JPS58202050A - Catalyst body for reforming hydrocarbon - Google Patents

Catalyst body for reforming hydrocarbon

Info

Publication number
JPS58202050A
JPS58202050A JP57085819A JP8581982A JPS58202050A JP S58202050 A JPS58202050 A JP S58202050A JP 57085819 A JP57085819 A JP 57085819A JP 8581982 A JP8581982 A JP 8581982A JP S58202050 A JPS58202050 A JP S58202050A
Authority
JP
Japan
Prior art keywords
catalyst body
carrier
catalyst
gas
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57085819A
Other languages
Japanese (ja)
Inventor
Kenji Tabata
研二 田畑
Ikuo Matsumoto
松本 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57085819A priority Critical patent/JPS58202050A/en
Publication of JPS58202050A publication Critical patent/JPS58202050A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst body for reforming hydrocarbon prevented from the clogging of the passage of the gas therein, by supporting a predetermined metal catalyst on a part of a carrier obtained by molding a specific basic inorg. material into a honeycomb or a grid shape. CONSTITUTION:Carrier 1 is integrally molded from a multi-layered thin wall with a honeycomb or a grid shaped cross sectional area by using basic inorg. material such as calcium aluminate, potassium aluminate or magnesium aluminate. Except the side of the gas inflow port 2 of this carrier 1, a metal catalyst such as nickel, cobalt or a platinum group metal is supported thereon from the central part to the the outflow port side 3 thereof and the supported carrier is baked to form a catalyst body 4 for reforming hydrocarbon. When this catalyst body is used, the generation of a carbonaceous substance due to side reaction is reduced and, therefore, reforming reaction stable over a long time can be carried out without clogging the passage for the gas in the catalyst body.

Description

【発明の詳細な説明】 本発明は炭化水素を水又は空気と混合してリフォーミン
グ反応により水素及び炭酸ガスを主とした無機ガスに改
質する炭化水素改質用の触媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for reforming hydrocarbons, which mixes hydrocarbons with water or air and reforms them into inorganic gases mainly consisting of hydrogen and carbon dioxide through a reforming reaction. .

従来この種の触媒体の担体としては、アルミナ。Conventionally, alumina has been used as a support for this type of catalyst.

シリカ、コーディエライト、チタニア等の無機質耐熱性
材料をビーズ状、ベレット状に成型したものが用いられ
ていた。この担体の形状を断面がハニカム状又は格子状
の如き多層の薄壁からなる角形又は円筒形に成型した一
体成型体とすることにより、 ■ 担体に担持された金属触媒と炭化水素が反応する空
間速度を大きくしても触媒の活性低下が少ない。
Inorganic heat-resistant materials such as silica, cordierite, and titania molded into beads or pellets were used. By making this support into a rectangular or cylindrical integrally molded body consisting of multi-layered thin walls with a honeycomb-like or lattice-like cross section, (1) a space where the metal catalyst supported on the support and the hydrocarbon react; Even if the speed is increased, there is little decrease in catalyst activity.

■ 触媒層の圧力損失が小さいため、装置全体を小型化
することができる。
■ Since the pressure loss in the catalyst layer is small, the entire device can be made smaller.

■ 触媒体の交換が容易であるなどの効果が得られる。■ Effects such as easy replacement of the catalyst body can be obtained.

このような優れた特長を有する担体にニッケル。Nickel is a carrier with such excellent features.

コバルト、白金族等の金属を触媒として担持し、す7オ
一ミング反応を行うと、反応の初期はビ〜グ状又はベレ
ット状の担体よシも非常に活性度が高いが、長時間リフ
ォーミング反応を継続していると、副反応によりカーボ
ン状の物質が触媒体上のハニカム状又は格子状からなる
ガス流路に付着して圧力損失を増大させることが判明し
た。
When carrying out a 7-oming reaction using cobalt, platinum group metals, etc. as catalysts, the activity is very high in the early stage of the reaction, even on a Vig-like or pellet-like support; It has been found that when the forming reaction is continued, a carbon-like substance adheres to the honeycomb-shaped or lattice-shaped gas flow path on the catalyst body due to a side reaction, increasing pressure loss.

