JPS6350282B2 - - Google Patents

Info

Publication number
JPS6350282B2
JPS6350282B2 JP56177972A JP17797281A JPS6350282B2 JP S6350282 B2 JPS6350282 B2 JP S6350282B2 JP 56177972 A JP56177972 A JP 56177972A JP 17797281 A JP17797281 A JP 17797281A JP S6350282 B2 JPS6350282 B2 JP S6350282B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
gas
reforming
active metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56177972A
Other languages
Japanese (ja)
Other versions
JPS5879089A (en
Inventor
Kenji Tabata
Ikuo Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56177972A priority Critical patent/JPS5879089A/en
Publication of JPS5879089A publication Critical patent/JPS5879089A/en
Publication of JPS6350282B2 publication Critical patent/JPS6350282B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Description

【発明の詳細な説明】 本発明は炭化水素を水又は空気と混合しリフオ
ーミング触媒により水素及び炭酸ガスを主体とし
た無機ガスに改質する炭化水素燃料改質装置のリ
フオーミング触媒にかかわるものである。
[Detailed Description of the Invention] The present invention relates to a reforming catalyst for a hydrocarbon fuel reformer that mixes hydrocarbons with water or air and reformes them into inorganic gases mainly consisting of hydrogen and carbon dioxide using a reforming catalyst. .

従来、リフオーミング触媒の触媒担体として
は、アルミナ、シリカ、コーデイエライト、チタ
ニア等の無機耐熱材料をビーズ状、ペレツト状に
成型したものが用いられていた。しかしながら最
近、断面がハニカム又は格子状の如き多層の薄型
からなる角型又は円筒型に成型した一体成形体を
触媒担体として用いると、反応の空間速度を大
きくしても活性が落ちないこと、触媒層の圧力
損失が小さい結果、装置全体を小型化出来るこ
と、触媒の交換が容易になること等、優れた性
能を有することが明らかになつてきている。上記
のように優れた性能を有する一体成型体にニツケ
ル、コバルトといつたの触媒活性を有する金属を
担持し、リフオーミング反応を行つた所、反応の
初期活性は従来のビーズ状、ペレツト状の担体に
比較し、非常に高くなつた。しかしながら長時間
反応を継続していると、リフオーミング反応の副
反応であるカーボン状の物質が触媒坦体上のハニ
カム又は格子状からなるガス流路に沈着し、圧力
損失を増大させることが判明した。さらに継続し
て反応を行つていると終には、流路が閉塞してし
まい、ガスが全く流れなくなつてしまうという大
きな問題が発生した。
Conventionally, as catalyst carriers for reforming catalysts, inorganic heat-resistant materials such as alumina, silica, cordierite, and titania molded into beads or pellets have been used. However, recently, it has been discovered that when a rectangular or cylindrical integral molded body made of thin multi-layers with a honeycomb or lattice cross section is used as a catalyst carrier, the activity of the catalyst does not decrease even if the space velocity of the reaction is increased. It has become clear that as a result of the small pressure loss in the bed, it has excellent performance, such as the ability to downsize the entire device and the ease of replacing the catalyst. As mentioned above, when a metal with catalytic activity such as nickel or cobalt was supported on an integrally molded body with excellent performance and a reforming reaction was carried out, the initial activity of the reaction was lower than that of a conventional bead-shaped or pellet-shaped carrier. It has become very high compared to the previous year. However, it was found that when the reaction was continued for a long time, carbon-like substances, which are a side reaction of the reforming reaction, were deposited in the honeycomb or lattice-shaped gas flow path on the catalyst carrier, increasing pressure loss. . If the reaction was continued further, the flow path would eventually become clogged, causing a major problem in that the gas would no longer flow at all.

