JPS6344461B2 - - Google Patents

Info

Publication number
JPS6344461B2
JPS6344461B2 JP58090474A JP9047483A JPS6344461B2 JP S6344461 B2 JPS6344461 B2 JP S6344461B2 JP 58090474 A JP58090474 A JP 58090474A JP 9047483 A JP9047483 A JP 9047483A JP S6344461 B2 JPS6344461 B2 JP S6344461B2
Authority
JP
Japan
Prior art keywords
inner plate
plate
copper alloy
stainless steel
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58090474A
Other languages
Japanese (ja)
Other versions
JPS59229261A (en
Inventor
Masaki Morikawa
Hideaki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9047483A priority Critical patent/JPS59229261A/en
Publication of JPS59229261A publication Critical patent/JPS59229261A/en
Publication of JPS6344461B2 publication Critical patent/JPS6344461B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、溶鋼に電磁撹拌を加えながら鋳造
するに適した連続鋳造用鋳型パネルに関するもの
である。 鋼の連続鋳造において、スラブの質的向上を図
るために、鋳型内の溶鋼を電磁力により撹拌する
技術が開発されている。 この技術は、凝固途上の溶鋼を電磁力により撹
拌することによつて、スラブ断面中の等軸晶域を
増加し、鋼塊中の偏析の低減や、スラブの熱間加
工性の向上を図るとともに、スラブ表面域におけ
るブローホールや非金属介在物の減少を可能と
し、鋼塊の歩留向上を図ることができる優れた技
術であつて、鋳型内の磁束密度が大きくなるほど
高い効果が得られる。 ところで、従来使用されている大形スラブの連
続鋳造用鋳型パネルは、第1図に一例を斜視図で
示し、第2図に一部を拡大水平断面図で示したよ
うに、板厚が40〜70mmの銅合金製内板1と、板厚
が40〜50mmの非磁性ステンレス鋼製背板2との2
層構造を有し、両板は、内板1の所定複数箇所に
設けたねじ穴3の螺着する無頭の非磁性ステンレ
ス鋼製ボルト4を、背板2に設けてあるボルト通
孔5に挿通し、背板2の外側においてボルト4に
ナツト6を螺着することによつて一体に結合させ
ている。 また、冷却水路Aとなる溝7を前記内板1の背
面側に形成しておき、内板1と背板2を一体に結
合することによつて溝7を冷却水路Aに形成して
いた。 即ち、結合のためのボルト4を内板1に溶着す
ることができないので、これを螺着することにな
り、このため板厚が増大し、大容量の電磁コイル
を使用しても撹拌効果が挙らず、従つて従来の鋳
型パネルを使用して、より高い電磁撹拌効果を求
めようとすれば、さらに非常に大きな容量の電磁
コイルを使用せざるを得ないので、連続鋳造コス
トの増大が避けられず、製品の品質向上は図れる
ものの、コスト高をまねく不利がある点に問題が
あつた。 そこで本発明者等は、内板の板厚を薄くするこ
とができない原因が銅合金製内板への結合用ボル
トの螺着にあるとの観点に基き研究を行なつた結
果、内板を、重量%で、 Cr:0.4〜1.5%、 Zr:0.01〜0.3%、 Al:0.05〜0.8%、 Ti:0.01〜0.6%、 を含有し、さらに必要に応じて、 Fe、Ni、およびCoのうちの1種または2種以
上:0.05〜1%、 を含有し、残りがCuと不可避不純物からなる組
成を有する析出硬化型銅合金で構成すると、この
銅合金は電気伝導度:30〜70%(IACS%)を有
することから、この銅合金製内板に対して非磁性
ステンレス鋼ボルトをアークスタツド溶接法にて
溶着立設することが可能となり、この結果、前記
内板の板厚を5〜25mmに薄くすることができるよ
うになるとの知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、銅合金製内板と、非磁
性ステンレス鋼製背板との2層構造からなり、両
板を非磁性ステンレス鋼製ボルトにより一体とし
てなる連続鋳造用鋳型パネルにおいて、 上記内板を、重量%で、 Cr:0.4〜1.5%、 Zr:0.01〜0.3%、 Al:0.05〜0.8%、 Ti:0.01〜0.6%、 を含有し、さらに必要に応じて、 Fe、Ni、およびCoのうちの1種または2種以
上:0.05〜1%、 を含有し、残りがCuと不可避不純物からなる組
成、並びにIACS%で30〜70%の電気伝導度を有
する銅合金で構成すると共に、その板厚を5〜25
mmとし、 さらに、内板背面にアークスタツド溶接法によ
つて溶着立設したボルト取付構造を有し、かつ上
記背板に冷却水路となる溝を設けてなる連続鋳造
用鋳型パネルに特徴を有するものである。 つぎに、この発明の連続鋳造用鋳型パネルにお
いて、内板の成分組成範囲、電気伝導度、および
板厚を上記の通りに限定した理由を説明する。 A 成分組成 (a) Cr Cr成分には、常温および高温強度を向上
させる作用があるが、その含有量が0.4%未
満では所望の高強度を確保することができ
ず、一方その含有量が1.5%を越えると靭性
が低下するようになることから、その含有量
を0.4〜1.5%と定めた。 (b) Zr Zr成分には、高温強度の一層の向上と、
高温延性向上による耐熱疲労割れ性の改善を
はかる作用があるが、その含有量が0.01%未
満では、前記作用に所望の効果が得られず、
一方その含有量が0.3%を越えると脆化傾向
が現われるようになることから、その含有量
を0.01〜0.3%と定めた。 (c) Al Al成分には、耐サルフアアタツク性を向
上させて鋳型に腐食疲労割れが発生するのを
防止すると共に、耐酸化性を向上させる作用
があるほか、電気伝導度の広範囲に亘る調整
を行なう作用があるが、その含有量が0.05%
未満では、前記作用に所望の効果が得られ
ず、特に電気伝導度が70%を越えて高くなつ
てしまい、ボルトの内板への溶接に際して、
内板内面に溶接熱影響部が形成されるように
なり、一方その含有量が0.8%を越えると、
内板の電気伝導度が30%未満となる場合が生
じ、所望の抜熱効果を確保するのが困難とな
ることから、その含有量を0.05〜0.8%と定
めた。 (d) 鉄族金属 これらの成分には、常温および高温強度を
一段と向上させる作用があるので、特に高強
度が要求される場合に必要に応じて含有され
るが、その含有量が0.05%未満では所望の強
度向上効果が得られず、その含有量が1%を
越えると、靭性が低下するようになることか
ら、その含有量を0.05〜1%と定めた。 (e) Ti Ti成分には、耐熱性および耐酸化性を向
上させる作用があるが、その含有量が0.01%
未満では前記作用に所望の効果が得られず、
一方その含有量が0.6%を越えると、靭性が
低下するようになることから、その含有量を
0.01%〜0.6%と定めた。 B 板厚 板厚が5mm未満では強度不足を来すととも
に、内板への非磁性ステンレス鋼製ボルトのア
ークスタツド溶接時に溶接熱影響部が内板内面
に形成されるのを避けることができず、一方、
25mmを超えた板厚にすると、電磁撹拌効果が低
減するようになることから、板厚を5〜25mmと
定めた。 C 電気伝導度 電気伝導度が30%未満では、内板の板厚を5
mmまで薄くしても抜熱効果が不足するようにな