そして更にリフォーミング反応を継続させていると、ガ
ス流路が閉塞され、最終的にはガスが全く流れなくなる
という欠点があった。
Further, if the reforming reaction is allowed to continue, the gas flow path becomes clogged, resulting in a drawback that the gas no longer flows at all.

本発明は担体をカルシウムアルミネート、カリウムアル
ミネート、マグネシウムアルミネート等の塩基性無機質
材を断面がハニカム状又は格子状の如き多層の薄壁で一
体に成型し、この担体の一部にニッケル、コバルト、白
金族等の金属触媒を担持して法化水素改質用の触媒体を
構成することにより、上記従来の欠点を解消するもので
ある。
In the present invention, the carrier is formed by integrally molding a basic inorganic material such as calcium aluminate, potassium aluminate, magnesium aluminate, etc. into a multilayered thin wall with a honeycomb-like or lattice-like cross section, and a part of the carrier is made of nickel, nickel, etc. By supporting a metal catalyst such as cobalt or a platinum group metal catalyst to form a catalyst body for reforming hydrochloric acid, the above-mentioned conventional drawbacks can be overcome.

以下本発明の一実施例を第1図から第3図にもとづいて
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図において1は塩基性無機質材のカルシウムアルミ
ネートを断面が格子状の如き多層の薄壁で一体に成型さ
れた担体で、同図Cに示す如くガスの流入口2側には触
媒を担持せず、中央から流出口3側にかけてニッケルを
触媒として10重量パーセント担持している。このニッ
ケルの担持方法として、ガスの流入口2側の担体1に有
機質の高分子液をコートして乾燥し、その後硝酸ニッケ
ル溶液に担体1を含浸し、しかる後に乾燥して焼成する
と触媒体4が構成される。
In Fig. 1, reference numeral 1 denotes a carrier made of calcium aluminate, which is a basic inorganic material, integrally formed with multi-layered thin walls with a grid-like cross section.As shown in Fig. 1C, a catalyst is provided on the gas inlet 2 side. It is not supported, but 10% by weight of nickel is supported as a catalyst from the center to the outlet 3 side. As a method for supporting this nickel, the carrier 1 on the side of the gas inlet 2 is coated with an organic polymer liquid and dried, then the carrier 1 is impregnated with a nickel nitrate solution, and then dried and calcined. is configured.

第2図は第1図に示す触媒体4を用いた炭化水素燃料改
質装置を示すものである。炭化水素燃料改質装置の本体
6は内側から反応管6.中管7゜外管8の三重管で構成
され、外管8と中管7との間の通路ム9には、天然ガス
、メタンガス、プロパンガスあるいは、予めヒータ(図
示せず)によって加熱されガヌ状となった灯油、軽油等
が供給される炭化水素ガス供給管10が接続されている
FIG. 2 shows a hydrocarbon fuel reformer using the catalyst body 4 shown in FIG. The main body 6 of the hydrocarbon fuel reformer is connected to the reaction tube 6 from the inside. It is composed of a triple tube consisting of a middle tube 7 and an outer tube 8, and a passageway 9 between the outer tube 8 and the middle tube 7 is filled with natural gas, methane gas, propane gas, or gas heated in advance by a heater (not shown). A hydrocarbon gas supply pipe 10 to which kerosene, light oil, etc. in the form of gunk is supplied is connected.

11は水又は空気等のガス化剤を供給するガス北側供給
管で、このガス北側供給管11は反応管6と中管7との
間の通路B12に接続されている。
Reference numeral 11 denotes a gas north supply pipe for supplying a gasification agent such as water or air, and this gas north supply pipe 11 is connected to a passage B12 between the reaction tube 6 and the middle tube 7.