本発明は上記問題点を解決し、長期間安定した
反応を継続させる手段を提供するものである。即
ち、カーボンが蓄積し、リフオーミング反応の行
なわれなくなつた触媒を反応器から取り出し分析
した結果、発生したカーボンは、触媒床の前部、
即ち、反応ガス流入部分に集中していることが明
らかとなつた。一方で、ニツケル、コバルト等の
遷移金属原子は、リフオーミング反応に高い活性
をもつ反面、カーボン状物質の発生に対しても、
大きな促進効果を持つことは、公知の事実であ
る。上記二点を考慮し、一体成型体である触媒床
前半部に、ニツケル等の活性金属種を全く担持さ
せずに後半部にのみ、活性金属種を担持させたも
のを調整しリフオーミング触媒とし反応を行つ
た。その結果、触媒床全体に活性金属種を担持し
た触媒に比較し、初期活性でこそ、若干低下した
が、従来の触媒床全体に活性金属を担持させた触
媒において活性が半減する反応時間においても、
本発明による後半部にのみ活性金属種を担持させ
た触媒では、全く活性の低下が見受けられなかつ
た。さらに従来リフオーミング反応の活性が全く
なくなつてしまう反応時間においてすら、本発明
による触媒では、活性の低下が全く見受けられな
かつた。さらに反応後の触媒を取り出して、触媒
上に蓄積したカーボン状物質を分析した結果、カ
ーボン量は非常に少なかつた。
The present invention solves the above-mentioned problems and provides a means for continuing a stable reaction for a long period of time. That is, as a result of taking out the catalyst from the reactor and analyzing the catalyst where carbon has accumulated and the reforming reaction no longer takes place, the generated carbon is found to be in the front part of the catalyst bed,
That is, it became clear that the reaction gas was concentrated in the inflow portion. On the other hand, although transition metal atoms such as nickel and cobalt have high activity in reforming reactions, they also have a high resistance to the generation of carbon-like substances.
It is a well-known fact that it has a great promoting effect. Considering the above two points, we prepared a product in which the first half of the catalyst bed, which is an integrally molded body, does not support any active metal species such as nickel, and only the second half supports active metal species, and uses it as a reforming catalyst for reaction. I went there. As a result, compared to a catalyst with an active metal species supported on the entire catalyst bed, the initial activity was slightly lower, but even at the reaction time when the activity is halved in a conventional catalyst with an active metal supported on the entire catalyst bed. ,
In the catalyst according to the present invention in which active metal species were supported only in the latter half, no decrease in activity was observed at all. Further, even at a reaction time when conventional reforming reaction activity completely disappears, with the catalyst of the present invention, no decrease in activity was observed at all. Furthermore, the catalyst was taken out after the reaction and the carbon-like substances accumulated on the catalyst were analyzed, and the amount of carbon was found to be extremely small.

炭化水素燃料改質装置において、リフオーミン
グ触媒の担体として断面が、ハニカム又は、格子
状の如き多層の薄壁からなる角型又は、円筒型の
一体成型体を用い、さらに触媒床に活性金属の担
持分布を施したリフオーミング触媒は、従来例が
ない。
In a hydrocarbon fuel reformer, a rectangular or cylindrical integrally molded body having a honeycomb or lattice-like multilayer thin wall cross section is used as a carrier for a reforming catalyst, and an active metal is further supported on the catalyst bed. There is no prior example of a distributed reforming catalyst.

