temperature below the heat resistance temperature of the cordierite ceramic, a strong, dense metal coating with a high melting point that can be hard-brazed is formed on the cordierite ceramic. That is, in forming a high-melting point metal coating of molybdenum or tungsten on the surface of a cordierite ceramic material, the present inventors applied a powder of these high-melting point metals at a temperature below the heat resistance temperature of the cordierite ceramic material and a hard wax. This is done by adding manganese silicate or iron silicate, or silicate powder containing these as main components, which is sufficiently hotter than the working temperature, and applying or spraying a suspension of this mixed powder in an organic solvent onto the surface of the ceramic material. It has been discovered that by dispersing and adhering the material and then heating and sintering it in a weakly oxidizing reducing atmosphere, a strong and dense metal coating can be formed at a sintering temperature that is lower than the heat resistance temperature of cordierite ceramic. In this case, the sintering temperature is 1200 to 1300°C, which is lower than the heat resistance temperature of cordierite ceramic, and especially when using a silicate manga mallet, the sintering temperature is 1250 to 1300°Ch)
It is effective. Good results were obtained when the proportion of silicate added to the high melting point metal powder was 15 to 40% by weight; on the other hand, when the proportion of silicate added was 15% or less, the adhesion of the high melting point metal powder on the ceramic was poor. On the other hand, it has been confirmed from experimental results that when the addition ratio exceeds 40%, the adhesion of plating and the bonding strength of hard brazing when plating and hard brazing are applied to metal coatings are reduced. Furthermore, the atmosphere during the sintering process is a weakly oxidizing hydrogen atmosphere.
For example, humid hydrogen and industrially ammonia decomposition gas are used. In this case, water vapor is effective in creating a weakly oxidizing hydrogen atmosphere, and by bubbling hydrogen gas into heated water, the concentration of 3P in the atmosphere can be increased depending on the water temperature.
! ! ! By this method, a high melting point metal film can be formed without reducing the silicate. In addition, the high melting point metal coating formed by the above method does not have sufficient wettability to the hard soldering material as it is, and is susceptible to oxidation in the air. It is best to plate the top with nickel or the like. In addition, the present inventor has developed a silicon
We also conducted an experiment in which a component that forms manganese silicate, such as a mixture of MnO and SiJ, was added to the high melting point metal powder instead of manganese and sintered, but when MnO reacts with Sing to form manganese silicate, at least Since it required a temperature of 1,350°C or higher, it exceeded the heat resistance temperature of cordierite ceramic, which is 1,300°C, and the initial objective could not be achieved. We also tried adding glass, but
It has been found that this method has some drawbacks, such as the fact that alkaline earth metal ions diffuse into the ceramic interface, reducing the strength of the ceramic. Furthermore, in experiments conducted in a completely reducing atmosphere during sintering, Mn or Fe present in the form of oxides in the silicate was reduced, and these metals alone inhibited the sintering of high-melting point metals. In addition, wettability with cordierite ceramic deteriorated, making it impossible to form a strong metal coating. Therefore, as in the method of the present invention, the initial objective can be achieved by adding silicate to the high melting point metal in the form of a silicate compound.

【発明の実施例】[Embodiments of the invention]

