JPS6344938B2 - - Google Patents

Info

Publication number
JPS6344938B2
JPS6344938B2 JP4094979A JP4094979A JPS6344938B2 JP S6344938 B2 JPS6344938 B2 JP S6344938B2 JP 4094979 A JP4094979 A JP 4094979A JP 4094979 A JP4094979 A JP 4094979A JP S6344938 B2 JPS6344938 B2 JP S6344938B2
Authority
JP
Japan
Prior art keywords
intake air
amount
certain
hot
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4094979A
Other languages
Japanese (ja)
Other versions
JPS55134730A (en
Inventor
Tadashi Kirisawa
Takashige Ooyama
Yutaka Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4094979A priority Critical patent/JPS55134730A/en
Publication of JPS55134730A publication Critical patent/JPS55134730A/en
Publication of JPS6344938B2 publication Critical patent/JPS6344938B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の吸入空気量測定方法に係
り、特に吸入空気量測定用熱線式流速計からの出
力を基に得た吸入空気量の計測データがドリフト
や経年変化によつて狂いを生ずる場合でも計測デ
ータの較正を行うことにより、吸入空気量を正確
に求めることのできる内燃機関の吸入空気量測定
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the amount of intake air in an internal combustion engine, and in particular, to a method for measuring the amount of intake air in an internal combustion engine, and particularly to a method for measuring the amount of intake air obtained based on the output from a hot wire flow meter for measuring the amount of intake air. The present invention relates to a method for measuring the amount of intake air in an internal combustion engine that allows the amount of intake air to be accurately determined by calibrating the measured data even if the measured data is distorted due to drift or aging.

〔従来の技術〕[Conventional technology]