り、一方70%を越えた電気伝導度になると、ス
テンレス鋼ボルトの内板へのアークスタツド溶
接に際し、内板の板厚を25mmとしても内板内面
に溶接熱影響部が形成されるようになることか
ら、電気伝導度を30〜70%と定めた。 また、この発明の鋳型パネルにおけるステン
レス鋼製ボルトは、溶接上の問題およびボルト
自体の強度、さらに溶着強度の点から、その直
径を5〜20mmとするのが望ましい。 つぎに、この発明の鋳型パネルを実施例により
図面を参照しながら説明する。 実施例 第3図にはこの発明の鋳型パネルの実施例を斜
視図で、また、第4図には一部を拡大水平断面図
で示してある。図面に示したように、この発明の
鋳型パネルは、銅合金製内板1と非磁性ステンレ
ス鋼製背板2とを一体に重ねて結合した2層構造
からなり、多数の非磁性ステンレス鋼製ボルト4
と、これに螺着するナツト6によつて結合状態を
保持する点において従来の鋳型パネルと同様であ
るが、内板1に立設するボルト4を、アークスタ
ツド溶接法により立設する一方、冷却水路Aを形
成する溝7を、前記背板2側に設け、さらに、背
板2に設けたボルト通孔5を、すべて、ボルト基
部沿いに盛上つた溶接箇所8と干渉することがな
いように、内板側を大径とした段付孔としてある
点等において、第1図及び第2図に示した従来の
鋳型パネルと異るものである。 第5図には内板1を、また、第6図には背板2
をそれぞれ斜視図で示し、第7図には背板2のボ
ルト通孔5部分を拡大断面図で示してある。 なお、内板1へのボルト4の溶着は、特開昭55
−141382号公報に記載されるアークスタツド溶接
法によつて行なつた。 すなわち、上記銅合金製内板1として、それぞ
れ第1表に示される成分組成、電気伝導度、およ
び板厚を有する析出硬化型銅合金で構成された板
材に、925〜975℃の範囲内の所定温度に0.5〜4
時間の範囲内の所定時間保持後、水冷の
The present invention relates to a continuous casting mold panel suitable for casting molten steel while applying electromagnetic stirring. In continuous steel casting, a technology has been developed in which molten steel in a mold is stirred by electromagnetic force in order to improve the quality of slabs. This technology uses electromagnetic force to stir molten steel that is in the process of solidifying, thereby increasing the equiaxed crystal region in the cross section of the slab, reducing segregation in the steel ingot and improving hot workability of the slab. It is also an excellent technology that can reduce blowholes and nonmetallic inclusions in the slab surface area and improve the yield of steel ingots, and the higher the magnetic flux density in the mold, the better the effect. . By the way, the conventional mold panel for continuous casting of large slabs has a plate thickness of 40 mm, as shown in Fig. 1 as an example in perspective view and as shown in Fig. 2 in partially enlarged horizontal sectional view. A copper alloy inner plate 1 with a thickness of ~70 mm and a non-magnetic stainless steel back plate 2 with a plate thickness of 40 to 50 mm.
Both plates have a layered structure, and both plates have headless non-magnetic stainless steel bolts 4 screwed into screw holes 3 provided at a plurality of predetermined locations on the inner plate 1, and bolt through holes 5 provided on the back plate 2. The bolts 4 are inserted into the back plate 2 and nuts 6 are screwed onto the bolts 4 on the outside of the back plate 2, thereby integrally connecting them. Further, a groove 7 which becomes the cooling water channel A was formed on the back side of the inner plate 1, and the groove 7 was formed into the cooling water channel A by combining the inner plate 1 and the back plate 2 together. . That is, since the bolts 4 for connection cannot be welded to the inner plate 1, they must be screwed, which increases the thickness of the plate, and the stirring effect cannot be achieved even if a large-capacity electromagnetic coil is used. Therefore, if you try to obtain a higher electromagnetic stirring effect using a conventional mold panel, you will have to use an electromagnetic coil with a much larger capacity, which will increase the cost of continuous casting. This was unavoidable, and although it was possible to improve the quality of the product, it had the disadvantage of increasing costs. Therefore, the present inventors conducted research based on the viewpoint that the reason why it was not possible to reduce the thickness of the inner plate was due to the screwing of the coupling bolts to the