JPH05169290A - Aluminum alloy filler material and its production - Google Patents

Aluminum alloy filler material and its production

Info

Publication number
JPH05169290A
JPH05169290A JP35368791A JP35368791A JPH05169290A JP H05169290 A JPH05169290 A JP H05169290A JP 35368791 A JP35368791 A JP 35368791A JP 35368791 A JP35368791 A JP 35368791A JP H05169290 A JPH05169290 A JP H05169290A
Authority
JP
Japan
Prior art keywords
filler material
aluminum alloy
strength
alloy filler
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35368791A
Other languages
Japanese (ja)
Other versions
JP3219293B2 (en
Inventor
Kazuo Yonezawa
米澤和男
Kazuo Furugane
古金和郎
Masakazu Hirano
平野正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP35368791A priority Critical patent/JP3219293B2/en
Publication of JPH05169290A publication Critical patent/JPH05169290A/en
Application granted granted Critical
Publication of JP3219293B2 publication Critical patent/JP3219293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain the aluminum alloy filler material which improves the strength of welding joint part while improving the crack resistance against Al-Zn-Mg based aluminum alloy filler material at the same time. CONSTITUTION:This filler material contains 1-6% Zn, 3-6% Mg (here, Zn<=Mg). 0.2-0.9% Mn, 0.05-0.5% Cr, 0.05-0.2% Ti, 0.01-0.2% B, and 0.05-0.2% Zr, and balance composed of Al and inevitable impurities. As necessary, further 0.02-1% Al may be incorporated. Such filler material is produced by re-melting an aluminum cast ingot having the above-mentioned chemical composition cast with a conventional method by using the energy beam having the high power density of 10<4>-10<9>w/mm<2> and the zone melting method that the melting width of one time is made <=30mm, and rapidly solidifying by the solidifying speed of higher than 1-3X10<2> deg.C/sec, and Zr may be incorporated more than the quantity the of solid solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶接に用いられるアルミ
ニウム合金溶加材、特にAl−Zn−Mg系合金材料の溶
接に用いられる溶加材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy filler material used for welding, and more particularly to a filler material used for welding Al-Zn-Mg type alloy materials and a method for producing the same.

【0002】[0002]

【従来の技術】溶融溶接が可能なAl−Zn−Mg系合金
は車両、橋梁や他の構造物に広く用いられている。本系
合金は、共材の溶加材で溶接した場合、継手強度は高く
なるものの、割れ感受性が高く、溶接割れや応力腐食割
れが発生し易い。このため、実施施工では母材と成分の
異なるAl−Mg系の5356、5183や5056が溶
加材として用いられる。一方、パルス溶接などにより溶
湯を撹拌して結晶粒を微細化する方法も用いられている
が、実施施工では溶接割れの発生を完全に防止すること
はできない。また、溶接部と母材の組成が異なるため、
母材の強さに比べ溶接継手部の強さが低く、高性能、大
型化が阻害されている。
2. Description of the Related Art Al-Zn-Mg type alloys which can be melt-welded are widely used for vehicles, bridges and other structures. When the present alloy is welded with a filler metal as a co-material, the joint strength is high, but the crack susceptibility is high, and weld cracking and stress corrosion cracking are likely to occur. For this reason, Al-Mg-based 5356, 5183, and 5056, which have different components from the base metal, are used as the filler in the actual construction. On the other hand, there is also used a method of refining crystal grains by stirring the molten metal by pulse welding or the like, but it is not possible to completely prevent the occurrence of welding cracks in the actual construction. Also, because the composition of the weld and the base metal is different,
The strength of the welded joint is lower than the strength of the base metal, which hinders high performance and large size.

【0003】[0003]

【発明が解決しようとする課題】上述のように、本系合
金は強度を高めるためにZn、Mgが含有されているが、
高強度化により割れ感受性が高くなり溶接割れや応力腐
食割れが発生し易くなるため、従来より、割れ感受性の
低いAl−Mg系の5356や5183等が溶加材として
用いられているが、その溶接金属部は、時効硬化性が劣
ったりするため、溶接後の時効処理での強度の向上は期
待できない。そのため、高強度である母材に比べ溶接部
の強さが著しく劣るという問題があった。
As described above, the present alloy contains Zn and Mg in order to enhance the strength.
Since cracking susceptibility increases due to higher strength and weld cracking and stress corrosion cracking are more likely to occur, Al-Mg-based 5356 and 5183, which have low cracking susceptibility, have been conventionally used as filler metals. Since the age-hardening property of the welded metal part is poor, improvement in strength cannot be expected in the aging treatment after welding. Therefore, there is a problem that the strength of the welded portion is significantly inferior to that of the base material having high strength.

【0004】一方、割れ感受性を改善する方法として
は、例えば、「軽金属」Vol.19、No.11(196
9)、p.470〜480に示すように、Zr、TiやBの
微量添加が有効であり、特にZrの添加が最も効果的
で、添加量が多い程、効果は顕著であることが知られて
いる。
On the other hand, as a method for improving the susceptibility to cracking, for example, “Light Metal”, Vol. 19, No. 11 (196).
9), p.470-480, it is effective to add a small amount of Zr, Ti or B. Especially, it is known that the addition of Zr is the most effective, and the larger the addition amount, the more remarkable the effect. Has been.

