JPS634571B2 - - Google Patents

Info

Publication number
JPS634571B2
JPS634571B2 JP55139252A JP13925280A JPS634571B2 JP S634571 B2 JPS634571 B2 JP S634571B2 JP 55139252 A JP55139252 A JP 55139252A JP 13925280 A JP13925280 A JP 13925280A JP S634571 B2 JPS634571 B2 JP S634571B2
Authority
JP
Japan
Prior art keywords
film
protrusions
polyester
density
sorbitan ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55139252A
Other languages
Japanese (ja)
Other versions
JPS5764516A (en
Inventor
Hideo Kato
Atsushi Yamamoto
Takao Nakajo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP55139252A priority Critical patent/JPS5764516A/en
Publication of JPS5764516A publication Critical patent/JPS5764516A/en
Publication of JPS634571B2 publication Critical patent/JPS634571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は走行性の優れたポリエステルフイルム
に関する。ポリエチレンテレフタレート、ポリエ
チレン―2,6―ナフタレンジカルボキシレート
等の熱可塑性芳香族ポリエステルは、磁気テー
プ、電気絶縁材料、コンデンサーなどの用途に使
用されている。これらの用途ではポリエステルフ
イルムに種々な加工が施されるものであるから、
加工に際してのフイルムの滑り性が要求される。
また磁気テープでは最終製品としてもテープに走
行性、滑り性が重要な品質の一つとなる。そして
フイルムに要求される易滑性としては滑り摩擦抵
抗が低いこと、長時間の走行によつてもフイルム
表面の摩耗が少ないこと(換言すればフイルムの
削れ抵抗が大きいこと)が品質上の要求特性とな
る。 ポリエステルフイルムの滑り性は、ポリエステ
ルに水和硅酸アルミニウム、シリカ、炭酸カルシ
ウムなどの不活性な無機質微粒子を添加すること
によつて改良できることが知られている。そし
て、ポリエステルに無機質微粒子や不溶性の触媒
残渣が存在すると、これらの粒子がフイルムに成
形された際にその表面に微細な突起を形成させる
ことが知られている。更に、このフイルム表面の
微細な突起はフイルムが他の物体と接触する際の
実質的な接触面積を減少させることとなり、摩擦
抵抗を減少する効果が生ずることがフイルム表面
の滑り性の改良に繋がると推測されている。 しかしながら、磁気テープに供する場合、易滑
性・走行性と表面の耐削れ性(耐摩耗性)とが共
に充分に満足できるものはない。しかも、最近で
はビデオ用磁気テープはテープが薄くなり長時間
録画化されて上記の関係を一層厳しく要求するよ
うになつている。 本発明者は上述の問題点を解決すべく鋭意研究
した結果、特定の易滑性を含む条件でフイルム表
面突起とフイルムの密度とが特定の範囲にあると
きフイルムの走行性及び耐削れ性が著しく改良さ
れることを知見して本発明に到達した。 即ち、本発明は、粗面化物質と0.01〜5重量%
のソルビタンエステルとを含有してなるポリエス
テルフイルムであつて、該粗面化物質によつて該
ポリエステルフイルムの表面に生じた0.54μm以
上の高さの突起の単位表面積当りの数H個/mm2
該フイルムの密度ρg/cm3との間に ρ<1.70×10-4H+1.393 の関係を満足してなる易滑性ポリエステルフイル
ムである。 本発明を説明する。 本発明のポリエステルとは、テレフタル酸、イ
ソフタル酸、ナフタレン―2,6―ジカルボン酸
の如き芳香族ジカルボン酸を主たる酸成分とし、
エチレングリコール、ジエチレングリコール、テ
トラメチレングリコール、ネオペンチルグリコー
ルなどのグリコールを主たるグリコール成分とし
て反応せしめた線形の熱可塑性ポリエステルであ
る。代表的なポリエステルとしてポリエチレンテ
レフタレート、ポリブチレンテレフタレート、ポ
リエチレン―2,6―ナフタレンジカルボキシレ
ートなどが挙げられる。勿論上記の線状ポリエス
テルに他の酸成分やグリコール成分を少量添加し
て変性した共量合体も本発明のポリエステルに含
まれる。 本発明にいう粗面化物質には、ポリエステルを
製造する際に使用した触媒によつて生じた不溶性
の触媒残渣にづくものである。またポリエステル
に不溶性の化合物であるシリカ、アルミナ、焼成
または水和の硅酸アルミニウム、炭酸カルシウム
などの微粉末(0.01〜10μmの平均直径を有する
もの)を添加することによつてもフイルム表面に
突起をもたらすことができることが知られてい
る。かかる不溶性無機化合物も本発明でいう粗面
化物質である。更に、ポリエステルに不溶性の有
機化合物を添加してもフイルム表面に突起をもた
らすことができる。これらの有機化合物として高
融点の芳香族ポリアミドや弗素含有樹脂の微細な
粒子が挙げられる。当然このような有機重合体粒
子も粗面化物質の範疇に属する。 本発明におけるソルビタンエスタルとは、ソル
ビタンと炭素数8〜22の脂肪酸とからなるエステ
ルであり、かつ、脂肪酸の結合数からモノ、ジ、
トリによつて構成されるものをいう。ソルビタン
エステルとしてトリエステルが耐熱性がよく最も
好ましい。 ソルビタンエステルのポリエステルへの添加方
法としてはポリエステルとドライブレンドし押出
し機に投入して押出し製膜する方法;あらかじめ
両者を押出機等によつて混練してマスターチツプ
をつくり、このチツプをソルビタンエステルを含
まないポリエステルのペレツトとブレンドして押
出製膜する方法;がある。 ポリエステルに存在する不溶性の触媒残渣や不
溶性の添加物は、フイルム表面に微細な突起を形
成することはよく知られている。表面の突起は不
溶性の粗面化物質の粒径、粒径分布及び重合体中
に占める量などによつて変化し、粒径が大きい場
合には突起の高さも高くなる傾向がある。また粗
面化物質の量が多くなると当然突起の単位面積当
りの数(頻度)が増す。これらのフイルム表面の
突起の形状に対して、粗面化物質自体の影響もあ
る。形状が球状に近い炭酸カルシウムと形状が板
状である燐酸カルシウムとでは、フイルム表面の
状態は同じ突起密度であつても多少異なる。殊に
ポリエステルは二軸延伸される場合が普通であつ
て、両軸方向の延伸配向状態が板状、非球状の粗
面化物質の例では表面状態に影響が及んでくる。
フイルム表面の突起はフイルムの滑り性を高める
が、この突起部分はフイルム表面が他のフイルム
や金属ロール、キヤツプスタンなどの表面と接触
することから特に摩耗を受ける傾向がある。そし
てフイルムの走行により表面突起部分は削られる