内燃機関特に自動車用内燃機関の燃料制御にお
いては、気化器方式が主流であるが、気化器方式
は気化器の各気筒への燃料分配性が良くないとか
吸気抵抗が大きいといつた欠点を有していた。そ
のため、この欠点を補う方式としてガソリン噴射
方式が登場してきた。このガソリン噴射方式は気
化器方式と異り何らかの計測データより適正燃料
量を計算し、噴射弁を制御して燃料を吸気マニホ
ールドに送り込む方式である。この補正燃料量の
計算法として大別すると、エンジン速度と吸入負
圧より適正燃料量を求める方法と、吸入空気流量
より適正燃料量を求める方法とがある。前者の方
法は、測定が極めて間接的であり、エンジン系の
経年変化や応答性の点で問題があるが、後者の方
法は吸入空気量の測定だけから適正燃料量を求め
るので極めて簡潔であるが、アイドリング、始
動、増速時の補正のための追加が必要である。後
者の計算法を使う燃料制御装置は、第1図に示す
如き構成となる。図において、燃料量を計算する
装置としてマイクロコンピユータ1が用いられて
いる。マイクロコンピユータ1の電源は自動車塔
載のバツテリ2でまかなう。計算に用いる吸入空
気流量は熱線式流速計検出部6によつて検出し、
流速信号処理回路12で空気流量に比例した信号
に変換する。マイクロコンピユータ1で計算した
適正燃料流量は燃料輸送管8からの燃料をインジ
エクタ5で制御することで実現する。インジエク
タ制御信号発生回路11はマイクロコンピユータ
1で計算した適正燃料流量に見合つたインジエク
タ制御信号を発生させる回路である。インジエク
タ5より燃料を噴射する場合にはエンジンの回転
に同期して行なわなければならないので、点火プ
ラグ4に高圧電気パルスを供給するイグニツシヨ
ンコイル3からの信号を回転信号処理回路10に
よつて回転数に比例する信号に変換して取り込
む。酸素濃度センサ7からの電圧信号は酸素セン
サ7に接続される酸素濃度センサ信号処理回路9
によつて酸素濃度に比例した信号に変換してマイ
クロコンピユータ1へ送る。酸素濃度信号は排気
ガス中の酸素濃度より空燃比を知つて燃料流量を
調整するために用いる。後者に示す計算法によつ
てマイクロコンピユータ1が適正燃料量を計算す
る場合の処理プログラムのうちの主要部を示すと
第2図のようになる。すなわち、まず、ステツプ
Aにおいて、吸入空気量を流速信号処理回路12
により取り込み、ステツプBにおいて回転数Nを
取り込み、ステツプCにおいて、取り込んだ回転
数Nで吸入空気量を割つて1回転当りの吸入空気
量を計算する。次にステツプDにおいて内燃機関
の気筒数や、サイクル数によつて決まる係数を取
り込んでステツプEにおいて、ステツプDで取り
込んだ係数とステツプCにおいて計算した値を掛
け合せ、ステツプFにおいてインジエクタ5の基
本開弁時間として出力させる。
In fuel control for internal combustion engines, especially automobile internal combustion engines, the carburetor method is the mainstream, but the carburetor method has drawbacks such as poor fuel distribution to each cylinder of the carburetor and high intake resistance. Was. Therefore, a gasoline injection method has been introduced as a method to compensate for this drawback. Unlike the carburetor method, this gasoline injection method calculates the appropriate amount of fuel from some measurement data, controls the injection valve, and sends the fuel into the intake manifold. Broadly speaking, methods for calculating the corrected fuel amount include a method of determining the appropriate fuel amount from the engine speed and intake negative pressure, and a method of determining the appropriate fuel amount from the intake air flow rate. The former method is extremely indirect in its measurement and has problems in terms of aging and responsiveness of the engine system, but the latter method is extremely simple as it determines the appropriate amount of fuel only from the measurement of the amount of intake air. However, additions are required for correction during idling, starting, and speed increase. A fuel control system using the latter calculation method has a configuration as shown in FIG. In the figure, a microcomputer 1 is used as a device for calculating the amount of fuel. The microcomputer 1 is powered by a battery 2 installed in the car tower. The intake air flow rate used for calculation is detected by a hot wire current meter detection unit 6,
The flow velocity signal processing circuit 12 converts the signal into a signal proportional to the air flow rate. The appropriate fuel flow rate calculated by the microcomputer 1 is realized by controlling the fuel from the fuel transport pipe 8 with the injector 5. The injector control signal generation circuit 11 is a circuit that generates an injector control signal commensurate with the appropriate fuel flow rate calculated by the microcomputer 1. When injecting fuel from the injector 5, it must be done in synchronization with the rotation of the engine, so the signal from the ignition coil 3 that supplies high-voltage electric pulses to the spark plug 4 is processed by the rotational signal processing circuit 10. Converts and captures a signal proportional to the rotation speed. The voltage signal from the oxygen concentration sensor 7 is sent to an oxygen concentration sensor signal processing circuit 9 connected to the oxygen sensor 7.
The signal is converted into a signal proportional to the oxygen concentration and sent to the microcomputer 1. The oxygen concentration signal is used to determine the air-fuel ratio from the oxygen concentration in the exhaust gas and adjust the fuel flow rate. FIG. 2 shows the main part of the processing program when the microcomputer 1 calculates the appropriate amount of fuel using the latter calculation method. That is, first, in step A, the intake air amount is determined by the flow rate signal processing circuit 12.
In step B, the number of revolutions N is taken in. In step C, the amount of intake air per revolution is calculated by dividing the amount of intake air by the number of revolutions N taken in. Next, in step D, coefficients determined by the number of cylinders and cycles of the internal combustion engine are taken in, and in step E, the coefficients taken in in step D are multiplied by the values calculated in step C. In step F, the basic opening of the injector 5 is determined. Output as valve time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のようなシステムにおいては吸入空気量の
測定が燃料量の決定の主要データにあたるために
吸入空気流量測定部の精度、経年変化が直接燃料
量の精度、経年変化となつて現れていた。特に上
記のように吸入空気量の測定に熱線流速計を構成
する熱線式流速計検出部6と流速信号処理回路1
2を用いる場合には、吸入空気量の変化を極めて
速くとらえることができる一方、出力のドリフ
ト、経年変化が避けられなかつた。
In the above-mentioned system, the measurement of the amount of intake air is the main data for determining the amount of fuel, so the accuracy of the intake air flow rate measuring section and changes over time directly affect the accuracy of the amount of fuel. In particular, the hot-wire anemometer detection unit 6 and the flow velocity signal processing circuit 1 that constitute a hot-wire anemometer for measuring the amount of intake air as described above.
2, while it is possible to detect changes in the amount of intake air extremely quickly, drift and aging of the output are unavoidable.