【0005】ところで、平衡状態におけるZrの固溶量
は最大で0.3%であり、本系合金の割れ感受性を実用
上問題のないレベルまで改善するためには固溶量以上の
Zr添加が必要である。しかし、通常の金型を用いる鋳
造法では凝固速度が102℃/sec以下と遅く、固溶量以
上のZrを添加すると、過剰なZrは巨大な晶出物を形成
する。その結果、圧延や線引き等の加工性悪化を引き起
こすため、実用上、Zrの添加は固溶量範囲内に限定さ
れ、本系合金の溶接割れ感受性の改善には限界があっ
た。
In the meantime, the solid solution amount of Zr in the equilibrium state is 0.3% at maximum, and in order to improve the crack susceptibility of this system alloy to a level where there is no practical problem, addition of Zr in excess of the solid solution amount is required. is necessary. However, in the casting method using a normal die, the solidification rate is as slow as 10 2 ° C / sec or less, and when Zr in a solid solution amount or more is added, excess Zr forms a huge crystallized substance. As a result, since workability such as rolling and wire drawing is deteriorated, the addition of Zr is practically limited within the range of the amount of solid solution, and there is a limit in improving the weld crack susceptibility of the present alloy.

【0006】一方、前述のパルス溶接法などにより溶湯
を撹拌して結晶粒を微細化する方法は、市販の溶接機で
は溶接条件的に微細化効果が少なかったり、装置的に付
与設備を必要として大掛かりとなり、実用的ではない。
On the other hand, the method of agitating the molten metal by the above-mentioned pulse welding method or the like to refine the crystal grains does not have a sufficient refining effect in terms of welding conditions in a commercially available welding machine, or requires equipment for providing equipment. It is a large scale and not practical.

【0007】以上のとおり、本系合金の溶加材には、従
来より、割れ感受性の低いAl−Mg系の溶加材(例え
ば、5356や5183等)が使用されているが、強
度、耐割れ性の観点で問題が多く、高性能、軽量化の障
害となっていることから、高い継手強度を有し、耐割れ
性に優れた溶加材に対する強いニーズがある。
As described above, Al-Mg type fillers (for example, 5356 and 5183) having low cracking susceptibility have been conventionally used as filler metals for the alloys of the present invention. Since there are many problems from the viewpoint of crackability and they hinder high performance and weight reduction, there is a strong need for a filler material having high joint strength and excellent crack resistance.

【0008】本発明は、かゝるニーズに応えるべくなさ
れたものであって、Al−Zn−Mg系アルミニウム合金
材料に対して、その耐割れ性を改善しつつ、溶接継手部
の強度向上を兼ね備えたアルミニウム合金溶加材を提供
することを目的とするものである。
The present invention has been made in order to meet such needs, and it is possible to improve the strength of the welded joint portion while improving the crack resistance of the Al-Zn-Mg type aluminum alloy material. The object is to provide an aluminum alloy filler material having the dual function.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するた
め、本発明者は、従来のAl−Zn−Mg系アルミニウム
合金溶加材の欠点を改善し得る方策について鋭意研究を
重ねた。その結果、Al−Mg−Zn系組成に高含有量の
Zrを添加し、溶接割れ性を改善しつつ溶接継手部の強
度向上を図ること、また、Agを添加することにより耐
応力腐食割れ性を改善させること、更には、高含有量の
Zrを添加させる方法として、通常法で造塊した鋳塊を
高エネルギー密度を有するエネルギービームにより再溶
融し、急速凝固させることにより、固溶量より多いZr
を含有させることができることを見い出し、これらの知
見に基づいて本発明をなしたものである。
In order to solve the above-mentioned problems, the inventor of the present invention has earnestly studied a method for improving the drawbacks of the conventional Al-Zn-Mg type aluminum alloy filler metal. As a result, a high content of Zr is added to the Al-Mg-Zn composition to improve the strength of the weld joint while improving the weld crackability, and the stress corrosion cracking resistance is improved by adding Ag. In addition, as a method of adding a high content of Zr, the ingot produced by the usual method is remelted by an energy beam having a high energy density and rapidly solidified Many Zr
The present invention has been made on the basis of these findings, by discovering that it is possible to incorporate

【0010】すなわち、本発明は、Zn:1〜6%、Mg:
3〜6%(但し、Zn≦Mg)、Mn:0.2〜0.9%、Cr:
0.05〜0.5%、Ti:0.05〜0.2%、B:0.01
〜0.2%及びZr:0.05〜2%を含有し、必要に応じ
て更にAg:0.02〜1%を含有し、残部がAlと不可避
的不純物からなることを特徴とするAl−Mg−Zn系ア
ルミニウム合金溶加材を要旨とするものである。
That is, in the present invention, Zn: 1 to 6%, Mg:
3 to 6% (however Zn ≦ Mg), Mn: 0.2 to 0.9%, Cr:
0.05-0.5%, Ti: 0.05-0.2%, B: 0.01
.About.0.2% and Zr: 0.05 to 2%, and optionally Ag: 0.02 to 1%, and the balance Al and unavoidable impurities. -Mg-Zn type aluminum alloy filler material is the main point.