copper alloy inner plate. , in weight%, contains Cr: 0.4~1.5%, Zr: 0.01~0.3%, Al: 0.05~0.8%, Ti: 0.01~0.6%, and further contains Fe, Ni, and Co as necessary. When composed of a precipitation-hardening copper alloy containing one or more of these: 0.05 to 1%, and the remainder consisting of Cu and unavoidable impurities, this copper alloy has an electrical conductivity of 30 to 70%. (IACS%), it is possible to vertically weld non-magnetic stainless steel bolts to this copper alloy inner plate using the arc stud welding method, and as a result, the thickness of the inner plate can be reduced to 5. They found that it would be possible to make the film thinner to ~25mm. Therefore, this invention was made based on the above knowledge, and consists of a two-layer structure of an inner plate made of copper alloy and a back plate made of non-magnetic stainless steel, both plates being made of non-magnetic stainless steel. In a mold panel for continuous casting that is integrated with bolts, the above inner plate has the following weight percentages: Cr: 0.4 to 1.5%, Zr: 0.01 to 0.3%, Al: 0.05 to 0.8%, Ti: 0.01 to 0.6%. and, if necessary, one or more of Fe, Ni, and Co: 0.05 to 1%, with the remainder being Cu and unavoidable impurities, and IACS% of 30 to 1%. Constructed of copper alloy with 70% electrical conductivity, and its thickness is 5 to 25%.
mm, and is further characterized by a bolt mounting structure welded upright on the back of the inner plate by arc stud welding, and grooves that serve as cooling channels are provided on the back plate. It is something. Next, in the continuous casting mold panel of the present invention, the reason why the composition range, electrical conductivity, and plate thickness of the inner plate are limited as described above will be explained. A Component composition (a) Cr The Cr component has the effect of improving the strength at room temperature and high temperature, but if the content is less than 0.4%, the desired high strength cannot be secured; on the other hand, if the content is less than 1.5% Since toughness decreases when the content exceeds 0.4% to 1.5%. (b) Zr The Zr component has the potential to further improve high-temperature strength,
It has the effect of improving heat fatigue cracking resistance by improving high-temperature ductility, but if its content is less than 0.01%, the desired effect will not be obtained.
On the other hand, if the content exceeds 0.3%, a tendency towards embrittlement appears, so the content was set at 0.01 to 0.3%. (c) Al The Al component has the effect of improving sulfur attack resistance and preventing corrosion fatigue cracking in the mold, as well as improving oxidation resistance, and allows for wide-ranging adjustment of electrical conductivity. The content is 0.05%.
If it is less than 70%, the desired effect will not be obtained, and the electrical conductivity will be particularly high, exceeding 70%, and when welding the bolt to the inner plate,
A weld heat-affected zone begins to form on the inner surface of the inner plate, and on the other hand, when its content exceeds 0.8%,
The electrical conductivity of the inner plate may be less than 30%, making it difficult to secure the desired heat removal effect, so the content was determined to be 0.05 to 0.8%. (d) Iron group metals These components have the effect of further improving strength at room temperature and high temperature, so they are included as necessary when particularly high strength is required, but their content is less than 0.05%. However, if the content exceeds 1%, the toughness decreases, so the content was set at 0.05 to 1%. (e) Ti The Ti component has the effect of improving heat resistance and oxidation resistance, but its content is 0.01%.