こととなる。 フイルムの滑り性の改良には多数の表面突起が
効果的であるが、この突起は堅牢なものとするか
減摩剤で被われた状態としない限り耐削れ性が満
足できない。ビデオテープのベースフイルムなど
では、削れ性が大きいとドロツプアウトやカラー
ノイズの原因となり実用面から問題となる。 本発明は粗面化物質によつてフイルム表面に突
起を与えるとともに、ソルビタンエステルによつ
てこの突起を被つて耐切削摩耗性を高めている。 ソルビタンエステルの含有量は0.01〜5重量%
の範囲が好ましい。ソルビタンエステルの量が
0.01重量%未満では耐削れ性の改良効果や粗面化
物質との相互作用による走行性改良効果は殆ど期
待できない。このソルビタンエステルの量が5%
を超えると、フイルム―フイルム間にブロツキン
グ現象が認められ、更に多量になるとフイルム表
面にソルビタンエステルが微細な凝集する傾向が
ある。そしてフイルム表面にソルビタンエステル
の凝集物が形成されると、もはや耐削れ性の改良
は得られない。 このソルビタンエステルがポリエステルフイル
ム表面に適度な被膜状物を形成するように、フイ
ルムを熱処理して該ソルビタンをブリードアウト
させることが好ましい。ブリードアウトによつて
ポリエステル内部からフイルム表面に適度に浸出
するようにし、好適な被膜を形成させるには、フ
イルム表面の突起状態に応じた熱処理が望まれ
る。例えば、フイルム表面の突起頻度が大きいと
きには、ポリエステルフイルムを比較的に高い温
度で熱処理しブリードアウトされるソルビタンエ
ステルの量を増加させてもよい。経験的にはフイ
ルム表面の0.54μm以上の突起の数H(個/mm2)と
の熱処理後のフイルムの密度ρ(g/cm3)との間
に ρ<1.7×10-4H+1.393 の関係が満足されるような条件を選ぶ必要があ
る。またフイルムは耐熱性(寸法安定性)から密
度が少くとも1.375g/cm3であることも必要とな
る。 例えば0.54μm以上の突起が60個/mm2程度の場
合、1.403g/cm3以下の密度が好適であつて、230
〜235℃程度の熱処理をフイルムに施すことによ
つて耐削れ性、走行性、耐熱寸法性の優れたフイ
ルムを得ることができる。 またフイルムの密度が1.375g/cm3未満では熱
収縮が大きくなり、収縮フイルム、包装資材など
に使われるものの、用途は制約されて実用範囲が
狭い。 以下に本発明を実施例により具体的に詳述す
る。本発明における物性測定法は次の通りであ
る。 (1) 密度の測定法 ノルマルヘキサンと四塩化炭素の混合物を用
いた密度勾配管で25℃にて測定する。 (2) 突起数の測定法 フイルムの表面にうすくアルミ蒸着し多重干
渉顕微鏡(例えばNIKON製(Surface Finish
Microscope)光源タリウムランプ波長5400Å)
を用いてランダムに1mm2の面積につき写真撮影
し、高さ0.54μm以上の突起数Hケ/mm2を算出
する。 (3) 動まさつ係数 第1図に示す如く25℃相対湿度60%の雰囲気
下で外径5mmφのSUS27の固定棒(表面粗度
CLA=0.030)に1/2″巾にカツトしたフイル
ムを角度・πラジアンで接触させ3.3cm/secの
速さで移動、まさつさせる。入口テンシヨン
T1が30grとなるようテンシヨンコントロー
ラー2を調整した時の出口テンシヨンT2gr
(出口テンシヨンン検出機10で検出)より次
式で動まさつ係数μKを算出する(本発明では
90m走行時の動まさつ係数をもつてμKとす
る)。 μK=1/πlnT2/T1 (4) 摩耗性 動まさつ係数μKの測定法と同一条件で2/
1″巾にカツトしたフイルムを90m走行させた時
に、固定棒上に検出される白粉の付着程度で5
段階に判定する。 1は白粉は存在せず非常に優れた耐削れ性を示
す。 2は白粉はわずかに存在するが充分使用に耐え
る。 3は白粉はやや多く存在し使用上問題となる。 4は3と5の中間。 5は白粉は固定棒の全面に付着し最も削れ性の
悪く使用に耐え得ないもの。 (5) 総合評価 総合評価として走行性、削れ性共に良好なも
の優、使用上問題のないもの良、使用に耐え得
ないもの不可として示した。 実施例 1 ジメチルテレフタレートに対し触媒として酢酸
マンガン40ミリモル%、三酸化アンチモン20ミリ
モル%、亜燐酸40ミリモル%を加えてエステル交
換させ、次いで粗面化物質として平均粒径0.9μの
カオリンを0.20重量%添加して重縮合反応させ、
最終的に〔η〕=0.65(0―クロロフエノールを溶
媒として用い35℃で測定した法)のポリエチレン
テレフタレートを得た。 またこのポリエチレンテレフタレートにソルビ
タントリステアレートを8重量部加えエクストル
ーダーで均一にブレンドしマスターチツプを作成
した。該マスターチツプを6重量部ポリエチレン
テレフタレートにブレンドしたポリマーを160℃
で乾燥し、280℃で溶融押出し、40℃に保持した
キヤステイングドラムの表面に急冷固化せしめて
155μの未延伸フイルムを得た。 この未延伸フイルムを縦延伸温度90℃、縦延伸
倍率3.5倍、横延伸温度120℃、横延伸倍率3.7倍
で逐次二軸延伸した厚さ12μのフイルムを更に
160℃、180℃、200℃、210℃、220℃、230℃及び
240℃の各々の温度で熱処理を施した。このフイ
ルムの表面突起として0.54μm以上のものは100
個/mm2であつた。熱処理したフイルムを0.5イン
チ巾のテープに裁断して第1図のテープ検査機に
より動摩擦係数を測定したところ、いずれのもの
も0.23〜0.25であり、耐削れ性も1〜2の範囲に
あり、総合評価としてもいずれも「優」であつ
た。 比較例 1 ソルビタントリステアレートを含まない以外は
実施例1と同様な条件で、重合、製膜延伸を施
し、更に210℃で熱処理したフイルムを得たとこ
ろ、このフイルムの動摩擦係数は0.45で、削れ性
は3級であり、総合評価は不良であつた。 実施例 2 粗面化物質としてのカリオンの量を0.12重量%
に替えて、実施例1と同様に製膜延伸を施したと
ころ、0.54μ以上の高さの突起頻度は61個/mm2
あつた。この評価結果を表―1に示す。
The present invention relates to a polyester film with excellent running properties. Thermoplastic aromatic polyesters such as polyethylene terephthalate and polyethylene-2,6-naphthalene dicarboxylate are used in applications such as magnetic tapes, electrical insulation materials, and capacitors. In these applications, polyester film is subjected to various processing, so
Smoothness of the film is required during processing.