【0011】また、その製造方法は、通常の方法により
鋳造した上記化学成分を有するアルミニウム合金鋳塊
を、104〜109w/mm2と高いパワー密度を有するエネ
ルギービームを用い、かつ1回の溶融幅を30mm以下と
するゾーンメルティング法で再溶融し、1〜3×102
℃/sec以上の凝固速度で急速凝固させることを特徴と
するものである。
The manufacturing method is such that an aluminum alloy ingot having the above chemical composition cast by a usual method is used once with an energy beam having a high power density of 10 4 to 10 9 w / mm 2. 1 to 3 × 10 2 by remelting by the zone melting method with the melting width of 30 mm or less.
It is characterized by rapid solidification at a solidification rate of ° C / sec or more.

【0012】以下に本発明を更に詳述する。The present invention will be described in more detail below.

【0013】[0013]

【作用】[Action]

【0014】まず、本発明のアルミニウム合金溶加材に
おける化学成分の限定理由について説明する。
First, the reasons for limiting the chemical components in the aluminum alloy filler material of the present invention will be described.

【0015】Zn、Mg:ZnとMgは、アルミニウム合金
中においてMgZn2、Al2Mg3Zn3などの化合物を生成
し、強化元素として作用するが、Znが1%未満、Mgが
3%未満ではこの効果がなく、また、Zn、Mgがそれぞ
れ6%を超えると加工性や応力腐食割れに対する抵抗が
劣化するので不適当である。よって、Zn量は1〜6
%、Mgは3〜6%の範囲とする。
Zn, Mg: Zn and Mg form compounds such as MgZn 2 , Al 2 Mg 3 Zn 3 in an aluminum alloy and act as a strengthening element, but Zn is less than 1% and Mg is less than 3%. However, this effect is not obtained, and if Zn and Mg exceed 6% each, workability and resistance to stress corrosion cracking deteriorate, which is not suitable. Therefore, the amount of Zn is 1-6
% And Mg are in the range of 3 to 6%.

【0016】但し、上記範囲において、Zn量は、Mg量
と等しいか、又は少ない量とする必要がある。すなわ
ち、ZnはMgと共に強化元素として作用するが、Al−
Zn−Mg系の三元合金を共金系の溶加材で溶接すると溶
接割れや感受性が高くなるために、Zn量はMg量より多
く添加できず、両者の関係はZn≦Mgとする。
However, in the above range, the Zn content must be equal to or less than the Mg content. That is, Zn acts as a strengthening element together with Mg, but Al-
When a Zn-Mg ternary alloy is welded with a common-metal filler metal, weld cracking and susceptibility increase, so the Zn content cannot be added in excess of the Mg content, and the relationship between them is Zn≤Mg.

【0017】Mn:Mnは、0.2%以上であれば強度及
び耐応力腐食割れ性を改善するが、0.9%を越えて含
有すると巨大化合物を生成するので好ましくない。よっ
て、Mn量は0.2〜0.9%の範囲とする。
Mn: If Mn is 0.2% or more, the strength and stress corrosion cracking resistance are improved, but if it exceeds 0.9%, a huge compound is formed, which is not preferable. Therefore, the amount of Mn is made into the range of 0.2-0.9%.

【0018】Cr:Crは、結晶粒を微細化し、強度及び
耐応力腐食割れ性を改善するが、そのためには0.05
%以上が必要である。しかし、0.5%を超えると機械
的性質を劣化させるので不適当である。よって、Cr量
は0.05〜0.5%の範囲とする。
Cr: Cr refines the crystal grains to improve the strength and the resistance to stress corrosion cracking.
% Or more is required. However, if it exceeds 0.5%, mechanical properties are deteriorated, so that it is unsuitable. Therefore, the Cr content is set to be in the range of 0.05 to 0.5%.

【0019】Ti、B:Ti及びBは、結晶粒微細化によ
り溶接割れ性を改善するが、Tiが0.05%未満、Bが
0.01%未満ではその効果がなく、またTi、Bがそれ
ぞれ0.2%を超えるとAlとの化合物を形成し、靭性を
劣化させるという点で不適当である。よって、Ti量は
0.05〜0.2%、B量は0.01〜0.2%の範囲とす
る。
Ti, B: Ti and B improve the weld cracking property by refining the crystal grains, but when Ti is less than 0.05% and B is less than 0.01%, there is no effect. If each exceeds 0.2%, it is unsuitable in that it forms a compound with Al and deteriorates the toughness. Therefore, the Ti content is set to 0.05 to 0.2%, and the B content is set to 0.01 to 0.2%.