以下本発明の一実施例に基づき図面とともに説
明する。第1図は本発明による活性金属種の濃度
分布をつけたリフオーミング触媒を使用した炭化
水素燃料改質装置の一実施例である。第2図a,
b,cは、本発明によりリフオーミング触媒に活
性金属種の濃度分布をつけた一実施例である。第
3図は、本発明による活性金属種の濃度分布をつ
けたリフオーミング触媒を用いて反応を行つた実
験結果である。改質器1は三重管になつており、
一番外周部の通路2には天然ガス、メタン、プロ
パン、あるいは予めヒータ(図示せず)により加
熱されガス状となつた灯油軽油等が供給される炭
化水素ガス供給管3が繋がれている。さらに内側
の通路4には水あるいは空気の供給される水、空
気供給管5が繋がれている。なおいづれの通路
2,4にも石英ウール等の無機耐熱性繊維6がつ
まつている。通路4の内側には無機耐熱質セラミ
ツクからなる反応管7がある。反応管7にはリフ
オーミング触媒8の加熱用ヒータ9が埋設されて
いる。リフオーミング触媒8は第2図に示したよ
うに無機耐熱材料であるγ―アルミナにより断面
が格子状の一体成形体に構成されている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a hydrocarbon fuel reforming apparatus using a reforming catalyst with a concentration distribution of active metal species according to the present invention. Figure 2a,
Figures b and c are examples in which a reforming catalyst is given a concentration distribution of active metal species according to the present invention. FIG. 3 shows the results of an experiment conducted using a reforming catalyst with a concentration distribution of active metal species according to the present invention. The reformer 1 is a triple-pipe structure,
A hydrocarbon gas supply pipe 3 is connected to the outermost passage 2 to supply natural gas, methane, propane, kerosene, light oil, etc. that have been heated in advance by a heater (not shown) and become gaseous. . Furthermore, a water/air supply pipe 5 through which water or air is supplied is connected to the inner passage 4. Furthermore, each of the passages 2 and 4 is also filled with inorganic heat-resistant fibers 6 such as quartz wool. Inside the passageway 4 is a reaction tube 7 made of inorganic heat-resistant ceramic. A heater 9 for heating the reforming catalyst 8 is embedded in the reaction tube 7 . As shown in FIG. 2, the reforming catalyst 8 is made of γ-alumina, which is an inorganic heat-resistant material, and is formed into an integrally molded body having a lattice-like cross section.

さらに活性金属であるニツケルを第2図に示し
たように反応ガス入口側には担持せず、ガス出口
側にのみ担持した。担持方法としては、予めニツ
ケルの担持を欲しない部分に、有機高分子液を塗
布、乾燥し触媒担体を被覆した後、硝酸ニツケル
溶液に含浸し、然る後乾燥、焼成し触媒とした。
Furthermore, as shown in FIG. 2, nickel, which is an active metal, was not supported on the reaction gas inlet side, but only on the gas outlet side. As for the supporting method, an organic polymer liquid was applied in advance to areas where nickel was not desired to be supported, dried to cover the catalyst carrier, and then impregnated with a nickel nitrate solution, then dried and calcined to obtain a catalyst.

反応管7の後部には改質の結果生成した無機ガ
スを中心とするガスを送る送気管10が繋がれて
いる。送気管10は冷却管11さらに冷却の結果
コンデンスした液とガスを分離する気液分離器1
2と繋がれている。分離したガスはガス溜め(図
示せず)に蓄えられる。改質器1の前部は押え板
13で覆われている。押え板13はボルト14に
より、取り外し可能となつており、劣化したリフ
オーミング触媒8を交換出来るようになつてい
る。
An air supply pipe 10 is connected to the rear part of the reaction tube 7 to send gas mainly composed of inorganic gas produced as a result of reforming. The air supply pipe 10 further includes a cooling pipe 11 and a gas-liquid separator 1 that separates liquid and gas condensed as a result of cooling.
It is connected to 2. The separated gas is stored in a gas reservoir (not shown). The front part of the reformer 1 is covered with a press plate 13. The holding plate 13 is removable with bolts 14, so that a deteriorated reforming catalyst 8 can be replaced.

次に本装置の作用について述べる。 Next, the function of this device will be described.