If it is less than the desired effect, the desired effect cannot be obtained.
On the other hand, if the content exceeds 0.6%, the toughness will decrease, so the content should be
It was set at 0.01% to 0.6%. B Plate Thickness If the plate thickness is less than 5 mm, the strength will be insufficient and it will be impossible to avoid the formation of a weld heat affected zone on the inner surface of the inner plate during arc stud welding of non-magnetic stainless steel bolts to the inner plate. ,on the other hand,
If the plate thickness exceeds 25 mm, the electromagnetic stirring effect will be reduced, so the plate thickness was set at 5 to 25 mm. C Electrical conductivity If the electrical conductivity is less than 30%, the inner plate thickness should be reduced by 5%.
Even if the thickness is reduced to 25 mm, the heat removal effect becomes insufficient, and on the other hand, when the electrical conductivity exceeds 70%, even if the inner plate is 25 mm thick, when arc stud welding is applied to the inner plate of a stainless steel bolt, Since a weld heat affected zone will be formed on the inner surface of the inner plate, the electrical conductivity was set at 30 to 70%. Further, the diameter of the stainless steel bolt in the mold panel of the present invention is preferably 5 to 20 mm from the viewpoint of welding problems, the strength of the bolt itself, and the welding strength. Next, the mold panel of the present invention will be explained by way of example with reference to the drawings. Embodiment FIG. 3 shows a perspective view of an embodiment of the mold panel of the present invention, and FIG. 4 shows a partially enlarged horizontal sectional view. As shown in the drawings, the molded panel of the present invention has a two-layer structure in which an inner plate 1 made of copper alloy and a back plate 2 made of non-magnetic stainless steel are stacked and bonded together. bolt 4
It is similar to a conventional molded panel in that the connected state is maintained by a nut 6 screwed thereon, but the bolt 4 erected on the inner plate 1 is erected by arc stud welding, while Grooves 7 forming cooling water channels A are provided on the back plate 2 side, and furthermore, all of the bolt through holes 5 provided in the back plate 2 do not interfere with the welded parts 8 raised along the bolt bases. This panel differs from the conventional mold panel shown in FIGS. 1 and 2 in that the inner plate side has stepped holes with a larger diameter. Figure 5 shows the inner plate 1, and Figure 6 shows the back plate 2.
are shown in perspective views, and FIG. 7 shows an enlarged sectional view of the bolt through holes 5 of the back plate 2. The welding of the bolts 4 to the inner plate 1 is described in Japanese Unexamined Patent Application Publication No. 1986-55.
This was done by the arc stud welding method described in Japanese Patent No. 141382. That is, as the copper alloy inner plate 1, a plate material made of a precipitation hardening copper alloy having the composition, electrical conductivity, and plate thickness shown in Table 1 is heated at a temperature of 925 to 975°C. 0.5 to 4 at specified temperature
After holding for a predetermined time within the range of

【表】 溶体化処理と、これに続く420〜495℃の範囲内の
所定温度に1.5〜4時間の範囲内の所定時間保持
の時効処理を施すことによつて調製したものを使
用し、ボルト4としては直径:12.5mmのものを使
用し、かつアークスタツド溶接を、溶接電流:
1050〜1250A、通電時間:0.15〜0.35秒の条件で
行なつた。この結果、内板内面に溶接熱影響部の
形成は全く認められないものであつた。 前記構成からなるこの発明の鋳型パネルは、内
板1にボルト4をアークスタツド溶接法によつて
溶着立設することにより、内板1の板厚の減少を
図り、かつ、その板厚を5〜25mmとすることがで
きるので、十分な機械的強度を保つことが可能で
ある上に、小容量の電磁コイルによつて大きな電
磁撹拌効果が得られ、特に、内板1を薄くしたこ
とによつて冷却能力が大幅に向上するので、鋳造
速度も高められる。 以上の説明から明らかなように、この発明の鋳
型パネルは、連続鋳造用鋳型の経済的製作に役立
つ上に、ランニングコストの大幅な節減を図るこ
とができて、スラブ製造の合理化を可能にする優
れた利点を有する。
[Table] Bolts prepared by solution treatment followed by aging treatment at a predetermined temperature in the range of 420 to 495°C for a predetermined time in the range of 1.5 to 4 hours were used. For 4, use a diameter of 12.5 mm, arc stud welding, and welding current:
The test was carried out under the conditions of 1050 to 1250 A and a current application time of 0.15 to 0.35 seconds. As a result, no weld heat affected zone was observed on the inner surface of the inner plate. In the molded panel of the present invention having the above-mentioned structure, the thickness of the inner plate 1 is reduced by vertically welding the bolts 4 to the inner plate 1 by arc stud welding, and the thickness of the inner plate 1 is reduced to 5. ~25mm, it is possible to maintain sufficient mechanical strength, and a small-capacity electromagnetic coil can provide a large electromagnetic stirring effect, especially when the inner plate 1 is made thinner. Since the cooling capacity is thus greatly improved, the casting speed can also be increased. As is clear from the above description, the mold panel of the present invention is useful for the economical production of continuous casting molds, and can significantly reduce running costs, making it possible to streamline slab manufacturing. Has excellent advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の鋳型パネルを示し、第
1図は斜視図、第2図は一部分の拡大水平断面
図、第3図〜第7図は、この発明の鋳型パネルの
実施例を示し、第3図は斜視図、第4図は一部分
の拡大水平断面図、第5図は内板の斜視図、第6
図は背板の斜視図、第7図は背板の一部分の拡大
水平断面図である。図面において、 A……冷却水路、1……内板、2……背板、4
……ボルト、5……ボルト通孔、6……ナツト、
7……溝、8……溶接箇所。
1 and 2 show a conventional mold panel, FIG. 1 is a perspective view, FIG. 2 is a partially enlarged horizontal sectional view, and FIGS. 3 to 7 are examples of the mold panel of the present invention. Fig. 3 is a perspective view, Fig. 4 is a partially enlarged horizontal sectional view, Fig. 5 is a perspective view of the inner plate, and Fig. 6 is a perspective view.
The figure is a perspective view of the back plate, and FIG. 7 is an enlarged horizontal sectional view of a portion of the back plate. In the drawings, A...Cooling channel, 1...Inner plate, 2...Back plate, 4
...Bolt, 5...Bolt through hole, 6...Nut,
7...Groove, 8...Welding location.