実施例1: モリブデン粉末80重量%、珪酸マンガン粉末20重量
%の混合粉末の有機溶剤懸濁液を緻密質なコージェライ
トセラミック材の面に塗布ないし吹付けして分散付着さ
せ、次に湿気を含ませたアンモニア分解ガスの雰囲気中
、 1250〜1300℃の温度条件で30分間焼結を
行って金属被膜を形成した後に、炉から取り出して冷却
した0次いで前記の焼結工程で形成した金属被膜上に厚
さ5〜8μ−のニッケルメッキを施した後に、娘ろう材
を用い銅2 コバールまたは鉄−ニッケル合金と水素還
元雰囲気中、温度820℃1時間10分の条件で金属材
と接合してコージェライトセラミックー金属接合体を製
作した。 このようにして製作したセラミックー金属接合体の供試
体に付いてその特性試験を行った結果、ヘリウムリーク
量はI X 10−@atm ml /sec以下を維
持する良好な気密性の得られることが確認された。また
セラミック材と金属材との間の接合強度に付いても、引
張試験の結果からセラミックー金属接合体の接合面は剥
離せずにセラミック材自身が破壊することが見られ、こ
のことからセラミックの強度を上回る接合強度の得られ
ることが確認された。 実施例2: モリブデン粉末8 帽ii %、珪珪酸鉄2里合粉末を
実施例1と同様にしてコージェライトセラミック材の面
に分散付着させ、弱酸化性の還元雰囲気中.温度120
0〜1300℃,焼結時間30分の条件で金属被膜を焼
結形成させ、さらに冷却しした後に硬ろう付けを行って
セラミックー金属接合体を製作した.この供試体につい
て実施例1と同様な特性試験を行った結果によれば、気
密性および接合強度の点で実施例1と同等な特性の得ら
れることが確認された。 なお実施例1.2において、高融点金属としてモリブデ
ンの代わりにタングステン粉末を用いた実験でも気密性
,接合強度共に良好な結果が得られることが確認されて
いる。
Example 1: An organic solvent suspension of a mixed powder of 80% by weight of molybdenum powder and 20% by weight of manganese silicate powder was coated or sprayed on the surface of a dense cordierite ceramic material to make it disperse and adhere, and then moisture was removed. After sintering for 30 minutes at a temperature of 1250 to 1300°C in an atmosphere of ammonia decomposition gas, the metal coating was taken out of the furnace and cooled. After applying nickel plating to a thickness of 5 to 8 μm on the top, it is bonded to a metal material using a daughter brazing filler metal with copper 2 Kovar or iron-nickel alloy in a hydrogen reducing atmosphere at a temperature of 820°C for 1 hour and 10 minutes. A cordierite ceramic-metal bonded body was manufactured using the following methods. As a result of conducting characteristic tests on the ceramic-metal bonded specimen manufactured in this way, it was found that good airtightness was obtained, maintaining the amount of helium leakage below I x 10-@atm ml/sec. confirmed. Regarding the bonding strength between ceramic and metal materials, tensile test results show that the bonded surface of a ceramic-metal bonded body does not peel and the ceramic material itself breaks. It was confirmed that a bonding strength exceeding the above-mentioned bonding strength could be obtained. Example 2: Molybdenum powder (8%) and iron silicate (2%) powder were dispersed and deposited on the surface of a cordierite ceramic material in the same manner as in Example 1, and then placed in a weakly oxidizing reducing atmosphere. temperature 120
A metal coating was formed by sintering at 0 to 1300°C for 30 minutes, and after further cooling, hard brazing was performed to produce a ceramic-metal bonded body. According to the results of performing the same characteristic tests as in Example 1 on this specimen, it was confirmed that characteristics equivalent to those in Example 1 were obtained in terms of airtightness and bonding strength. In Example 1.2, it has been confirmed that good results in both airtightness and bonding strength can be obtained even in experiments using tungsten powder instead of molybdenum as the high melting point metal.

【発明の効果】【Effect of the invention】

Claims (1)