Furthermore, in the case of magnetic tape, runnability and slipperiness are important qualities for the final product. In terms of the slipperiness required of the film, the quality requirements include low sliding friction resistance and little wear on the film surface even when running for a long time (in other words, high resistance to abrasion of the film). Becomes a characteristic. It is known that the slipperiness of polyester films can be improved by adding inert inorganic fine particles such as hydrated aluminum silicate, silica, and calcium carbonate to polyester. It is known that when inorganic fine particles or insoluble catalyst residues are present in polyester, these particles form fine protrusions on the surface of the film when it is formed. Furthermore, these minute protrusions on the film surface reduce the actual contact area when the film comes into contact with other objects, which has the effect of reducing frictional resistance, which leads to improvement in the slipperiness of the film surface. It is speculated that. However, when used in magnetic tapes, there is no material that satisfies both the slipperiness and running properties and the abrasion resistance (wear resistance) of the surface. Moreover, in recent years, video magnetic tapes have become thinner and recordings can be made for longer periods of time, making the above-mentioned requirements even more stringent. As a result of intensive research to solve the above-mentioned problems, the present inventor found that when the film surface protrusions and the film density are in a specific range under conditions including specific slipperiness, the running properties and abrasion resistance of the film are improved. The present invention was achieved based on the finding that this was significantly improved. That is, in the present invention, the roughening substance and 0.01 to 5% by weight
sorbitan ester, the number of protrusions per unit surface area of protrusions with a height of 0.54 μm or more produced on the surface of the polyester film by the roughening substance H protrusions/mm 2 This is an easily slippery polyester film which satisfies the relationship between ρ<1.70×10 −4 H+1.393 and the film density ρg/cm 3 . The present invention will be explained. The polyester of the present invention has an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, or naphthalene-2,6-dicarboxylic acid as the main acid component,
It is a linear thermoplastic polyester made by reacting glycols such as ethylene glycol, diethylene glycol, tetramethylene glycol, and neopentyl glycol as the main glycol component. Typical polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and the like. Of course, the polyesters of the present invention also include copolymerized polymers obtained by adding small amounts of other acid components or glycol components to the above-mentioned linear polyesters to modify them. The surface roughening substances referred to in the present invention are those based on insoluble catalyst residues produced by catalysts used in producing polyester. It is also possible to create protrusions on the film surface by adding fine powders (with an average diameter of 0.01 to 10 μm) of silica, alumina, calcined or hydrated aluminum silicate, calcium carbonate, etc., which are insoluble compounds in