【0020】Zr:Zrは、Ti及びBと同様に、結晶粒
微細化により溶接割れ性を改善するが、0.05%未満
では溶接割れ防止効果に乏しい。逆に、2%を超えると
加工性、靭性を悪化させるので好ましくない。よって、
Zr量は0.05〜2%の範囲とする。なお、Zrを固溶
量以上に含有させるには、後述の製造方法によると、巨
大晶出物の形成並びに加工性悪化を伴うことがない。
Zr: Zr, like Ti and B, improves the weld cracking property by refining the crystal grains, but if it is less than 0.05%, the effect of preventing weld cracking is poor. On the contrary, if it exceeds 2%, workability and toughness are deteriorated, which is not preferable. Therefore,
The amount of Zr is set in the range of 0.05 to 2%. Incidentally, in order to contain Zr in a solid solution amount or more, according to the manufacturing method described later, formation of giant crystallized substances and deterioration of workability are not accompanied.

【0021】Ag:Agは、応力腐食割れ性を改善し強度
を増大させる効果があるので、必要に応じて添加する。
しかし、0.02%未満ではその効果が少なく、また1
%を超えると溶接性が劣ったり、また不経済でもあるの
で好ましくない。よって、Ag量は0.02〜1%の範囲
とする。
Ag: Ag has the effect of improving the stress corrosion cracking property and increasing the strength, so it is added if necessary.
However, if less than 0.02%, the effect is small, and
% Is not preferable because weldability is poor and it is uneconomical. Therefore, the amount of Ag is set in the range of 0.02 to 1%.

【0022】次に、上述のAl−Mg−Zn系アルミニウ
ム合金溶加材の製造方法について説明する。
Next, a method of manufacturing the above Al-Mg-Zn type aluminum alloy filler material will be described.

【0023】Zrは、消失元素であるため、溶加材に添
加する場合は、母材に添加する場合に比べて割れ防止に
対する効果は減少する。そのため、割れ性を改善するた
めには母材に添加するより多くのZr量の添加が必要と
なるが、平衡状態におけるZrの固溶量は0.3%以下で
あり、通常の金型を用いる鋳造法では、凝固時の冷却速
度が102℃/sec以下と遅いために、固溶量以上のZr
添加では巨大な晶出物を形成し、加工性の悪化を引き起
こすため好ましくない。
Since Zr is a vanishing element, when it is added to the filler material, the effect of preventing cracking is reduced compared to when it is added to the base material. Therefore, in order to improve the crackability, it is necessary to add a larger amount of Zr than that added to the base material, but the solid solution amount of Zr in the equilibrium state is 0.3% or less, and it is In the casting method used, since the cooling rate during solidification is as slow as 10 2 ° C / sec or less, Zr above the solid solution amount is used.
If added, a huge crystallized product is formed and the workability is deteriorated, which is not preferable.

【0024】そこで、本発明者等はこの改善策について
鋭意研究を重ねた。まず、パワー密度が104〜109w
/mm2と非常に高いエネルギー密度を有するエネルギー
ビームを溶接に応用した場合、ビード幅が非常に狭く、
溶込みの深いビードが形成されると共に、凝固時の冷却
速度が非常に大きいことに着目した。例えば、パワー密
度が103w/mm2以下の場合は凝固時の冷却速度が1〜
3×102℃/sec以下となるが、パワー密度が104w/
mm2以上の場合は、3×102℃/sec以上の冷却速度が
得られる。
Therefore, the inventors of the present invention have conducted intensive studies on this improvement measure. First, the power density is 10 4 to 10 9 w
When applying an energy beam with a very high energy density of / mm 2 to welding, the bead width is very narrow,
We focused on the fact that a bead with deep penetration was formed and the cooling rate during solidification was very high. For example, when the power density is 10 3 w / mm 2 or less, the cooling rate during solidification is 1 to
3 × 10 2 ° C / sec or less, but power density is 10 4 w /
In the case of mm 2 or more, a cooling rate of 3 × 10 2 ° C / sec or more can be obtained.

【0025】この原理を、固溶量以上のZrを含有させ
たアルミニウム合金を通常の金型(冷却速度は102℃/
sec以下)を用いて鋳造した鋳塊の再溶解に適用したとこ
ろ、巨大な晶出物を形成することなく、また加工性の悪
化を引き起こすことなく、固溶量以上の高Zrを含有さ
せられることが判明した。
According to this principle, an aluminum alloy containing a solid solution amount of Zr or more is used in an ordinary die (cooling rate is 10 2 ° C /
When applied to the remelting of ingots cast using (sec or less), it can contain a high amount of solid solution Zr or more without forming huge crystallized substances and causing deterioration of workability. It has been found.

【0026】その際、肉厚方向に完全に再溶融させるた
めに、例えば、後述の表2に示す条件を用い、適当なリ
メルトピッチで、1回の溶融幅が30mm以下でゾーンメ
ルティングすることにより、鋳塊の冷却速度は3×10
2℃/sec以上となり、急速凝固が可能となる。
At this time, in order to completely remelt in the thickness direction, for example, by using the conditions shown in Table 2 described later, zone melting is performed with an appropriate remelt pitch and a single melting width of 30 mm or less. , Cooling rate of ingot is 3 × 10
2 ° C / sec or more, enabling rapid solidification.