この経年変化を補正する方法としては例えば特
開昭51−106826号公報に記載された方法があるが
これでは不十分であつた。
As a method for correcting this aging change, for example, there is a method described in JP-A-51-106826, but this method was insufficient.

本発明の目的は、吸入空気量測定用熱線式流速
計からの出力を基に求めた吸入空気量の計測デー
タが、ドリフトや経年変化によつて狂いを生ずる
場合であつても、計測データの較正を行うことに
より、吸入空気流量を正確に求めることができる
内燃機関の吸入空気量測定方法を提供することに
ある。
An object of the present invention is to prevent the measurement data from being distorted even when the measurement data of the intake air amount obtained based on the output from the hot-wire current meter for measuring the intake air amount is distorted due to drift or aging. An object of the present invention is to provide a method for measuring an intake air amount of an internal combustion engine, which can accurately determine the intake air flow rate by performing calibration.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の吸入空気量
測定方法は、内燃機関の回転数の変化幅が一定値
にある状態が一定時間継続している条件時に、測
定空燃比と理論空燃比との偏差を求め、該偏差が
一定許容範囲を越えているとき当該偏差がリーン
側かリツチ側かを判断し、この判断の結果がリー
ン側のときは吸入空気量測定用の熱線式流速計の
出力信号に対する吸入空気量の相関特性を吸入空
気量が増加する方向に一定の補正を行ない、逆に
リツチ側のときは吸入空気量が減少する方向に一
定の補正を行なうことにある。
In order to achieve the above object, the intake air amount measuring method of the present invention provides a method for measuring the measured air-fuel ratio and the stoichiometric air-fuel ratio under the condition that the range of change in the rotational speed of the internal combustion engine remains constant for a certain period of time. The deviation is determined, and when the deviation exceeds a certain allowable range, it is determined whether the deviation is on the lean side or the rich side, and if the result of this judgment is on the lean side, the output of the hot wire anemometer for measuring the amount of intake air is determined. The purpose is to make a certain correction in the direction that the intake air amount increases in the correlation characteristic of the intake air amount with respect to the signal, and to make a certain correction in the direction that the intake air amount decreases when it is on the rich side.

〔作用〕[Effect]