polyester. It is known that it can bring about Such insoluble inorganic compounds are also roughening substances in the present invention. Furthermore, addition of an insoluble organic compound to polyester can also produce protrusions on the film surface. These organic compounds include fine particles of high melting point aromatic polyamides and fluorine-containing resins. Naturally, such organic polymer particles also belong to the category of surface roughening substances. The sorbitan ester in the present invention is an ester consisting of sorbitan and a fatty acid having 8 to 22 carbon atoms, and is mono-, di-,
Refers to something composed of birds. As the sorbitan ester, triester is most preferable because it has good heat resistance. The method for adding sorbitan ester to polyester is to dry blend it with polyester and put it into an extruder to form a film by extrusion; the two are kneaded in an extruder or the like in advance to make a master chip, and this chip is added to the sorbitan ester. There is a method of blending with polyester-free pellets and forming a film by extrusion. It is well known that insoluble catalyst residues and insoluble additives present in polyester form fine protrusions on the film surface. The protrusions on the surface vary depending on the particle size, particle size distribution, and amount occupied in the polymer of the insoluble roughening substance, and when the particle size is large, the height of the protrusions tends to be high. Furthermore, as the amount of the surface roughening substance increases, the number (frequency) of protrusions per unit area naturally increases. The shape of these protrusions on the film surface is also influenced by the roughening substance itself. Calcium carbonate, which has a nearly spherical shape, and calcium phosphate, which has a plate-like shape, have somewhat different film surface conditions even if they have the same protrusion density. In particular, polyester is usually biaxially stretched, and in the case of roughened materials in which the stretching orientation in both axial directions is plate-like or non-spherical, the surface state is affected.
Protrusions on the film surface increase the slipperiness of the film, but these protrusions are particularly prone to wear as the film surface comes into contact with other films, metal rolls, capstans, and other surfaces. As the film runs, the surface protrusions are scraped off. Although a large number of surface protrusions are effective in improving the slipperiness of the film, the abrasion resistance cannot be satisfied unless these protrusions are made robust or coated with a lubricant. If the base film of a videotape is highly abrasive, it causes dropouts and color noise, which is a practical problem. In the present invention, protrusions are provided on the film surface using a roughening substance, and these protrusions are covered with sorbitan ester to improve resistance to cutting wear. Sorbitan ester content is 0.01-5% by weight
A range of is preferred. The amount of sorbitan ester
If it is less than 0.01% by weight, hardly any improvement in wear resistance or runnability due to interaction with surface roughening substances can be expected. The amount of this sorbitan ester is 5%