【特許請求の範囲】 1)コージェライトセラミックを対象に該セラミック材
の表面に高融点の金属被膜を形成する方法であって、高
融点金属であるモリブデンもしくはタングステンの粉末
に珪酸塩の粉末を添加した混合物を前記コージェライト
セラミック材の表面に分散付着させた後に、弱酸化性の
還元雰囲気とコージェライトセラミックの耐熱温度以下
の温度の条件で加熱して金属被膜を焼結形成することを
特徴とするセラミックへの金属被膜の形成方法。 2)特許請求の範囲第1項記載の金属被膜の形成方法に
おいて、珪酸塩が珪酸マンガンまたは珪酸鉄、ないしは
これらを主成分として含む珪酸塩であることを特徴とす
るセラミックへの金属被膜の形成方法。 3)特許請求の範囲第1項記載の金属被膜の形成方法に
おいて、珪酸塩の添加量が15〜40重量%であること
を特徴とするセラミックへの金属被膜の形成方法。 4)特許請求の範囲第1項記載の金属被膜の形成方法に
おいて、還元雰囲気が弱酸化性の水素雰囲気であること
を特徴とするセラミックへの金属被膜の形成方法。 5)特許請求の範囲第1項記載の金属被膜の形成方法に
おいて、焼結温度がコージェライトセラミックの耐熱温
度以下の1250〜1300℃であることを特徴とする
セラミックへの金属被膜の形成方法。
[Claims] 1) A method for forming a high melting point metal film on the surface of cordierite ceramic material, the method comprising adding silicate powder to molybdenum or tungsten powder, which is a high melting point metal. The mixture is dispersed and adhered to the surface of the cordierite ceramic material, and then heated in a weakly oxidizing reducing atmosphere and at a temperature below the heat resistance temperature of the cordierite ceramic material to sinter and form a metal coating. A method for forming metal coatings on ceramics. 2) In the method for forming a metal coating according to claim 1, the silicate is manganese silicate, iron silicate, or a silicate containing these as main components, forming a metal coating on a ceramic. Method. 3) A method for forming a metal coating on a ceramic according to claim 1, wherein the amount of silicate added is 15 to 40% by weight. 4) A method for forming a metal coating on a ceramic according to claim 1, wherein the reducing atmosphere is a weakly oxidizing hydrogen atmosphere. 5) A method for forming a metal coating on a ceramic according to claim 1, wherein the sintering temperature is 1250 to 1300°C, which is lower than the heat resistance temperature of cordierite ceramic.
JP19085786A 1986-08-14 1986-08-14 Formation of metal coating for ceramic Pending JPS6350382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19085786A JPS6350382A (en) 1986-08-14 1986-08-14 Formation of metal coating for ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19085786A JPS6350382A (en) 1986-08-14 1986-08-14 Formation of metal coating for ceramic

Publications (1)

Publication Number Publication Date
JPS6350382A true JPS6350382A (en) 1988-03-03

Family

ID=16264926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19085786A Pending JPS6350382A (en) 1986-08-14 1986-08-14 Formation of metal coating for ceramic

Country Status (1)

Country Link
JP (1) JPS6350382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263781A (en) * 1989-02-22 1990-10-26 L'air Liquide Coating of ceramic with metal and apparatus for performing method thereof
JPH02263782A (en) * 1989-02-22 1990-10-26 L'air Liquide Preparation of ceramic-metal multi-layered constituting body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263781A (en) * 1989-02-22 1990-10-26 L'air Liquide Coating of ceramic with metal and apparatus for performing method thereof
JPH02263782A (en) * 1989-02-22 1990-10-26 L'air Liquide Preparation of ceramic-metal multi-layered constituting body

Similar Documents

Publication Publication Date Title
US3620799A (en) Method for metallizing a ceramic body
JP4077888B2 (en) Ceramic circuit board
US2282106A (en) Ceramic-to-metal seal
US4409079A (en) Method of metallizing sintered ceramics
US3609856A (en) Brazing carbon bodies to other bodies of temperature resistant materials
US4163074A (en) Method for fast adhesion of silver to nitride type ceramics
JP3834351B2 (en) Ceramic circuit board
US4737416A (en) Formation of copper electrode on aluminum nitride
JPS5830759B2 (en) Screen printing paste and thick film conductive circuits
US2902756A (en) Method and material for metallizing ceramics
JPH0323512B2 (en)
JPS6350382A (en) Formation of metal coating for ceramic
US3189476A (en) Metallizing process for ceramics
JPH075408B2 (en) Ceramic metallization composition, metallization method and metallized product
JPS593077A (en) Method of bonding ceramic member and metal
JPH0223498B2 (en)
JPS61247672A (en) Method of joining metal particle to substrate and adhesive composition
JPH0532358B2 (en)
JPS5895673A (en) Method of bonding ceramic and metal with oxide solder
JPS62182182A (en) Aluminum nitride sintered body with metallized surface
JPH0450186A (en) Method for forming metallized layer on aluminum nitride substrate
US2838390A (en) Method of making metal-to-ceramic seals
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPS6272472A (en) Joining method for ceramics and metal or the like
Grant Norton The influence of contact angle, wettability, and reactivity on the development of indirect-bonded metallizations for aluminum nitride