【0027】このような高いエネルギー密度を有するエ
ネルギービームとしては、電子ビームやレーザが挙げら
れる。熱源を連続的でなくパワー密度を集約(高く)し周
期的に照射する方法では109w/mm2以上のパワー密度
を得ることは可能であるが、本方法のように連続的に熱
源を照射する方法では、現在の設備では能力的に不可能
である。よって、パワー密度の上限は109w/mm2とす
る。
Examples of the energy beam having such a high energy density include an electron beam and a laser. Although it is possible to obtain a power density of 10 9 w / mm 2 or more by the method of irradiating the heat source not continuously but by consolidating (increasing) the power density (higher), it is possible to continuously obtain the heat source like this method. Irradiation methods are not possible with current equipment. Therefore, the upper limit of the power density is 10 9 w / mm 2 .

【0028】なお、現状では、設備の能力的にゾーンメ
ルティング法以外の方法では凝固時の冷却速度が遅く不
可能である。また、本法以外に急速凝固させる方法には
連続鋳造法があるが、現状の技術ではゾーンメルティン
グ法に相当する冷却速度が得られない。
At present, the cooling rate at the time of solidification cannot be slowed by a method other than the zone melting method due to the capacity of the equipment. In addition to the present method, there is a continuous casting method as a method for rapid solidification, but the cooling rate equivalent to the zone melting method cannot be obtained with the current technology.

【0029】本溶加材を用いる母材としては、Al−Zn
−Mg系3元アルミニウム合金が最も好ましく、その成
分組成、並びに溶接法は特に制限はない。
The base material using the present filler metal is Al--Zn.
-Mg-based ternary aluminum alloy is most preferable, and its component composition and welding method are not particularly limited.

【0030】次に本発明の実施例を示す。Next, examples of the present invention will be shown.

【0031】[0031]

【実施例】【Example】

【表1】 に示す化学成分を有するアルミニウム合金のうち、No.
1〜No.19のアルミニウム合金を通常法で鋳造し、得
られた鋳塊(板厚50mm)を、電子ビームを用い、
[Table 1] Among the aluminum alloys having the chemical composition shown in No.
Aluminum alloy of No. 1 to No. 19 was cast by a usual method, and the obtained ingot (plate thickness 50 mm) was used with an electron beam,

【表2】 に示す条件で、リメルトピッチ15mmで、1回の溶融幅
が15〜30mmとなる条件で、両面から板厚方向に完全
に溶融するように鋳塊の幅、及び長さ方向に再溶融凝固
させた後、圧延、線引きにより、線径3.2mmの溶接棒
を製作し、TIG溶接に供した。
[Table 2] Under the conditions shown in (1), the ingot was remelted and solidified in the width direction and the length direction so as to be completely melted from both sides in the plate thickness direction under the condition that the remelt pitch was 15 mm and the one-time melting width was 15 to 30 mm. After that, by rolling and drawing, a welding rod having a wire diameter of 3.2 mm was manufactured and subjected to TIG welding.

【0032】表1のNo.1〜No.7が本発明例である。
比較のため、従来合金の5356(表1中のNo.20)も
用いた。母材には代表的なAl−Zn−Mg系合金である
A7N01-T6を用いた。
No. 1 to No. 7 in Table 1 are examples of the present invention.
For comparison, a conventional alloy 5356 (No. 20 in Table 1) was also used. A7N01-T6, which is a typical Al-Zn-Mg type alloy, was used as the base material.

【表3】 に溶接試験結果を示す。[Table 3] The welding test results are shown in.

【0033】なお、溶接割れ感受性は、板厚2mmのフィ
ッシュボーン型試験法を用い、AC・TIG法で試験を
行い、割れ率(%)=(割れ長さ/溶接全長)×100を求
めて評価した。継手強度については、板厚6mmのV開先
(開先角度は90°)を片面2パスで仕上げ、室温で1ヶ
月の常温時効処理を実施した後、余盛を削除して強度試
験を行った。応力腐食割れ性は、3点支持法により15
kg/mm2の応力を加え、100℃で3g/1のNaClと3
6g/1のCrO3と30g/1のK2Cr27との混合水溶
液に浸漬し、割れを観察して評価した。また、加工性
は、溶接棒製作工程における圧延加工時の耳割れの有無
により判定した。評価は、従来合金の5356との対比
で行い、◎(特に優れている)、○(優れている)、△(同
等)、×(劣る)の4段階で評価した。
The weld crack susceptibility was tested by the AC / TIG method using a fishbone type test method with a plate thickness of 2 mm, and the crack rate (%) = (crack length / weld total length) × 100 was obtained. evaluated. Regarding joint strength, V groove with a plate thickness of 6 mm
(Groove angle of 90 °) was finished on two passes on one side, and after normal temperature aging treatment for one month at room temperature, the extra reinforcement was removed and a strength test was conducted. The stress corrosion cracking property is 15 by the three-point support method.
Apply 3 kg / mm 2 of stress and 100 g of 3g / 1 NaCl.
It was immersed in a mixed aqueous solution of 6 g / 1 of CrO 3 and 30 g / 1 of K 2 Cr 2 O 7, and cracks were observed and evaluated. The workability was determined by the presence or absence of edge cracks during rolling in the welding rod manufacturing process. The evaluation was performed in comparison with the conventional alloy 5356, and was evaluated in four grades of ⊚ (especially excellent), ◯ (excellent), Δ (equivalent), and × (inferior).