このように構成することにより、熱線式流速計
の出力信号と吸入空気量の相関特性が、一つの最
終的な制御目標量である空燃比に基づいて補正さ
れることになるとともに、その補正は内燃機関が
一定の安定した状態においてなされる。したがつ
て、経年変化等により上記の相関特性が変化して
も、それに追従させて正しい相関に補正されるこ
とになる。また、一定づつ補正することにより、
誤差などによる誤まつた補正の影響を小さくして
いるのである。
With this configuration, the correlation characteristic between the output signal of the hot-wire anemometer and the intake air amount is corrected based on the air-fuel ratio, which is one final control target amount, and the correction is The internal combustion engine is operated in a constant stable state. Therefore, even if the above-mentioned correlation characteristics change due to changes over time, etc., the correlation will be corrected to the correct correlation. Also, by making constant corrections,
This reduces the influence of erroneous corrections due to errors and the like.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第3図には、吸入空気流量の測定に用いられる
熱線式流速計の流速測定回路が示されている。こ
の流速測定回路は熱線2個と抵抗R30、抵抗R31
をブリツジに組み演算増幅器A543とトランジ
スタ41によつてブリツジへの供給電圧を調整す
る。熱線2個のうち1個例えば熱線42bは温度
補正用に使用する。第3図の様な流速測定回路を
用いて流速を測定する場合の流速vと出力電圧e
の関係は e2=(c1+c2√)K4 …(1) と表わされる。ただし、ここに、C1は熱線42
aの形状により定まる定数であり、C2は空気の
物性値により定まる定数、またK4は熱線42a
への塵埃の堆積等による経年変化による補正係数
である。RichardsonとMcquiveyの仮説によると
熱線式流速計を構成する熱線式流速計検出部6と
流速信号処理回路12の経年変化は(1)式において
係数K4の変化に代表される。熱線42aへのゴ
ミ等の付着による劣化は係数K4の減少となつて
現れる。本実施例によれば第1図においてマイク
ロコンピユータ1は第3図の出力電圧eを取り込
むが、これに(1)式より算出した v={1/C2(e2/K4−C1)}2 …(2) なる計算を行なつて吸入空気流量vを求める。係
数K4はマイクロコンピユータ1の記憶装置中に
あらかじめ記憶されている。熱線42aの経年変
化によつて係数K4が減少してゆくが経年変化後
の適正係数K4を求める為には第4図において、
ある時点の吸入空圧流速vと出力電圧eを知る必
要がある。
FIG. 3 shows a flow velocity measuring circuit of a hot wire anemometer used to measure the intake air flow rate. This flow rate measurement circuit consists of two hot wires, resistance R 30 and resistance R 31.
is assembled into a bridge, and the supply voltage to the bridge is adjusted by an operational amplifier A 5 43 and a transistor 41. One of the two heating wires, for example the heating wire 42b, is used for temperature correction. Flow velocity v and output voltage e when measuring flow velocity using a flow velocity measurement circuit as shown in Figure 3
The relationship is expressed as e 2 = (c 1 + c 2 √)K 4 …(1). However, here, C 1 is the hot wire 42
It is a constant determined by the shape of a, C 2 is a constant determined by the physical properties of air, and K 4 is a constant determined by the shape of the hot wire 42a.
This is a correction coefficient for changes over time due to the accumulation of dust, etc. According to the hypothesis of Richardson and Mcquivey, the aging of the hot wire anemometer detection unit 6 and the flow velocity signal processing circuit 12 that constitute the hot wire anemometer is represented by a change in the coefficient K 4 in equation (1). Deterioration due to adhesion of dust or the like to the heating wire 42a appears as a decrease in the coefficient K4 . According to this embodiment , the microcomputer 1 in FIG . 1 takes in the output voltage e in FIG . )} 2 ...(2) Perform the following calculation to find the intake air flow rate v. The coefficient K 4 is previously stored in the memory of the microcomputer 1. The coefficient K4 decreases as the heating wire 42a changes over time, but in order to find the appropriate coefficient K4 after the change over time, in Fig.
It is necessary to know the suction air pressure flow velocity v and the output voltage e at a certain point in time.

第4図は、第3図図示回路において、熱線42
aに風が当り、この空気の流速によつて変化する
抵抗の変化が出力電圧eとなつて生じることによ
りこの流速vと出力電圧eとの関係として示した
もので、K4は、前記(1)式の係数であり、総合特
性を示すものである。第4図のK4の値の各々に
ついては、あらかじめ求められたものであり、第
3図図示回路を設計・製作した後に決まる値であ
り、必ずしも第4図図示K4の値に適合するとは
限らずK4の値が1.5であつたり2.3であつたりする
が、その特性は第4図図示のようになるものであ
る。
FIG. 4 shows the hot wire 42 in the circuit shown in FIG.
This is shown as the relationship between the flow velocity v and the output voltage e, as a result of the wind hitting a, and the output voltage e changes depending on the flow velocity of this air. It is a coefficient of equation 1) and indicates the overall characteristics. Each of the values of K 4 in Figure 4 is determined in advance and determined after designing and manufacturing the circuit shown in Figure 3, and does not necessarily match the value of K 4 shown in Figure 4. The value of K4 is not limited to 1.5 or 2.3, but the characteristics are as shown in FIG.