13は通路ム9及び通路B12に充填された石英ウール
等の耐熱性無機質繊維である。14は反応管e内に設け
られた触媒体4を加熱するヒータである。15は炭化水
素を改質の結果生成した水素及び炭酸ガスの無機ガスを
送る送気管で反応管6の後方に接続されている。この送
気管15の外周の一部に冷却管16が設けられ、更に冷
却の結果コンデンスした液と無機ガスとを分離する気、
液分離器17が接続されている。18は本体6の前部を
覆う押え板で、この押え板18はボルト19により取り
外し可能に構成されておシ、劣化した触媒体4を交換で
きるようになっている。
Reference numeral 13 denotes a heat-resistant inorganic fiber such as quartz wool filled in the passageway 9 and the passageway B12. 14 is a heater that heats the catalyst body 4 provided in the reaction tube e. Reference numeral 15 denotes an air supply pipe for sending inorganic gases such as hydrogen and carbon dioxide produced as a result of reforming hydrocarbons, and is connected to the rear of the reaction tube 6. A cooling pipe 16 is provided on a part of the outer periphery of this air supply pipe 15, and a cooling pipe 16 is provided to separate the inorganic gas from the liquid condensed as a result of cooling.
A liquid separator 17 is connected. Reference numeral 18 denotes a holding plate that covers the front part of the main body 6, and this holding plate 18 is configured to be removable with bolts 19, so that a deteriorated catalyst body 4 can be replaced.

次に本実施例の触媒体4を炭化水素燃料改質装置に用い
て、その作用及び効果について述べる。
Next, the catalyst body 4 of this example will be used in a hydrocarbon fuel reformer, and its functions and effects will be described.

脣ず反応管6をヒータ14で予め700〜900℃の炭
化水素の反応温度に加熱し、法化水素供給管1oより通
路ム9内へ炭化水素を供給する。通路ム9内に供給され
た炭化水素はヒータ14により熱分解を開始する温度以
下に予熱される。
The reaction tube 6 is heated in advance to a hydrocarbon reaction temperature of 700 to 900 DEG C. by the heater 14, and the hydrocarbon is supplied into the passageway 9 from the legal hydrogen supply tube 1o. The hydrocarbons supplied into the passageway 9 are preheated by the heater 14 to a temperature below which thermal decomposition begins.

一方、ガス北側供給管11から通路B12内に供おされ
た水、空気は、ヒータ14で予熱されて水蒸気となる。
On the other hand, water and air supplied from the gas north supply pipe 11 into the passage B12 are preheated by the heater 14 and become water vapor.

このようにヒータ14で予熱された炭化水素と水蒸気又
は空気は、耐熱性無機質繊維13を通過する間に十分に
混合される。十分に混合された炭化水素と水蒸気又は空
気は、触媒体4に供給され、リフォーミング反応により
改質される。炭化水素が改質された結果、水素、二酸化
炭素を主とする無機ガスに変性し、送気管16を通り冷
却管16で冷却される。この冷却管16で無機ガス中に
含まれる過剰の水分はコンデンヌされ、気液分離器17
によって生成ガスと水とに分離される。分離された生成
ガスは、ガス溜(図示せず)に貯えられ、必要に応じて
使用される。
The hydrocarbon and water vapor or air preheated by the heater 14 in this manner are sufficiently mixed while passing through the heat-resistant inorganic fibers 13. The sufficiently mixed hydrocarbon and steam or air are supplied to the catalyst body 4 and reformed by a reforming reaction. As a result of the reforming of the hydrocarbons, they are converted into inorganic gases mainly consisting of hydrogen and carbon dioxide, which pass through the air pipe 16 and are cooled by the cooling pipe 16 . Excess moisture contained in the inorganic gas is condensed in the cooling pipe 16, and the gas-liquid separator 17
is separated into produced gas and water. The separated product gas is stored in a gas reservoir (not shown) and used as needed.

第3図は本実施例の触媒体4を炭化水素燃料改質装置に
用いた時のりフォーミンク反応を示す特性図である。
FIG. 3 is a characteristic diagram showing the foaming reaction when the catalyst body 4 of this example is used in a hydrocarbon fuel reformer.