If the amount exceeds this amount, a blocking phenomenon is observed between the films, and if the amount is further increased, the sorbitan ester tends to form fine aggregations on the film surface. Once sorbitan ester aggregates are formed on the film surface, no improvement in abrasion resistance can be obtained. It is preferable to heat-treat the film to bleed out the sorbitan so that the sorbitan ester forms a suitable film on the surface of the polyester film. In order to cause appropriate leaching from the inside of the polyester to the film surface by bleed-out and to form a suitable film, it is desirable to perform heat treatment according to the state of the protrusions on the film surface. For example, when the frequency of protrusions on the film surface is high, the polyester film may be heat treated at a relatively high temperature to increase the amount of sorbitan ester that bleeds out. Empirically, the relationship between the number of protrusions of 0.54 μm or more on the film surface H (protrusions/mm 2 ) and the density ρ of the film after heat treatment (g/cm 3 ) is ρ<1.7×10 -4 H+1.393 It is necessary to choose conditions that satisfy the relationship. In addition, the film must have a density of at least 1.375 g/cm 3 from the viewpoint of heat resistance (dimensional stability). For example, when the number of protrusions of 0.54 μm or more is about 60/mm 2 , a density of 1.403 g/cm 3 or less is suitable;
By subjecting the film to heat treatment at a temperature of about 235°C, it is possible to obtain a film with excellent abrasion resistance, runnability, and heat-resistant dimensional properties. Furthermore, if the density of the film is less than 1.375 g/cm 3 , heat shrinkage becomes large, and although it is used for shrink films, packaging materials, etc., its uses are restricted and its practical range is narrow. EXAMPLES The present invention will be specifically explained in detail below using examples. The method for measuring physical properties in the present invention is as follows. (1) Density measurement method Measure at 25°C using a density gradient tube using a mixture of n-hexane and carbon tetrachloride. (2) Method for measuring the number of protrusions Deposit a thin layer of aluminum on the surface of the film and use a multiple interference microscope (for example, NIKON (Surface Finish)
Microscope) Light source thallium lamp wavelength 5400Å)
Photographs are taken at random for an area of 1 mm 2 using a camera, and the number of protrusions with a height of 0.54 μm or more H/mm 2 is calculated. (3) Dynamic coefficient As shown in Figure 1, the fixed rod of SUS27 with an outer diameter of 5 mmφ (surface roughness
CLA=0.030) is brought into contact with a film cut to 1/2" width at an angle of π radian and moved at a speed of 3.3 cm/sec. Inlet tension
Outlet tension T 2 gr when tension controller 2 is adjusted so that T 1 is 30 gr
(detected by the exit tension detector 10), the motion coefficient μK is calculated using the following formula (in the present invention,
Let μK be the dynamic coefficient when traveling 90m). μK=1/πlnT 2 /T 1 (4) Abrasion resistance 2/ under the same conditions as the measurement method of dynamic coefficient μK