しかしながら、実際には、自動車の運転状態は
刻々変化し、また内燃機関各部に遅れがあるので
運転状態に即応した吸入空気流速vと出力電圧e
を得ることが困難である。そこで、本実施例は、
時々刻々変化する運転状態の中から、空熱比を理
論空燃比へ制御する運転モードで、回転数Nの時
間微分が一定値内に一定時間あることを条件とし
て準静的な状態を検出し、これに合わせてマイク
ロコンピユータ1内の記憶装置に巡回的に記媒し
ておいた空燃比のデータを取り出し、この値が理
論空燃比の値よりも大きいか、小さいかによつて
係数K4の狂いを検出し、係数K4の補正を行う。
以上の処理内容をフローチヤートの形で示すと第
5図のようになる。すなわち、ステツプ100にお
いて、準静的な状態が一定時間継続しているかど
うかを判定するための経過時間記憶レジスタTを
クリアし、ステツプ101において、用いる空燃比
データを取込む。次にステツプ102において、エ
ンジン回転数Nを取り込み、ステツプ103におい
て、エンジン回転数Nを微分する。次にステツプ
104において、ステツプ103において微分した値が
一定範囲内に入つていいかどうかを判定し、も
し、一定値よりも大きい場合には、ステツプ100
にもどり同じことをくりかえす。また、ステツプ
104において判定した結果一定値よりも小さいと
きは、ステツプ105において、経過時間記憶レジ
スタTの更新を始め、ステツプ106において、準
静的状態が一定時間K3経過して、経過時間記憶
レジスタTの内容がK3になつたか否かを判定し、
この判定が否定の場合はステツプ101に戻る。一
方、肯定のときはステツプ107において、ある一
定時間前に計測した空燃比の測定データを理論空
燃比データと比較してその差(偏差)を求め、ス
テツプ108において、ステツプ107において求めた
偏差が一定許容範囲ε以内か否かを判定し、一定
許容範囲ε以内の場合にはステツプ100に戻る。
ステツプ107において求めた偏差が一定許容範囲
εより大きい場合には、ステツプ109において偏
差が正か負かを判定する。この偏差が正のときは
空燃比がリーン側にあることを示し、逆に負のと
きはリツチ側にあることを示している。そこで、
ステツプ107の判断が正であればステツプ111にお
いて、係数K4の値を単位量K5だけ減らしてやる。
これにより、第4図から明らかなように、同一の
出力電圧eに対して吸入空気量が大きく評価され
るから、それに応じて燃料が増量され、空燃比が
適正化される。また、ステツプ110において、値
が負の場合は、逆に係数K4の値を単位量K5だけ
増して状態をリセツトする。これにより、正の場
合とは逆に出力電圧eに対して吸入空気量が小さ
く評価される。ステツプ110、111で補正された
K4′、K4″の値に基づいてステツプ112において、
A/Fを算出し、その結果によつて燃料量の制御
を行なう。
However, in reality, the driving conditions of a car change from moment to moment, and there are delays in each part of the internal combustion engine, so the intake air flow velocity v and output voltage e immediately respond to the driving conditions.
is difficult to obtain. Therefore, in this example,
In the operating mode that controls the air-heat ratio to the stoichiometric air-fuel ratio, a quasi-static state is detected under the condition that the time derivative of the rotational speed N remains within a certain value for a certain period of time from among operating conditions that change from moment to moment. , At the same time, the air-fuel ratio data stored cyclically in the storage device in the microcomputer 1 is retrieved, and the coefficient K 4 is determined depending on whether this value is larger or smaller than the stoichiometric air-fuel ratio value. Detects the deviation and corrects it by coefficient K4 .
The above processing contents are shown in the form of a flowchart as shown in FIG. That is, in step 100, an elapsed time storage register T for determining whether a quasi-static state continues for a certain period of time is cleared, and in step 101, air-fuel ratio data to be used is fetched. Next, in step 102, the engine speed N is taken in, and in step 103, the engine speed N is differentiated. Next step
In step 104, it is determined whether the value differentiated in step 103 is within a certain range, and if it is larger than the certain value, step 100 is performed.
Go back and repeat the same thing. Also, step
If the result determined in step 104 is smaller than a certain value, the elapsed time storage register T is started to be updated in step 105, and in step 106, when the quasi-static state has elapsed for a certain period of time K3 , the elapsed time storage register T is updated. Determine whether the content has become K 3 ,
If this determination is negative, the process returns to step 101. On the other hand, if the answer is yes, in step 107 the air-fuel ratio measurement data measured a certain period of time ago is compared with the stoichiometric air-fuel ratio data to find the difference (deviation), and in step 108 the deviation found in step 107 is determined. It is determined whether or not it is within a certain tolerance range ε, and if it is within a certain tolerance range ε, the process returns to step 100.
If the deviation determined in step 107 is larger than a certain tolerance range ε, it is determined in step 109 whether the deviation is positive or negative. When this deviation is positive, it shows that the air-fuel ratio is on the lean side, and conversely, when it is negative, it shows that it is on the rich side. Therefore,
If the determination in step 107 is positive, in step 111 the value of coefficient K4 is decreased by a unit amount K5 .
As a result, as is clear from FIG. 4, the amount of intake air is evaluated to be large for the same output voltage e, so the amount of fuel is increased accordingly, and the air-fuel ratio is optimized. Further, in step 110, if the value is negative, the value of the coefficient K4 is increased by a unit amount K5 and the state is reset. As a result, the intake air amount is evaluated to be small relative to the output voltage e, contrary to the positive case. Corrected in steps 110 and 111
Based on the values of K 4 ′ and K 4 ″, in step 112,
The A/F is calculated and the fuel amount is controlled based on the result.