反応条件は、炭化水素として灯油を気化し、反応湿度を
8oo℃、ガヌ化剤H20/Cを1・2゜L、H,S、
V (炭化水素の処理量/触媒の容積)を16とし、縦
軸にガヌ化率、横軸に反応時間を示す。図中ムは本実施
例のカルシウムアルミネートを、断面を格子状に一体成
型した担体1のガス流出口3側にニッケル金属を担持し
た触媒体4であシ、Bは活性アルミナを同じく断面を格
子状に一体成型したものを担体とし、この担体全体にニ
ッケル金属を担持した触媒体を用いてリフォーミング反
応を行ったもの゛である。
The reaction conditions were as follows: kerosene was vaporized as a hydrocarbon, the reaction humidity was 80°C, the Ganuizing agent H20/C was 1.2°L, H, S,
V (processing amount of hydrocarbons/volume of catalyst) is set to 16, the vertical axis shows the Ganu conversion rate, and the horizontal axis shows the reaction time. In the figure, M is a catalyst body 4 in which nickel metal is supported on the gas outlet 3 side of a carrier 1 which is made by integrally molding the calcium aluminate of this example with a cross section in a lattice shape, and B is a catalyst body 4 of activated alumina with the same cross section. A reforming reaction was carried out using a carrier formed integrally in the form of a lattice, and a catalyst in which nickel metal was supported on the entire carrier.

第3図から明らかな如〈従来の触媒体はリフォーミング
反応時間の経過とともに触媒の活性度が低下するが、本
実施例の触媒体は、ガヌの流出口3側にのみニッケル金
属を担持したことにより、副反応によ1)生じるカーボ
ン状物質が少ないため、ガス流路にカーボン状物質の蓄
積が少なく、長時間にわたり安定したリフォーミング反
応を行うことができる。
As is clear from FIG. 3, the activity of the conventional catalyst decreases with the passage of reforming reaction time, but the catalyst of this example supports nickel metal only on the outlet 3 side of the Ganu. As a result, 1) less carbon-like substances are generated due to side reactions, so less carbon-like substances accumulate in the gas flow path, and a stable reforming reaction can be performed over a long period of time.

以上の説明から明らかなように本発明の法化水素改質用
の触媒体は、担体をカルシウムアルミネート等の塩基性
無機質材で断面をハニカム状又は格子状に薄壁で一体に
構成し、この担体のガス流出口側にニッケル、コバルト
、白金族等の金属触媒を担持して触媒体を構成したこと
により、例えばこの触媒体を炭化水素燃料改質装置に用
いると副反応によるカーボン状物質の発生が少ないため
、触媒体内のガス流路をカーボン状物質で塞ぐことなく
、長時間にわたって安定したリフォーミング反応を行う
ことができるという効果を有する。
As is clear from the above description, the catalyst body for legal hydrogen reforming of the present invention has a carrier integrally formed with a basic inorganic material such as calcium aluminate with a thin wall having a honeycomb-like or lattice-like cross section, By supporting metal catalysts such as nickel, cobalt, and platinum group metals on the gas outlet side of this carrier to form a catalyst body, for example, when this catalyst body is used in a hydrocarbon fuel reformer, carbon-like substances are generated due to side reactions. Since the generation of is small, the reforming reaction can be carried out stably over a long period of time without clogging the gas flow path in the catalyst body with carbon-like substances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の一実施例を示す触媒体の正面図、同
図すは同側断面図、同図Cは同す図の触媒金属の分布状
態及び濃度を示す図、第2図は同第1図の触媒体を用い
た炭化水素燃料改質装置の側断面図、第3図は同第1図
の触媒体のリフォーミング反応を示す特性図である。 1・・・・・・担体、4・・・・・・触媒体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 1虎・晴間(h) 286−
FIG. 1a is a front view of a catalyst body showing an embodiment of the present invention, FIG. 1 is a sectional view of the same side, FIG. 1 is a side sectional view of a hydrocarbon fuel reformer using the catalyst shown in FIG. 1, and FIG. 3 is a characteristic diagram showing the reforming reaction of the catalyst shown in FIG. 1...Carrier, 4...Catalyst body. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 1 Tora Haruma (h) 286-

Claims (1)