【0034】また、In addition,

【表4】 に圧延加工におけるインゴットの種類についての試験結
果を示す。判定は、圧延加工における割れの有無により
判定し、1個の割れの長さが10mm以下を○、10mm以
上を×とした。
[Table 4] The test results for the types of ingots used in the rolling process are shown in. The judgment was made based on the presence or absence of cracks in the rolling process, and the crack length of one crack was 10 mm or less, and ◯ was 10 mm or more.

【0035】表3より、以下のように考察される。From Table 3, the following is considered.

【0036】本発明例のNo.1〜No.7は、いずれも、
継手強度が高く、耐割れ性、加工性が優れている。
No. 1 to No. 7 of the present invention are all
High joint strength, excellent crack resistance and workability.

【0037】一方、比較例No.8はZn量が少なく、継
手強度が現状と同等で改善効果が認められない。また、
No.9はZn量が多く、継手強度は改善されるが、加工
性が悪化している。
On the other hand, Comparative Example No. 8 has a small amount of Zn, the joint strength is the same as the present condition, and no improvement effect is observed. Also,
No. 9 has a large amount of Zn and the joint strength is improved, but the workability is deteriorated.

【0038】No.10はMg量が少なく、継手強度の改
善が認められない。No.11はMg量が多く、割れ感受
性及び継手強度の改善は認められるものの、加工性が悪
化している。
No. 10 has a small amount of Mg and no improvement in joint strength is observed. No. 11 has a large amount of Mg, and although crack susceptibility and joint strength are improved, the workability is deteriorated.

【0039】No.12は、継手強度の改善効果は認めら
れるものの、Zr量が少ないために割れ感受性の改善が
認められない。No.13は、逆にZr量が多いために割
れ感受性及び継手強度の改善効果は認められるものの、
加工性の悪化を引き起こすので好ましくない。
In No. 12, although the effect of improving the joint strength is recognized, the improvement in crack susceptibility is not recognized because the amount of Zr is small. On the other hand, No. 13 has a large amount of Zr, so that crack susceptibility and joint strength improving effects are recognized, but
It is not preferable because it causes deterioration of workability.

【0040】No.14は、Ti、B量が少なく割れ感受
性の改善効果が少ない。No.15は逆にTi、B量が多
く、継手強度の改善効果が認められない。
No. 14 has a small amount of Ti and B and has a small effect of improving crack susceptibility. On the contrary, No. 15 has a large amount of Ti and B, and the effect of improving the joint strength is not recognized.

【0041】No.16はMn量が少なく継手強度の改善
効果が少ない。No.17は逆にMn量が多く加工性の悪
化を引き起こすので好ましくない。
No. 16 has a small amount of Mn and little improvement effect on joint strength. On the contrary, No. 17 is not preferable because it has a large amount of Mn, which causes deterioration of workability.

【0042】No.18はCr量が少なく耐割れ性の改善
が認められず、効果が少ない。また、従来合金のNo.1
9は、Cr量が多く加工性が悪化している。
No. 18 has a small amount of Cr and no improvement in cracking resistance is observed, and the effect is small. In addition, the conventional alloy No. 1
In No. 9, the amount of Cr is large and the workability is deteriorated.

【0043】また、加工におけるインゴットの影響につ
いては、表4に示すように、通常法に比べ、本発明法
(再溶融法)が圧延加工時における耳割れの発生も少な
く、優れていることがわかる。
As to the influence of the ingot on the processing, as shown in Table 4, the method according to the present invention was compared with the conventional method.
It can be seen that the (remelting method) is excellent in that the occurrence of edge cracks during rolling is small.