予め所定の温度(700〜900℃)に加熱用ヒータ
9で反応管7を加熱した後炭化水素ガスの供給を
炭化水素ガス供給管3より開始する。供給された
炭化水素ガスは加熱用ヒータ9により予熱され
る。一方水あるいは空気は供給管5を通つて改質
器1内の通路4に供給された後加熱用ヒータ9に
より予熱される。上記のように予熱された炭化水
素ガスと水蒸気、空気は石英ウール等の無機耐熱
性繊維6の中を通過する間に十分混合された後リ
フオーミング触媒8に供給され改質される。炭化
水素ガスと水、空気は改質された結果、水素、二
酸化炭素を中心とする無機ガスに変わる。生成さ
れたガスは送気管10を通つて冷却管11に送ら
れる。ここで過剰の水はコンデンスし気液分離器
12により生成ガスと分離される。分離された生
成ガスはガス溜め(図示せず)に蓄えられ必要時
使用される。上記作用によりリフオーミング反応
を行うわけであるが、第3図に本発明による所の
リフオーミング触媒8を用いて反応を行つた結果
を示す。反応条件は供給原料:灯油、反応温度:
800℃,H2O/C:1.2,L,H.S.V.:1.5である。
第3図の横軸は反応時間、縦軸はガス化率であ
る。
After the reaction tube 7 is heated in advance to a predetermined temperature (700 to 900° C.) by the heating heater 9, the supply of hydrocarbon gas is started from the hydrocarbon gas supply tube 3. The supplied hydrocarbon gas is preheated by the heater 9. On the other hand, water or air is supplied to the passage 4 in the reformer 1 through the supply pipe 5 and then preheated by the heater 9. The preheated hydrocarbon gas, steam, and air as described above are thoroughly mixed while passing through inorganic heat-resistant fibers 6 such as quartz wool, and then supplied to reforming catalyst 8 and reformed. Hydrocarbon gas, water, and air are reformed and converted into inorganic gases, mainly hydrogen and carbon dioxide. The generated gas is sent to the cooling pipe 11 through the air pipe 10. Here, excess water is condensed and separated from the generated gas by a gas-liquid separator 12. The separated generated gas is stored in a gas reservoir (not shown) and used when necessary. The reforming reaction is performed by the above action, and FIG. 3 shows the results of the reaction using the reforming catalyst 8 according to the present invention. Reaction conditions are feedstock: kerosene, reaction temperature:
800°C, H 2 O/C: 1.2, L, HSV: 1.5.
The horizontal axis in FIG. 3 is the reaction time, and the vertical axis is the gasification rate.

図中Aは本発明により、活性金属ニツケルを触
媒床の後部にのみ担持した触媒を用いて反応を行
つた場合、図中Bは触媒床全体にニツケルを担持
した触媒を用いて反応を行つた場合である。第3
図から明らかなように、本発明になる、A触媒を
用いた場合、初期活性でこそ、若干落ちるが、カ
ーボン状物質の蓄積も少く、長時間安定して反応
を継続することが出来た。
In the figure, A shows the reaction according to the present invention using a catalyst in which the active metal nickel is supported only on the rear part of the catalyst bed, and B in the figure shows the case in which the reaction is carried out using a catalyst in which nickel is supported throughout the catalyst bed. This is the case. Third
As is clear from the figure, when catalyst A of the present invention was used, although the initial activity was slightly lower, the accumulation of carbon-like substances was also small and the reaction could be continued stably for a long time.