When a film cut to a width of 1" is run 90m, the amount of white powder adhering to the fixed rod is 5.
Judging in stages. No. 1 has no white powder and exhibits excellent abrasion resistance. Sample No. 2 has a slight amount of white powder, but is sufficiently usable. No. 3 has a slightly large amount of white powder, which poses a problem in use. 4 is between 3 and 5. No. 5 is white powder that adheres to the entire surface of the fixing rod and has the worst abrasion resistance, making it unusable. (5) Comprehensive evaluation As a comprehensive evaluation, those with good runnability and abrasiveness were given as excellent, those with no problems in use were given as good, and those that could not withstand use were given as poor. Example 1 40 mmol % of manganese acetate, 20 mmol % of antimony trioxide, and 40 mmol % of phosphorous acid were added as catalysts to dimethyl terephthalate for transesterification, and then 0.20 weight of kaolin with an average particle size of 0.9 μ was added as a roughening substance. % to cause a polycondensation reaction,
Finally, polyethylene terephthalate with [η]=0.65 (measured at 35° C. using 0-chlorophenol as a solvent) was obtained. Further, 8 parts by weight of sorbitan tristearate was added to this polyethylene terephthalate and blended uniformly using an extruder to prepare master chips. A polymer prepared by blending the master chip with 6 parts by weight of polyethylene terephthalate was heated at 160°C.
The mixture was dried at 280°C, melt extruded at 280°C, and rapidly solidified on the surface of a casting drum kept at 40°C.
An unstretched film of 155μ was obtained. This unstretched film was sequentially biaxially stretched at a longitudinal stretching temperature of 90°C, a longitudinal stretching ratio of 3.5 times, a transverse stretching temperature of 120°C, and a transverse stretching ratio of 3.7 times, resulting in a film with a thickness of 12μ.
160℃, 180℃, 200℃, 210℃, 220℃, 230℃ and
Heat treatment was performed at each temperature of 240°C. The surface protrusions of this film with a diameter of 0.54 μm or more are 100%
pieces/ mm2 . When the heat-treated film was cut into 0.5 inch wide tapes and the coefficient of dynamic friction was measured using the tape inspection machine shown in Figure 1, the coefficients of dynamic friction were all 0.23 to 0.25, and the abrasion resistance was in the range of 1 to 2. The overall evaluation was "excellent" in all cases. Comparative Example 1 A film was obtained which was subjected to polymerization, film forming and stretching under the same conditions as in Example 1 except that it did not contain sorbitan tristearate, and was further heat treated at 210°C. The coefficient of dynamic friction of this film was 0.45. The abrasion resistance was grade 3, and the overall evaluation was poor. Example 2 The amount of carrion as a surface roughening substance was 0.12% by weight
When the film was formed and stretched in the same manner as in Example 1, the frequency of protrusions with a height of 0.54μ or more was 61 pieces/mm 2 . The results of this evaluation are shown in Table-1.