【0044】[0044]

【発明の効果】以上詳述したように、本発明の溶加材に
よれば、Al−Zn−Mg系アルミニウム合金の溶接に適
し、耐割れ性を改善し、更に高い継手強度が得られる。
また加工性も優れているので、その工業上の効果は顕著
である。
As described in detail above, the filler metal of the present invention is suitable for welding Al-Zn-Mg type aluminum alloys, has improved crack resistance, and has higher joint strength.
Further, since it has excellent workability, its industrial effect is remarkable.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下、同じ)、Zn:1〜6%、
Mg:3〜6%(但し、Zn≦Mg)、Mn:0.2〜0.9%、
Cr:0.05〜0.5%、Ti:0.05〜0.2%、B:0.
01〜0.2%及びZr:0.05〜2%を含有し、残部が
Alと不可避的不純物からなることを特徴とするAl−M
g−Zn系アルミニウム合金溶加材。
1. By weight% (hereinafter, the same), Zn: 1 to 6%,
Mg: 3 to 6% (however Zn ≦ Mg), Mn: 0.2 to 0.9%,
Cr: 0.05-0.5%, Ti: 0.05-0.2%, B: 0.0.
Al-M containing 01 to 0.2% and Zr: 0.05 to 2%, the balance being Al and inevitable impurities.
g-Zn aluminum alloy filler material.
【請求項2】 Zn:1〜6%、Mg:3〜6%(但し、Zn
≦Mg)、Mn:0.2〜0.9%、Cr:0.05〜0.5%、
Ti:0.05〜0.2%、B:0.01〜0.2%及びZr:
0.05〜2%を含有し、更にAg:0.02〜1%を含有
し、残部がAlと不可避的不純物からなることを特徴と
するAl−Mg−Zn系アルミニウム合金溶加材。
2. Zn: 1 to 6%, Mg: 3 to 6% (however, Zn:
≤ Mg), Mn: 0.2-0.9%, Cr: 0.05-0.5%,
Ti: 0.05-0.2%, B: 0.01-0.2% and Zr:
An Al-Mg-Zn-based aluminum alloy filler material containing 0.05 to 2%, further containing Ag: 0.02 to 1%, and the balance being Al and inevitable impurities.
【請求項3】 通常の方法により鋳造した請求項1又は
2に記載の化学成分を有するアルミニウム合金鋳塊を、
104〜109w/mm2と高いパワー密度を有するエネルギ
ービームを用い、かつ1回の溶融幅を30mm以下とする
ゾーンメルティング法で再溶融し、1〜3×102℃/s
ec以上の凝固速度で急速凝固させることを特徴とするA
l−Mg−Zn系アルミニウム合金溶加材の製造方法。
3. An aluminum alloy ingot having the chemical composition according to claim 1, which is cast by a normal method,
1 to 3 × 10 2 ° C / s by using an energy beam having a high power density of 10 4 to 10 9 w / mm 2 and remelting by a zone melting method with a melting width of 30 mm or less once.
A characterized by rapid solidification at a solidification rate of ec or higher
A method for producing an l-Mg-Zn-based aluminum alloy filler material.
JP35368791A 1991-12-18 1991-12-18 Aluminum alloy filler metal and its manufacturing method Expired - Fee Related JP3219293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35368791A JP3219293B2 (en) 1991-12-18 1991-12-18 Aluminum alloy filler metal and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35368791A JP3219293B2 (en) 1991-12-18 1991-12-18 Aluminum alloy filler metal and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH05169290A true JPH05169290A (en) 1993-07-09
JP3219293B2 JP3219293B2 (en) 2001-10-15

Family

ID=18432539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35368791A Expired - Fee Related JP3219293B2 (en) 1991-12-18 1991-12-18 Aluminum alloy filler metal and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3219293B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017903A1 (en) * 1997-10-03 1999-04-15 Hoogovens Aluminium Walzprodukte Gmbh Aluminium-magnesium weld filler alloy
US6238495B1 (en) 1996-04-04 2001-05-29 Corus Aluminium Walzprodukte Gmbh Aluminium-magnesium alloy plate or extrusion
EP1249303A1 (en) * 2001-03-15 2002-10-16 McCook Metals L.L.C. High titanium/zirconium filler wire for aluminum alloys and method of welding
WO2006040034A1 (en) * 2004-10-15 2006-04-20 Aleris Aluminum Koblenz Gmbh Al-mg-mn weld filler alloy
US7494043B2 (en) 2004-10-15 2009-02-24 Aleris Aluminum Koblenz Gmbh Method for constructing a welded construction utilizing an Al-Mg-Mn weld filler alloy
WO2010060021A1 (en) * 2008-11-24 2010-05-27 Alcoa Inc. Fusion weldable filler alloys
WO2010126748A1 (en) * 2009-04-29 2010-11-04 Alcoa Inc. 7xxx weld filler alloys and methods of using the same
CN101972902A (en) * 2010-11-22 2011-02-16 山东电力研究院 Aluminum alloy welding flux for copper and aluminum welding
CN105401022A (en) * 2015-11-14 2016-03-16 合肥标兵凯基新型材料有限公司 High-toughness corrosion-resistant aluminum alloy and preparation method thereof
CN108396206A (en) * 2018-03-06 2018-08-14 东北大学 A kind of Al-Mg-Zn aluminium alloy welding wires and preparation method thereof
CN114341377A (en) * 2019-09-03 2022-04-12 日本轻金属株式会社 Bright aluminum alloy and bright aluminum alloy die casting material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646850A (en) * 2015-01-09 2015-05-27 西安交通大学 Al-Cu-Mg-Ti quaternary active solder for high-volume-fraction cast aluminum-based composite material, and preparation method for Al-Cu-Mg-Ti quaternary active solder