このような係数K4の補正は準静的状態が現れ
る毎に行われるが、準静的状態が現れるのは極め
て稀なので運転状態が継続するうちに徐々に行わ
れることになる。この様にプログラムを他の処理
プログラムに並行して走らすことによつて通常の
吸入空気量の計測による燃料量の高応答制御を実
行するなかで時間の経過と共に現れる熱線42a
の経年変化を補正し最適な燃料制御が実現でき
る。
Such correction of the coefficient K 4 is performed every time a quasi-static state appears, but since it is extremely rare for a quasi-static state to appear, it is gradually performed while the operating state continues. In this way, by running the program in parallel with other processing programs, the hot wire 42a that appears over time while performing high-response control of the fuel amount by measuring the normal intake air amount.
Optimal fuel control can be achieved by correcting aging changes.

また、本実施例においては、熱線42aの経年
変化を補正して正確な吸入空気流量を得ることが
できるため、吸入空気流量とエンジン回転数とを
変数とする点火時期制御、排ガス再循環量の制御
(EGR制御)をも精密に行うことができ、エンジ
ンを最適な運転状態に制御することが可能とな
る。
In addition, in this embodiment, since it is possible to obtain an accurate intake air flow rate by correcting aging of the hot wire 42a, ignition timing control using the intake air flow rate and engine speed as variables, and exhaust gas recirculation amount control can be performed. Control (EGR control) can also be performed precisely, making it possible to control the engine to optimal operating conditions.

前記実施例の補正は運転全領域にわたつて空燃
比を理論空燃比に保つ装置についてであつたがア
イドリング、始動、増速時に空燃比を変更して運
転性能を向上させる方式の装置もある。その場合
には内燃機関各部に運転状態を検出するセンサを
設け、第5図に示す処理内容に運転状態を検出す
るプログラムを付加し補正を選択的に行なわせる
必要がある。例えば回転数と吸入負圧の組合わせ
によつて運転状態を検出する装置では第5図に示
す処理プログラムを装置が空燃比を理論空燃比に
合わせる制御モードの時に動作させ、吸入空気流
量計の補正を行なう。
Although the correction in the above embodiment was related to a device that maintains the air-fuel ratio at the stoichiometric air-fuel ratio over the entire operating range, there is also a device that improves driving performance by changing the air-fuel ratio during idling, starting, and speed increase. In that case, it is necessary to provide sensors for detecting the operating state in each part of the internal combustion engine, add a program for detecting the operating state to the processing contents shown in FIG. 5, and selectively perform correction. For example, in a device that detects the operating state based on a combination of rotation speed and suction negative pressure, the processing program shown in Figure 5 is run when the device is in the control mode that adjusts the air-fuel ratio to the stoichiometric air-fuel ratio, and the intake air flow meter is Make corrections.