Claims (1)

【特許請求の範囲】 1 銅合金製内板と、非磁性ステンレス鋼製背板
との2層構造からなり、両板を非磁性ステンレス
鋼製ボルトにより一体としてなる連続鋳造用鋳型
パネルにおいて、 上記内板を、重量%で、 Cr:0.4〜1.5%、 Zr:0.01〜0.3%、 Al:0.05〜0.8%、 Ti:0.01〜0.6%、 を含有し、残りがCuと不可避不純物からなる組
成、並びにIACS%で30〜70%の電気伝導度を有
する析出硬化型銅合金で構成すると共に、その板
厚を5〜25mmとし、 さらに、内板背面にアークスタツド溶接法によ
つて溶着立設したボルト取付構造を有し、かつ上
記背板に冷却水路となる溝を設けてなる連続鋳造
用鋳型パネル。 2 銅合金製内板と、非磁性ステンレス鋼製背板
との2層構造からなり、両板を非磁性ステンレス
鋼製ボルトにより一体としてなる連続鋳造用鋳型
パネルにおいて、 上記内板を、重量%で、 Cr:0.4〜1.5%、 Zr:0.01〜0.3%、 Al:0.05〜0.8%、 Ti:0.01〜0.6%、 を含有し、さらに、 Fe、Ni、およびCoのうちの1種または2種以
上:0.05〜1%、 を含有し、残りがCuと不可避不純物からなる組
成、並びにIACS%で30〜70%の電気伝導度を有
する析出硬化型銅合金で構成すると共に、その板
厚を5〜25mmとし、 さらに、内板背面にアークスタツド溶接法によ
つて溶着立設したボルト取付構造を有し、かつ上
記背板に冷却水路となる溝を設けてなる連続鋳造
用鋳型パネル。
[Scope of Claims] 1. A mold panel for continuous casting that has a two-layer structure of an inner plate made of copper alloy and a back plate made of non-magnetic stainless steel, and in which both plates are integrated with bolts made of non-magnetic stainless steel, comprising: The composition of the inner plate is Cr: 0.4 to 1.5%, Zr: 0.01 to 0.3%, Al: 0.05 to 0.8%, Ti: 0.01 to 0.6%, with the remainder consisting of Cu and unavoidable impurities. It is made of a precipitation-hardened copper alloy with an electrical conductivity of 30 to 70% in terms of IACS%, and has a plate thickness of 5 to 25 mm, and is welded upright on the back of the inner plate by arc stud welding. A continuous casting mold panel having a bolt mounting structure and having grooves serving as cooling channels in the back plate. 2. In a continuous casting mold panel that has a two-layer structure of a copper alloy inner plate and a non-magnetic stainless steel back plate, and both plates are integrated with non-magnetic stainless steel bolts, the above inner plate is It contains Cr: 0.4-1.5%, Zr: 0.01-0.3%, Al: 0.05-0.8%, Ti: 0.01-0.6%, and further contains one or two of Fe, Ni, and Co. or more: Contains 0.05 to 1%, with the remainder consisting of Cu and unavoidable impurities, and is composed of a precipitation hardening copper alloy having an electrical conductivity of 30 to 70% at IACS%, and the plate thickness is 5. A continuous casting mold panel having a diameter of ~25 mm, further having a bolt mounting structure welded upright by arc stud welding on the back surface of the inner plate, and grooves serving as cooling channels provided on the back surface.
JP9047483A 1983-05-23 1983-05-23 Mold panel for continuous casting Granted JPS59229261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9047483A JPS59229261A (en) 1983-05-23 1983-05-23 Mold panel for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9047483A JPS59229261A (en) 1983-05-23 1983-05-23 Mold panel for continuous casting