【表】 実施例 3 実施例1の製造条件において粗面化物質とし
て、平均粒径0.5μmの炭酸カルシウムを添加量を
0.20,0.10及び0.05重量%と変更し、0.54μm以上
の突起数が、それぞれ49,30及び11個/mm2のフイ
ルムを得た。 これらのフイルムを実施例2と同様に評価した
総合評価で「良」と「不可」との間の熱処理温度
範囲は、H=49個/mm2のとき225〜235℃、密度範
囲は1.399〜1.420g/cm3;H=30mm-2のとき熱処
理温度は215〜225℃で密度は1.396〜1.399g/
cm3;H=11個/mm2のとき205〜215℃の温度範囲で
密度は1.393〜1.396g/cm3であつた。 実施例 4 粗面化物質として平均粒径0.28μmのカオリン
を0.07重量%含むものまたは平均粒径0.20μmの燐
酸カルシウム0.08重量%を含む場合の0.54μm以上
の突起の数を2個/mm2または0個/mm2のフイルム
を得た。このフイルムの総合評価で「良」と「不
可」との温度範囲(臨界値)は200〜210℃の熱処
理条件の間で密度限界は1.391〜1.394g/cm3の範
囲であつた。 実施例1〜4において0.54μm以上の突起をも
つ場合の密度の上限はρ=1.70×10-4H+1.393の
関係にあることが判る。
[Table] Example 3 Under the manufacturing conditions of Example 1, the amount of calcium carbonate with an average particle size of 0.5 μm was added as a roughening substance.
By changing the concentrations to 0.20, 0.10, and 0.05% by weight, films with the number of protrusions of 0.54 μm or more were 49, 30, and 11 protrusions/mm 2 , respectively. In the overall evaluation of these films in the same manner as in Example 2, the heat treatment temperature range between "good" and "unsatisfactory" was 225-235°C when H = 49 pieces/ mm2 , and the density range was 1.399-235°C. 1.420g/cm 3 ; When H = 30mm -2, the heat treatment temperature is 215-225℃ and the density is 1.396-1.399g/
cm 3 ; When H=11 pieces/mm 2 , the density was 1.393 to 1.396 g/cm 3 in the temperature range of 205 to 215°C. Example 4 When the roughening material contains 0.07% by weight of kaolin with an average particle size of 0.28 μm or 0.08% by weight of calcium phosphate with an average particle size of 0.20 μm, the number of protrusions of 0.54 μm or more is 2/mm 2 Alternatively, a film with 0 pieces/mm 2 was obtained. In the overall evaluation of this film, the temperature range (critical value) between "good" and "unsatisfactory" was between heat treatment conditions of 200 to 210 DEG C., and the density limit was in the range of 1.391 to 1.394 g/cm 3 . It can be seen that in Examples 1 to 4, the upper limit of the density when having protrusions of 0.54 μm or more is in the relationship ρ=1.70×10 −4 H+1.393.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフイルム粗表面の動摩擦係数を測定す
るテープベース検査機の模式図である。 図面の1は巻出ロール、2はテンシヨンコント
ローラ、4はテンシヨン検出器(入口)、10は
テンシヨン検出器(出口)、12はガイドローラ、
13は巻取リールである。
FIG. 1 is a schematic diagram of a tape-based inspection machine that measures the coefficient of dynamic friction on the rough surface of a film. In the drawing, 1 is an unwinding roll, 2 is a tension controller, 4 is a tension detector (inlet), 10 is a tension detector (outlet), 12 is a guide roller,
13 is a take-up reel.