したがつて、本実施例によれば、精度が悪く経
年変化の大きい空気流量計の特性を絶えず補正す
ることができるので、良好な燃料制御を行なうこ
とができる。
Therefore, according to this embodiment, it is possible to constantly correct the characteristics of the air flow meter which have poor accuracy and are subject to large changes over time, so that good fuel control can be performed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、内燃機
関の回転数の変化幅が一定値にある状態が一定時
間継続している条件時に、測定空燃比と理論空燃
比との偏差を求め、該偏差が一定許容範囲を越え
ているとき当該偏差がリーン側かリツチ側かを判
断し、この判断の結果がリーン側のときは吸入空
気量測定用の熱線式流速計の出力信号に対する吸
入空気量の相関特性を吸入空気量が増加する方向
に一定の補正を行ない、逆にリツチ側のときは吸
入空気量が減少する方向に一定の補正を行なうよ
うにしていることから、熱線式流速計を含む吸入
空気量測定部の経年変化にかかわらず、吸入空気
量を正確に測定できるという効果がある。
As explained above, according to the present invention, the deviation between the measured air-fuel ratio and the stoichiometric air-fuel ratio is determined under the condition that the range of change in the rotational speed of the internal combustion engine remains constant for a certain period of time. When the deviation exceeds a certain allowable range, it is determined whether the deviation is on the lean side or rich side, and if the result of this judgment is on the lean side, the intake air amount is determined based on the output signal of the hot wire flow meter for measuring the intake air amount. A constant correction is made to the correlation characteristic in the direction that the intake air amount increases, and conversely, when it is on the rich side, a certain correction is made in the direction that the intake air amount decreases. This has the effect that the amount of intake air can be accurately measured regardless of changes over time in the intake air amount measuring section.

この結果、測定された吸入空気流量に基づいて
なされる内燃機関の燃料制御、点火時期制御、
EGR制御の制御精度が向上されるという効果が
ある。
As a result, fuel control and ignition timing control of the internal combustion engine can be performed based on the measured intake air flow rate.
This has the effect of improving the control accuracy of EGR control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、燃料制御装置のセンサ、マイクロコ
ンピユータ、アクチユエータの配置を示す図、第
2図は、吸入空気量と回転数より適正燃料量を計
算するプログラムの基本部を示したフローチヤー
ト、第3図は、熱線流速計の構成を示す回路図、
第4図は、流速と出力電圧を示した図、第5図は
本発明の実施例を示す吸入空気流量計の較正を行
うプログラムを示したフローチヤートである。 6……熱線式流速計検出部、12……流速信号
処理回路、42a,42b……熱線。
Fig. 1 is a diagram showing the arrangement of the sensor, microcomputer, and actuator of the fuel control device, Fig. 2 is a flowchart showing the basic part of the program that calculates the appropriate fuel amount from the intake air amount and rotation speed, Figure 3 is a circuit diagram showing the configuration of a hot wire anemometer;
FIG. 4 is a diagram showing flow velocity and output voltage, and FIG. 5 is a flowchart showing a program for calibrating an intake air flowmeter according to an embodiment of the present invention. 6...Hot wire current meter detection unit, 12...Flow velocity signal processing circuit, 42a, 42b...Hot wire.

Claims (1)