Publications (2)

Publication Number Publication Date
JPS59229261A JPS59229261A (en) 1984-12-22
JPS6344461B2 true JPS6344461B2 (en) 1988-09-05

Family

ID=13999582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9047483A Granted JPS59229261A (en) 1983-05-23 1983-05-23 Mold panel for continuous casting

Country Status (1)

Country Link
JP (1) JPS59229261A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA01002885A (en) * 2000-03-25 2003-08-20 Sms Demag Ag Liquid cooled plate mould.
WO2014175659A1 (en) * 2013-04-23 2014-10-30 (주)지엔에스쏠리텍 Mold having channel
ITUD20130137A1 (en) 2013-10-23 2015-04-24 Danieli Off Mecc CRYSTALLIZER FOR CONTINUOUS CASTING AND METHOD FOR ITS REALIZATION
KR101649678B1 (en) * 2014-10-10 2016-08-19 주식회사 포스코건설 Apparatus for fixing mold plate of continuous casting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107464A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58107459A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58107462A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58107460A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58107463A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107464A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58107459A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58107462A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58107460A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58107463A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting

Also Published As

Publication number Publication date
JPS59229261A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
CN106363151B (en) A method of preparing copper and iron double metallic composite material
CN100491558C (en) High-performance yttrium-base heavy rare earth copper alloy die material and preparation method thereof
JPS6239212B2 (en)
JPH0440418B2 (en)
CN105132767B (en) A kind of high connductivity resistance to compression creep aluminium alloy and its manufacture method
JPS6344461B2 (en)
JPH05169290A (en) Aluminum alloy filler material and its production
JP2005281829A (en) Al-si based alloy and alloy member made of the alloy
CN109434319A (en) A kind of aluminium alloy TIG welding wire and preparation method thereof
JPS6049834A (en) Mold panel for continuous casting
CN101850481B (en) Copper alloy solder wire for fusion welding of thick and big red copper member and preparation method thereof
CN102517476A (en) High strength aluminum alloy capable of reducing porosity and dispersed shrinkage and preparation method thereof
CN112695234A (en) Corrosion-resistant aluminum alloy and preparation method thereof
JPS58212839A (en) Cu alloy for continuous casting mold
JPS6277150A (en) Panel for continuous casting mold
JP3467711B2 (en) Copper based alloy casting method
JPH079085A (en) Manufacture of partially reformed aluminum-made core for casting
CN107619974A (en) A kind of high-strength high-elasticity modulus aluminium alloy and preparation method thereof
JP2005081371A (en) Electrode material and its production method
JP3378621B2 (en) Electrode for resistance welding and method of manufacturing the same
JPS6144930B2 (en)
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH11123570A (en) Manufacture of titanium clad steel sheet superior in joining strength of weld zone
JP2005288519A (en) Electrode material and its production method
JPH08165539A (en) Heat treated type thin aluminum extruded shape and its production