【特許請求の範囲】[Claims] 担体をカルシウムアルミネート、カリウムアルミネート
、マグネシウムアルミネート等の塩基性無機質材で断面
をハニカム状又は格子状の如き多層の薄壁で一体に成型
し、この担体の一部にニッケル、コバルト、白金族等の
金属触媒を担持して構成した炭化水素改質用の触媒体。
The carrier is made of a basic inorganic material such as calcium aluminate, potassium aluminate, magnesium aluminate, etc., and is integrally molded with a multilayer thin wall with a honeycomb-like or lattice-like cross section. A catalyst body for hydrocarbon reforming that supports a metal catalyst such as a group of metals.
JP57085819A 1982-05-20 1982-05-20 Catalyst body for reforming hydrocarbon Pending JPS58202050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57085819A JPS58202050A (en) 1982-05-20 1982-05-20 Catalyst body for reforming hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57085819A JPS58202050A (en) 1982-05-20 1982-05-20 Catalyst body for reforming hydrocarbon

Publications (1)

Publication Number Publication Date
JPS58202050A true JPS58202050A (en) 1983-11-25

Family

ID=13869459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57085819A Pending JPS58202050A (en) 1982-05-20 1982-05-20 Catalyst body for reforming hydrocarbon

Country Status (1)

Country Link
JP (1) JPS58202050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212229A (en) * 1984-04-09 1985-10-24 Toyota Central Res & Dev Lab Inc Catalyst for partial oxidation of hydrocarbon
WO1997037766A1 (en) * 1996-04-08 1997-10-16 Catalysts & Chemicals Industries Co., Ltd. Hydrodemetalation catalyst of hydrocarbon oil and hydrodemetalation method for hydrocarbon oil using the catalyst
WO2017094640A1 (en) * 2015-11-30 2017-06-08 住友化学株式会社 Honeycomb filter intermediate, honeycomb filter, method for producing honeycomb filter intermediate, and method for producing honeycomb filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212229A (en) * 1984-04-09 1985-10-24 Toyota Central Res & Dev Lab Inc Catalyst for partial oxidation of hydrocarbon
JPH0510132B2 (en) * 1984-04-09 1993-02-08 Toyoda Chuo Kenkyusho Kk
WO1997037766A1 (en) * 1996-04-08 1997-10-16 Catalysts & Chemicals Industries Co., Ltd. Hydrodemetalation catalyst of hydrocarbon oil and hydrodemetalation method for hydrocarbon oil using the catalyst
WO2017094640A1 (en) * 2015-11-30 2017-06-08 住友化学株式会社 Honeycomb filter intermediate, honeycomb filter, method for producing honeycomb filter intermediate, and method for producing honeycomb filter

Similar Documents

Publication Publication Date Title
US11305250B2 (en) Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
US6180081B1 (en) Reactor unit for a catalytic chemical reaction, especially for a catalyzing methanol reformer
JPS6117401A (en) Method and device for converting steam by using coal or hydrocarbon
JP2010525120A (en) Gasification apparatus and method for producing synthesis gas from gasifiable raw materials
JP2001504141A (en) Fuel gas desulfurization method and apparatus
KR20130016128A (en) Catalytic filter system
US6923944B2 (en) Membrane reactor for gas extraction
US4378336A (en) Monolith reactor
Twigg et al. Preparation and properties of ceramic foam catalyst supports
JPH0640703A (en) Steam reforming reactor
JPS58202050A (en) Catalyst body for reforming hydrocarbon
US7267804B2 (en) Membrane reactor for gas extraction
JPS5849602A (en) Steam reformer
RU2286308C2 (en) Radial type device for production of the synthesis gas
US7618477B2 (en) Plane structure formed from a matrix and phase change material usable for treating gases
JPS6351962B2 (en)
JP4301362B2 (en) Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor
JPS6350282B2 (en)
JP3051564B2 (en) Steam reforming reactor
JP4278984B2 (en) Membrane reactor for gas extraction
US20040136883A1 (en) Membrane reactor for gas extraction
JPS63319042A (en) Apparatus for contact of gas with solid particle
JP2000128505A (en) Hydrogen producing device
JP5842540B2 (en) Method and apparatus for producing methane from CO2 and / or CO
JP3540206B2 (en) Carbon dioxide fixation device