【特許請求の範囲】 1 内燃機関の回転数の変化幅が一定値にある状
態が一定時間継続している条件時に、測定空燃比
と理論空燃比との偏差を求め、該偏差が一定許容
範囲を越えているとき当該偏差がリーン側かリツ
チ側かを判断し、この判断の結果がリーン側のと
きは吸入空気量測定用の熱線式流速計の出力信号
に対する吸入空気量の相関特性を吸入空気量が増
加する方向に一定の補正を行ない、逆にリツチ側
のときは吸入空気量が減少する方向に一定の補正
を行なうことを含んでなる内燃機関の吸入空気量
測定方法。 2 特許請求の範囲第1項において、前記一定の
補正は、吸入空気流量測定用熱線式流速計の出力
信号の電圧をe、熱線式流速計の経年変化に伴う
補正係数をK4、熱線式流速計の熱線の形状に基
づく係数をc1、空気の物性に基づく係数をc2、吸
入空気の流速をvとしたときに、 v={1/c2(e2/K4−c1)}2 なる関係を有する式の補正係数K4を、リーン側
のときは一定量減少し、リツチ側のときは一定量
増大補正することにより行なうことを特徴とする
内燃機関の吸入空気量測定方法。
[Claims] 1. Under the condition that the range of change in the rotational speed of the internal combustion engine remains constant for a certain period of time, the deviation between the measured air-fuel ratio and the stoichiometric air-fuel ratio is determined, and the deviation is within a certain allowable range. If the deviation exceeds , it is judged whether the deviation is on the lean side or rich side, and if the result of this judgment is on the lean side, the correlation characteristic of the intake air amount with the output signal of the hot wire type anemometer for measuring the intake air amount is determined. A method for measuring the intake air amount of an internal combustion engine, which includes making a certain correction in the direction that the air amount increases, and conversely making a certain correction in the direction that the intake air amount decreases when it is on the rich side. 2. In claim 1, the certain correction means that the voltage of the output signal of the hot-wire anemometer for measuring the intake air flow rate is e, the correction coefficient due to aging of the hot-wire anemometer is K4 , and the hot-wire anemometer is When c 1 is the coefficient based on the shape of the hot wire of the current meter, c 2 is the coefficient based on the physical properties of air, and v is the flow velocity of the intake air, v={1/c 2 (e 2 /K 4 −c 1 )} An intake air amount measurement for an internal combustion engine characterized by correcting the correction coefficient K4 of a formula having the following relationship by decreasing it by a certain amount when the lean side is on, and increasing it by a certain amount when it is on the rich side. Method.
JP4094979A 1979-04-06 1979-04-06 Controlling method of fuel for internal combustion engine Granted JPS55134730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4094979A JPS55134730A (en) 1979-04-06 1979-04-06 Controlling method of fuel for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4094979A JPS55134730A (en) 1979-04-06 1979-04-06 Controlling method of fuel for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS55134730A JPS55134730A (en) 1980-10-20
JPS6344938B2 true JPS6344938B2 (en) 1988-09-07

Family

ID=12594748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4094979A Granted JPS55134730A (en) 1979-04-06 1979-04-06 Controlling method of fuel for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS55134730A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088838A (en) * 1983-10-20 1985-05-18 Honda Motor Co Ltd Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JP2554854B2 (en) * 1984-07-27 1996-11-20 富士重工業株式会社 Learning control method for automobile engine
JPS6360045U (en) * 1986-10-07 1988-04-21
JPH0517398Y2 (en) * 1986-10-07 1993-05-11

Also Published As

Publication number Publication date
JPS55134730A (en) 1980-10-20

Similar Documents

Publication Publication Date Title
JPS6340268B2 (en)
JPH11264330A (en) Internal combustion engine control device
US5016595A (en) Air-fuel ratio control device for internal combustion engine
JPS6344938B2 (en)
JPS59136544A (en) Control apparatus for intenal-combustion engine
JP2751324B2 (en) Control device for internal combustion engine
JPH01224424A (en) Control device for internal-combustion engine
JP3182357B2 (en) Lean combustion control limit detection method for internal combustion engine
JPH0762452B2 (en) Fuel injection control device for internal combustion engine
JPS59136543A (en) Control apparatus for internal-combustion engine
JPH1162674A (en) Air-fuel ratio control device for internal combustion engine
JP4186350B2 (en) Combustion state detection device for internal combustion engine
JP2855854B2 (en) Output sensitivity correction method of combustion pressure sensor
JPS61265334A (en) Method of controlling air-fuel ratio of internal combustion engine
JP3337339B2 (en) Apparatus for estimating intake air amount of internal combustion engine
JPH0559994A (en) Control device for engine
JPH0615843B2 (en) Control device for internal combustion engine
JPH01285640A (en) Fuel injection quantity control method of internal combustion engine
JPH09195844A (en) Apparatus for detecting inner pressure of cylinder of internal combustion engine
JP3182356B2 (en) Method for detecting combustion fluctuation of internal combustion engine
JPS63289237A (en) Fuel injection quantity controlling method for internal combustion engine
JPS63195361A (en) Control device for internal combustion engine
JP2001193548A (en) Combustion condition detecting device for internal combustion engine
JP4135279B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62139943A (en) Air-fuel ratio control method for internal combustion engine