Claims (1)

【特許請求の範囲】 1 粗面化物質とソルビタンエステルとを含有し
てなるポリエステルフイルムであつて、該粗面化
物質によつて該フイルム表面に生じた0.54μm以
上の高さの突起の数H個/mm2と該フイルムの密度
Pg/cm3との間に P<1.70×10-4H+1.393 の関係を満足する易滑性ポリエステルフイルム。
[Claims] 1. A polyester film containing a surface roughening substance and a sorbitan ester, the number of protrusions having a height of 0.54 μm or more produced on the film surface by the surface roughening substance. An easily slippery polyester film that satisfies the relationship P<1.70×10 -4 H+1.393 between H pieces/mm 2 and the film's density Pg/cm 3 .
JP55139252A 1980-10-07 1980-10-07 Smothened polyester film Granted JPS5764516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55139252A JPS5764516A (en) 1980-10-07 1980-10-07 Smothened polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55139252A JPS5764516A (en) 1980-10-07 1980-10-07 Smothened polyester film

Publications (2)

Publication Number Publication Date
JPS5764516A JPS5764516A (en) 1982-04-19
JPS634571B2 true JPS634571B2 (en) 1988-01-29

Family

ID=15240978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55139252A Granted JPS5764516A (en) 1980-10-07 1980-10-07 Smothened polyester film

Country Status (1)

Country Link
JP (1) JPS5764516A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206664A (en) * 1982-05-28 1983-12-01 Teijin Ltd Biaxially oriented polyester film
JPS5945348A (en) * 1982-09-09 1984-03-14 Teijin Ltd Polyethylene terephthalate film for metallic thin film magnetic recording medium
JPS59140028A (en) * 1983-01-18 1984-08-11 Diafoil Co Ltd Preparation of polyester film
JPH0625267B2 (en) * 1985-12-17 1994-04-06 ダイアホイルヘキスト株式会社 Polyethylene-2,6-naphthalate film for high density magnetic recording media
JPH0756445Y2 (en) * 1992-08-24 1995-12-25 オリエンタル建設株式会社 Recessed Mold Formwork for Connecting PC Girder Horizontal Girders
JP6174541B2 (en) * 2014-10-02 2017-08-02 信越ポリマー株式会社 Method for producing amorphous thermoplastic resin film

Also Published As

Publication number Publication date
JPS5764516A (en) 1982-04-19

Similar Documents

Publication Publication Date Title
JPH04216031A (en) Biaxially oriented polyester film for magnetic recording
JPS634571B2 (en)
JPH04279340A (en) Polyester film for magnetic tape
JPS583289B2 (en) Oriented polyester film for magnetic tape
KR100492329B1 (en) Polyester film for magnetic recording media
JPS6361028A (en) Biaxially orientated polyester film
JPH026132B2 (en)
JPH01311131A (en) Polyester film for magnetic recording medium
JPH02129231A (en) Polyester film for magnetic recording medium
JPH02129230A (en) Oriented polyester film
JPH02770B2 (en)
JPS6351091B2 (en)
JPH0420369B2 (en)
KR0131994B1 (en) Biaxially oriented polyester film and a process for the preparation thereof
JPS63247913A (en) Polyester film for magnetic recording medium
JP2920938B2 (en) Oriented polyester film
JP3319058B2 (en) Method for producing polyester film
JPH0641533B2 (en) Polyethylene-2,6-naphthalate film
JP3323409B2 (en) Laminated biaxially oriented polyester film
KR100211495B1 (en) Biaxially oriented polyester film for magnetic recording medium
JPH054415B2 (en)
JPH02155934A (en) Biaxially oriented polyester film
JP3749660B2 (en) Polyester resin composition, film using the same, and method for producing polyester resin composition
JPH0542645A (en) Laminated polyester film
KR100244029B1 (en) Two-axially oriented polyester film