以上のように本発明による一体成型体触媒に活
性金属種を担持させる場合、活性金属の濃度分布
を施すことにより、リフオーミング反応の副反応
であるカーボン状物質の発生が少く、長期間、安
定して反応を継続することが出来た。
As described above, when an active metal species is supported on the integrally molded catalyst of the present invention, by providing a concentration distribution of the active metal, the generation of carbon-like substances, which is a side reaction of the reforming reaction, is reduced, and the catalyst is stable for a long period of time. It was possible to continue the reaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による炭化水素燃料
改質装置の断面図、第2図a,b,cは本発明の
活性金属の濃度分布を担体に施したリフオーミン
グ触媒の一実施例を示す正面図、断側面図、特性
図、第3図は本発明によるリフオーミング触媒を
用いて反応を行つた場合のガス化率の経時変化を
示した特性図である。 1…改質器、7…反応管、8…リフオーミング
触媒。
Fig. 1 is a cross-sectional view of a hydrocarbon fuel reformer according to an embodiment of the present invention, and Fig. 2 a, b, and c show an embodiment of a reforming catalyst in which the active metal concentration distribution of the present invention is applied to a carrier. The front view, cross-sectional side view, and characteristic diagram shown in FIG. 3 are characteristic diagrams showing changes over time in the gasification rate when a reaction is carried out using the reforming catalyst according to the present invention. 1... Reformer, 7... Reaction tube, 8... Reforming catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素ガス供給管、水あるいは空気用供給
管、加熱用ヒータ及びリフオーミング触媒で構成
される改質器のリフオーミング触媒として、アル
ミナ、コーデイエライト等の耐熱性無機質からな
り、断面がハニカム又は格子状多層の薄壁からな
る筒型の一体成型体のガス入口側を除くガス流路
にニツケルもしくはコバルトの触媒活性金属を坦
持させた炭化水素燃料改質装置。
1 The reforming catalyst of the reformer, which is composed of a hydrocarbon gas supply pipe, a water or air supply pipe, a heating heater, and a reforming catalyst, is made of a heat-resistant inorganic material such as alumina or cordierite, and has a honeycomb or lattice cross section. A hydrocarbon fuel reformer in which a catalytically active metal such as nickel or cobalt is supported in the gas flow path except for the gas inlet side of a cylindrical integral molded body consisting of multi-layered thin walls.
JP56177972A 1981-11-05 1981-11-05 Reforming apparatus of hydrocarbon fuel Granted JPS5879089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56177972A JPS5879089A (en) 1981-11-05 1981-11-05 Reforming apparatus of hydrocarbon fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56177972A JPS5879089A (en) 1981-11-05 1981-11-05 Reforming apparatus of hydrocarbon fuel

Publications (2)

Publication Number Publication Date
JPS5879089A JPS5879089A (en) 1983-05-12
JPS6350282B2 true JPS6350282B2 (en) 1988-10-07

Family

ID=16040293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56177972A Granted JPS5879089A (en) 1981-11-05 1981-11-05 Reforming apparatus of hydrocarbon fuel

Country Status (1)

Country Link
JP (1) JPS5879089A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035072B1 (en) * 1999-03-05 2004-05-12 Haldor Topsoe A/S Process for autothermal catalytic stream reforming
JP2016147226A (en) * 2015-02-12 2016-08-18 株式会社Screenホールディングス Catalyst structure, and production method and production apparatus of catalyst structure

Also Published As

Publication number Publication date
JPS5879089A (en) 1983-05-12

Similar Documents

Publication Publication Date Title
US11253831B2 (en) Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
US6254807B1 (en) Control of H2 and CO produced in partial oxidation process
JP4714680B2 (en) Pressure swing reforming for fuel cell systems
US6315977B1 (en) Process and apparatus for producing hydrogen by thermocatalytic decomposition of hydrocarbons
US6616909B1 (en) Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
US7488360B2 (en) Catalysts, reactors and methods of producing hydrogen via the water-gas shift reaction
JP4643027B2 (en) Compact and lightweight self-heating reformer
US6923944B2 (en) Membrane reactor for gas extraction
KR20020092373A (en) Method and apparatus for reformation of internal heating type by oxidation
Önsan et al. Reactor design for fuel processing
CA2792173C (en) Cylindrical steam reformer
US7122170B2 (en) Catalysts for SPOC™ enhanced synthesis gas production
US3962411A (en) Method for catalytically cracking a hydrocarbon fuel
Twigg et al. Preparation and properties of ceramic foam catalyst supports
RU2292237C1 (en) Catalyst, method for preparation thereof, and synthetic gas production process
US10472235B2 (en) Synthesis gas manufacturing method and synthesis gas manufacturing apparatus
JPH0640703A (en) Steam reforming reactor
EP1930293A1 (en) Process and apparatus for the production of hydrogen gas
JPS5849602A (en) Steam reformer
US20020187089A1 (en) Membrane reactor for gas extraction
JPS6350282B2 (en)
RU2286308C2 (en) Radial type device for production of the synthesis gas
JPS58202050A (en) Catalyst body for reforming hydrocarbon
JPS6351962B2 (en)
RU2248932C1 (en) Catalyst (options), method for preparation thereof (options) and synthesis gas generation method (option)