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238495B1 (en) 1996-04-04 2001-05-29 Corus Aluminium Walzprodukte Gmbh Aluminium-magnesium alloy plate or extrusion
US6342113B2 (en) 1996-04-04 2002-01-29 Corus Aluminium Walzprodukte Gmbh Aluminum-magnesium alloy plate or extrusion
WO1999017903A1 (en) * 1997-10-03 1999-04-15 Hoogovens Aluminium Walzprodukte Gmbh Aluminium-magnesium weld filler alloy
AU732493B2 (en) * 1997-10-03 2001-04-26 Corus Aluminium Walzprodukte Gmbh Aluminium-magnesium weld filler alloy
US6416884B1 (en) 1997-10-03 2002-07-09 Corus Aluminium Walzprodukte Gmbh Aluminium-magnesium weld filler alloy
CN1098743C (en) * 1997-10-03 2003-01-15 荷高文斯铝轧制品有限公司 Aluminium-Magnesium weld filler alloy
KR100495261B1 (en) * 1997-10-03 2005-06-14 후고벤스 알루미늄 발츠프로두크테 게엠베하 Aluminium-magnesium weld filler alloy
EP1249303A1 (en) * 2001-03-15 2002-10-16 McCook Metals L.L.C. High titanium/zirconium filler wire for aluminum alloys and method of welding
WO2006040034A1 (en) * 2004-10-15 2006-04-20 Aleris Aluminum Koblenz Gmbh Al-mg-mn weld filler alloy
US7494043B2 (en) 2004-10-15 2009-02-24 Aleris Aluminum Koblenz Gmbh Method for constructing a welded construction utilizing an Al-Mg-Mn weld filler alloy
WO2010060021A1 (en) * 2008-11-24 2010-05-27 Alcoa Inc. Fusion weldable filler alloys
WO2010126748A1 (en) * 2009-04-29 2010-11-04 Alcoa Inc. 7xxx weld filler alloys and methods of using the same
CN101890599A (en) * 2009-04-29 2010-11-24 美铝公司 7xxx weld filler alloys and using method thereof
CN101972902A (en) * 2010-11-22 2011-02-16 山东电力研究院 Aluminum alloy welding flux for copper and aluminum welding
CN105401022A (en) * 2015-11-14 2016-03-16 合肥标兵凯基新型材料有限公司 High-toughness corrosion-resistant aluminum alloy and preparation method thereof
CN108396206A (en) * 2018-03-06 2018-08-14 东北大学 A kind of Al-Mg-Zn aluminium alloy welding wires and preparation method thereof
CN114341377A (en) * 2019-09-03 2022-04-12 日本轻金属株式会社 Bright aluminum alloy and bright aluminum alloy die casting material

Also Published As

Publication number Publication date
JP3219293B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
US11267081B2 (en) Aluminum welding filler composition suitable for formation into wire used for fusion welding
JP4101749B2 (en) Weldable high strength Al-Mg-Si alloy
JP5652574B1 (en) Solid wire for gas shielded arc welding, gas shielded arc welding metal, welded joint, welded member, welding method, and method of manufacturing welded joint
JPH0686027B2 (en) Electric arc welding method
EP3265264B1 (en) Process for manufacturing welded parts comprising arc-welded wrought components made of 6xxx series aluminium alloy using a 5xxx series aluminium filler wire
JP3219293B2 (en) Aluminum alloy filler metal and its manufacturing method
JP2000317676A (en) Filler metal for welding of al-zn-mg-cu base alloy and heat treatment of welding material using the filler metal
JP6632839B2 (en) Aluminum alloy filler metal and aluminum alloy welding method
US3852122A (en) Method of producing a weldable and ageable aluminium alloy of great strength and product
JP2859019B2 (en) Aluminum alloy filler metal for molding dies and method of manufacturing the same
AU2017204285A1 (en) Aluminum welding filler metal, casting and wrought metal alloy
US4108688A (en) Cast aluminum plate and method therefor
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP2746520B2 (en) Method for producing Al-Zn-Mg based alloy
JP6679269B2 (en) Al alloy material for high energy beam welding
JPH11140610A (en) Production of aluminum alloy structural material excellent in toughness and weldability
JP2578453B2 (en) Manufacturing method of aluminum alloy filler metal
JP2008207249A (en) Method for welding aluminum alloy material having excellent weld crack resistance, and method for evaluating weld crack resistance of aluminum alloy material
JPH08165539A (en) Heat treated type thin aluminum extruded shape and its production
JP3378621B2 (en) Electrode for resistance welding and method of manufacturing the same
JPH01143791A (en) Aluminum alloy filler metal
JPS6111155B2 (en)
JP2017110272A (en) Al ALLOY MATERIAL FOR HIGH ENERGY BEAM WELDMENT AND MANUFACTURING METHOD THEREFOR
JP2860075B2 (en) Aluminum alloy filler metal
JPH1024387A (en) Filler material foe aluminum alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080810

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees