JPS6343975B2 - - Google Patents

Info

Publication number
JPS6343975B2
JPS6343975B2 JP58234572A JP23457283A JPS6343975B2 JP S6343975 B2 JPS6343975 B2 JP S6343975B2 JP 58234572 A JP58234572 A JP 58234572A JP 23457283 A JP23457283 A JP 23457283A JP S6343975 B2 JPS6343975 B2 JP S6343975B2
Authority
JP
Japan
Prior art keywords
power
converter
constant
reactive power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58234572A
Other languages
Japanese (ja)
Other versions
JPS60128828A (en
Inventor
Haruhisa Inoguchi
Takami Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58234572A priority Critical patent/JPS60128828A/en
Publication of JPS60128828A publication Critical patent/JPS60128828A/en
Publication of JPS6343975B2 publication Critical patent/JPS6343975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は直流送電系統に設備される変換装置に
係り、特に定電力制御系と定無効電力制御系の相
互の協調を考慮した変換装置の制御方法に関する
ものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a converter installed in a DC power transmission system, and particularly to control of a converter in consideration of mutual cooperation between a constant power control system and a constant reactive power control system. It is about the method.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

第1図に従来の直流送電系統の変換装置の制御
装置の概略ブロツク図を示す。
FIG. 1 shows a schematic block diagram of a control device for a conventional DC power transmission system converter.

直流送電系統の変換装置は変換器1A,1Bの
直流側はそれぞれ直流リアクトル2A,2Bを介
して直流送電線路3によつて接続され、各変換器
1A,1Bの交流側は変換器用変圧器4A,4
B、しや断器5A,5Bを介して、それぞれの交
流系統6A,6Bに接続されるように構成されて
いる。
In the converter of the DC power transmission system, the DC sides of converters 1A and 1B are connected to a DC transmission line 3 via DC reactors 2A and 2B, respectively, and the AC sides of each converter 1A and 1B are connected to a converter transformer 4A. ,4
B, it is configured to be connected to the respective AC systems 6A, 6B via shield breakers 5A, 5B.

従来変換器1A,1Bは定余裕角制御回路11
A,11B、定電流制御回路13A,13Bが具
備されており、定余裕角制御回路11A,11B
は変換器の最小余裕角を設定しているその余裕角
設定器18A,18Bの出力である最小余裕角基
準値と変換装置として必要な定無効電力制御回路
48の出力とが加算器17A,17Bで加算され
た余裕角基準値に変換器1A,1Bの余裕角を追
従させるように動作する。又、定電力制御回路4
4の出力である電流基準値と、直流電流を直流電
流検出器21A,21Bで検出し、電流/電圧変
換回路22A,22Bで検出し、制御回路として
取り扱い易い値に変換された直流電流検出値とが
加算回路23A,23Bに入力され、その差が定
電流制御回路13A,13Bに入力されることで
直流送電線路3に流れる直流電流が前記電流基準
値に追従するように制御されることになる。
Conventional converters 1A and 1B are constant margin angle control circuit 11
A, 11B, constant current control circuits 13A, 13B, and constant margin angle control circuits 11A, 11B.
The minimum margin angle reference value, which is the output of the margin angle setter 18A, 18B that sets the minimum margin angle of the converter, and the output of the constant reactive power control circuit 48, which is necessary as a converter, are added to the adders 17A, 17B. It operates so that the margin angles of the converters 1A and 1B follow the margin angle reference value added in . Also, constant power control circuit 4
The current reference value which is the output of 4 and the DC current detected value which is detected by DC current detectors 21A and 21B, detected by current/voltage conversion circuits 22A and 22B, and converted to a value that is easy to handle as a control circuit. are input to the adder circuits 23A, 23B, and the difference thereof is input to the constant current control circuits 13A, 13B, so that the DC current flowing through the DC power transmission line 3 is controlled to follow the current reference value. Become.

スイツチ24A,24Bは変換器を逆変換器運
転する変換器の方のみが閉となり、電流マージン
設定器25A,25Bの出力である電流マージン
が前記加算回路23A,23Bに入力される。
Of the switches 24A and 24B, only the converter that operates the converter as a reverse converter is closed, and the current margin that is the output of the current margin setters 25A and 25B is input to the adder circuits 23A and 23B.

この電流マージンの機能と、前記定余裕角制御
回路11A,11B、前記定電流制御回路13
A,13Bの出力のうちその出力として変換器の
制御進み角の進んでいる出力のみをその出力とし
て選択する制御進み角優先回路28A,28Bの
機能とにより、今、仮りにスイツチ24Bが閉で
スイツチ24Aが開になつているとすると、前記
制御進み角優先回路28Aには前記定電力制御回
路13Aの出力が出力され、前記制御進み角優先
回路28Bには前記余裕角制御回路11Bの出力
が出力される。(今後の説明は説明の便宜上、ス
イツチ24Aが開で、スイツチ24Bが閉として
説明する。) それぞれ前記制御進み角優先回路28A,28
Bの出力は位相制御回路29A,29Bに入力さ
れ、ここで変換器1A,1Bの点弧タイミングを
決めるパルス信号に変換され、パルス増巾回路3
0A,30Bを介して変換器1A,1Bにゲート
パルス信号として与えられるように構成されてい
る。
This current margin function, the constant margin angle control circuits 11A, 11B, and the constant current control circuit 13
Due to the function of the control advance angle priority circuits 28A and 28B, which selects only the output whose control advance angle of the converter is ahead among the outputs of A and 13B, it is assumed that the switch 24B is closed now. Assuming that the switch 24A is open, the output of the constant power control circuit 13A is output to the control advance angle priority circuit 28A, and the output of the margin angle control circuit 11B is output to the control advance angle priority circuit 28B. Output. (For convenience of explanation, the following explanation will be based on the assumption that the switch 24A is open and the switch 24B is closed.) The control advance angle priority circuits 28A and 28, respectively.
The output of B is input to phase control circuits 29A and 29B, where it is converted into a pulse signal that determines the firing timing of converters 1A and 1B, and pulse amplification circuit 3
It is configured to be applied as a gate pulse signal to converters 1A and 1B via 0A and 30B.

以上説明したように、変換器の制御回路を構成
することは公知の技術であり、かかる直流連系設
備の動作曲線は横軸に直流電流Id、縦軸に直流電
圧Edをとると、第2図に示すようになることも
衆知の事実である。
As explained above, configuring a control circuit for a converter is a well-known technique, and the operating curve of such DC interconnection equipment is expressed by the DC current Id on the horizontal axis and the DC voltage Ed on the vertical axis. It is also a well-known fact that the situation as shown in the figure occurs.

第2図において、イ,ロ,ハは順変換器運転を
している変換器1A(スイツチ24Aを開と仮定
していることで変換器1Aは順変換器運転とな
る)の動作曲線でイ,ロ部分は変換器1Aの転流
インピーダンス等で決まるレギユレーシヨン部分
でロ,ハは定電流制御回路13Aの働きによる定
電流特性の部分である。一方、ニ,ホ,ヘは逆変
換器運転をしている変換器1B(スイツチ24B
を閉と仮定していることで変換器1Bは逆変換器
運転となる)の動作曲線でニ,ホは前記定電流制
御回路13Bの働きによる定電流特性部分で、
ホ,ヘは前記定余裕角制御回路11Bの働きによ
る変換器1Bの定余裕角特性の部分である。ここ
で、第2図の動作特性曲線のハとニの点の直流電
流の差が前記電流マージンに相当している。
In Figure 2, A, B, and C are the operating curves of converter 1A in forward converter operation (assuming that switch 24A is open, converter 1A is in forward converter operation). , B are regulation portions determined by the commutation impedance of the converter 1A, etc., and B and C are constant current characteristic portions due to the function of the constant current control circuit 13A. On the other hand, D, E, and F are converter 1B (switch 24B) which is in reverse converter operation.
is assumed to be closed, so that the converter 1B operates as an inverse converter), and D and E are constant current characteristic parts due to the function of the constant current control circuit 13B,
E and F are constant margin angle characteristics of the converter 1B due to the function of the constant margin angle control circuit 11B. Here, the difference in direct current between points C and D of the operating characteristic curve in FIG. 2 corresponds to the current margin.

直流送電系の変換装置としては、第2図の変換
器1Aと変換器1Bの動作曲線の交点であるA点
で運転されるが、一般に直流送電系統は交流系統
6A,6Bの間を融通する送電電力を制御するた
めに直流送電系統の変換装置として定電力制御回
路44が具備されており、電力設定器41で決ま
る電力基準値と送電電力を検出する電力検出器4
3の出力である電力検出値を加算器42に入力
し、その差を定電力制御回路44で誤差増巾した
信号を前記電流基準値とするように構成すること
で、前記電力基準値に送電電力が追従するように
制御回路が構成されている。
As a DC power transmission system converter, it is operated at point A, which is the intersection of the operating curves of converter 1A and converter 1B in Fig. 2, but in general, DC power transmission system is accommodating between AC systems 6A and 6B. In order to control the transmitted power, a constant power control circuit 44 is provided as a converter of the DC power transmission system, and a power detector 4 detects the power reference value determined by the power setting device 41 and the transmitted power.
By inputting the power detection value which is the output of 3 into the adder 42 and using the signal obtained by amplifying the difference by the constant power control circuit 44 as the current reference value, the power is transmitted to the power reference value. The control circuit is configured so that the power follows.

即ち、第2図の特性曲線から明らかなように、
逆変換器運転をしている変換器は直流電圧を決め
ており、順変換器運転をしている変換器は直流電
流を制御して送電電力を制御するようになる。
That is, as is clear from the characteristic curve in Figure 2,
The converter operating as a reverse converter determines the DC voltage, and the converter operating as a forward converter controls the DC current to control the transmitted power.

一方無効電力を制御するためには、変換器は順
変換器運転、逆変換器運転のいづれの場合でも、
一種の遅れ負荷と考えられ、その力率は変換器の
制御遅れ角又は進み角にほぼ比例することは衆知
の事実であるため、無効電力を制御するために変
換装置の制御回路として無効電力設定器45で決
まる無効電力基準値と無効電力を検出する無効電
力検出器47の出力である無効電力検出値を加算
器46に入力し、その差を定無効電力制御回路4
8で誤差増巾した信号を前記最小余裕角基準値と
を加算器17A,17Bで加算して余裕角基準値
を制御することで無効電力を制御するように構成
される。
On the other hand, in order to control reactive power, the converter must be operated in either forward converter operation or inverse converter operation.
It is considered a type of lagging load, and it is a well-known fact that its power factor is almost proportional to the control delay angle or advance angle of the converter. Therefore, in order to control reactive power, the reactive power setting is used as a control circuit of the converter. The reactive power reference value determined by the device 45 and the reactive power detection value which is the output of the reactive power detector 47 that detects reactive power are input to the adder 46, and the difference between them is input to the constant reactive power control circuit 4.
The reactive power is controlled by adding the error amplified signal in step 8 and the minimum margin angle reference value in adders 17A and 17B to control the margin angle reference value.

尚、ここでは図示していないが、交流系統6A
の無効電力を制御する場合には交流系統6A,交
流系統6Bの無効電力を制御する場合には交流系
統6Bの無効電力を検出することは勿論のことで
あるが、今、変換器1Aが順変換器運転をした場
合に交流系統6Aの無効電力を制御する場合であ
つても、無効電力制御回路48の出力で変換器6
Bの余裕角を制御してもそれに付随して変換器1
Aの制御角が変化するので交流系統6Aの無効電
力は当然制御されることになる。
Although not shown here, the AC system 6A
Of course, when controlling the reactive power of the AC system 6A, it is necessary to detect the reactive power of the AC system 6B, and when controlling the reactive power of the AC system 6B, the reactive power of the AC system 6B is of course detected. Even if the reactive power of the AC system 6A is controlled when the converter is operated, the converter 6 is controlled by the output of the reactive power control circuit 48.
Even if the margin angle of B is controlled, converter 1
Since the control angle of A changes, the reactive power of the AC system 6A is naturally controlled.

今仮りに、第2図A点で運転している時に定無
効電力制御回路44の働きで変換器1Bで消費す
る遅れ無効電力を大きくするために余裕角基準値
が大きくなると直流電圧が低下してその動作特性
曲線はニ,ホ,ヘからニ′,ホ′,ヘ′に移行した
とする。一方、定電力制御回路44はその送電電
力を前記電力基準値に追従させるために、直流電
圧の低下分を補うために直流電流を増加させるよ
うに働き、変換器1Aの動作特性曲線はイ,ロ,
ハからイ′,ロ′,ハ′に移行し、変換装置の動作
点はA点からA′点に移行する。(送電電力を直流
電圧と直流電流の積と考えればP=一定の曲線は
双曲曲線となり、第2図に示すようになり、常に
このカーブ上に動作点があることになる。) ところで一般に変換器には電流定格があるた
め、定格以上の直流電流を流すことはできない。
従つて第1図のブロツク図では、図示されていな
いが、直流電流が定格以上流れないように、定電
力制御回路44の出力は直流電流が100%以上流
れないようにリミツト回路が具備されている。従
つて無効電力を制御するために余裕角を大きくし
ていくと、送電電力を制御するために直流電流が
増加していくわけであるが、直流電流が100%以
上流れようとするとリミツトがかかり第2図に示
すようにロ′,ハ′の定電流特性部分が直流電流
100%に相当しているとすると、直流電流は100%
でリミツトがかかり余裕角のみ大きくなるので逆
変換器の動作曲線はニ′,ホ″,ヘ″となり、変換
装置の動作点はA″点に移行する。このこをは
A″点は電力一定の曲線上にないので当然のこと
ながら、直流送電系統の送電電力が低下するとい
う不具合が生じることになる。
Now, hypothetically, when operating at point A in Figure 2, the constant reactive power control circuit 44 works to increase the delayed reactive power consumed by the converter 1B, and as the margin angle reference value increases, the DC voltage decreases. Suppose that the operating characteristic curve shifts from 2, 0, 5 to 2', 0', 5'. On the other hand, the constant power control circuit 44 works to increase the DC current to compensate for the drop in DC voltage in order to make the transmitted power follow the power reference value, and the operating characteristic curve of the converter 1A is B,
There is a transition from C to A', B', and C', and the operating point of the converter shifts from point A to point A'. (If we consider the transmitted power as the product of DC voltage and DC current, the curve where P = constant becomes a hyperbolic curve, as shown in Figure 2, and there is always an operating point on this curve.) Since converters have a current rating, they cannot pass a DC current higher than the rated current.
Therefore, although not shown in the block diagram of FIG. 1, the output of the constant power control circuit 44 is equipped with a limit circuit to prevent more than 100% of the DC current from flowing, so that the DC current does not exceed the rated value. There is. Therefore, if the margin angle is increased to control reactive power, the DC current will increase to control the transmitted power, but if the DC current attempts to flow more than 100%, a limit will be applied. As shown in Figure 2, the constant current characteristic parts of B' and C' are DC current.
If it corresponds to 100%, the DC current is 100%
Since the limit is applied and only the margin angle increases, the operating curve of the inverse converter becomes N', H', H', and the operating point of the converter shifts to point A'.
Since point A'' is not on the constant power curve, a problem naturally occurs in which the transmitted power of the DC transmission system decreases.

〔発明の目的〕[Purpose of the invention]

本発明は以上述べた不具合を解消し、送電電力
を一定に制御できる変換装置の制御方法を提供し
ようとするものである。
The present invention aims to eliminate the above-mentioned problems and provide a method for controlling a converter that can control transmitted power to a constant level.

〔発明の概要〕[Summary of the invention]

本発明は、無効電力を制御するために余裕角が
大きくなつて直流電流が100%に達つした時、電
力基準値と検出値の間に差が生じることに着目
し、無効電力制御回路に制限をかけて送電電力が
低下しないようにしたものである。
The present invention focuses on the fact that when the margin angle increases and the DC current reaches 100% in order to control reactive power, a difference occurs between the power reference value and the detected value. This is to prevent the transmitted power from decreasing by applying restrictions.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例の変換装置の制御装置の概略
ブロツク図を第2図に示す。第1図と同一機能の
ものは同一符号を記し説明を省略する。
FIG. 2 shows a schematic block diagram of a control device for a converter according to an embodiment of the present invention. Components with the same functions as those in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted.

構成は電力基準値と電力検出値を増巾回路51
に入力しその出力を前記無効電力設定器45の出
力の加算回路52を設けて、次段の加算回路46
に無効電力基準値が入力されるように構成し、前
記電力基準値より前記電力検出値の方が小さくな
つた場合には加算器46の入力信号である無効電
力基準値が前記無効電力設定器で決まる値より小
さくなるように構成されている。
The configuration includes an amplification circuit 51 for power reference value and power detection value.
An adder circuit 52 for the output of the reactive power setter 45 is provided, and the output thereof is added to the adder circuit 46 at the next stage.
A reactive power reference value is input to the reactive power setting device, and when the detected power value becomes smaller than the power reference value, the reactive power reference value, which is the input signal of the adder 46, is input to the reactive power setting device. It is configured so that it is smaller than the value determined by .

直流電流が100%以下の場合においては定無効
電力制御回路48の働きで余裕角が変化して無効
電力を制御しても定電力制御回路44は電力基準
値と電力検出値が等しくなるように制御している
ので、その差は現われず、従つて増巾回路51の
出力は0のままであり、第1図の制御ブロツク図
の場合の作用と全く同一であることは明らかであ
る。
When the DC current is 100% or less, the constant reactive power control circuit 48 works to change the margin angle and control the reactive power so that the constant power control circuit 44 makes the power reference value and the detected power value equal. Since the control is being performed, the difference does not appear, so the output of the amplifier circuit 51 remains 0, and it is clear that the operation is exactly the same as in the case of the control block diagram of FIG.

一方、余裕角が大きくなつて送電電力が低下す
ると加算器42の出力にはその差が生じることに
なる。このことは加算器52の働きにより前記無
効電力設定器の出力信号で決まる無効電力基準値
より、実際に加算器46に入力される無効電力基
準値を減少させるように作用する。従つて送電電
力が電力基準値より減少しようとすると、加算器
46に入力される無効電力基準値に制御がかか
り、無効電力制御のために直流電流が100%にな
つても更に余裕角が増加するように制御されるよ
うになることはない。又、増巾回路51には電力
基準値と電力検出値を増巾するだけでなく、かか
る作用を行なつている時に変換装置としてハンチ
ング等の現象が生じないように適切な位相進み遅
れ回路等のアンチハント回路も必要により具備さ
せる必要がある。
On the other hand, if the margin angle increases and the transmitted power decreases, a difference will occur in the output of the adder 42. This works so that the reactive power reference value actually input to the adder 46 is reduced by the action of the adder 52 than the reactive power reference value determined by the output signal of the reactive power setter. Therefore, when the transmitted power tries to decrease from the power reference value, the reactive power reference value input to the adder 46 is controlled, and the margin angle further increases even if the DC current reaches 100% for reactive power control. It does not become controlled as it does. In addition, the amplification circuit 51 not only amplifies the power reference value and the power detection value, but also includes an appropriate phase lead/lag circuit or the like to prevent phenomena such as hunting from occurring in the converter during such operations. It is also necessary to provide an anti-hunt circuit if necessary.

本発明では、無効電力制御回路の出力で余裕角
を制御するようにして説明を行なつたが、変換器
の制御回路として直流電圧を電圧基準値に追従し
て制御する定電圧制御回路が具備される場合があ
り、この場合においては前記電圧基準値を無効電
力制御回路の出力で制御するように構成される
が、かかる場合においても本発明による構成作用
を行うことも可能である。又、本発明では交流系
統の無効電力を制御するとして説明を行なつた
が、交流系統の交流電圧を制御する場合にも交流
電圧の変化分は無効電力の変化分と交流系統のリ
アクタンス分の積で概略現わされるため、本発明
の無効電力を交流電圧と置きかえるだけで全く同
一の構成作用で行うことができる。
In the present invention, the margin angle has been explained as being controlled by the output of the reactive power control circuit, but the converter control circuit includes a constant voltage control circuit that controls the DC voltage by following the voltage reference value. In this case, the voltage reference value is controlled by the output of the reactive power control circuit, but even in such a case, it is also possible to carry out the configuration according to the present invention. Furthermore, although the present invention has been described as controlling the reactive power of the AC system, when controlling the AC voltage of the AC system, the change in AC voltage is the same as the change in reactive power and the reactance of the AC system. Since it can be roughly expressed as a product, it can be performed with exactly the same configuration and operation simply by replacing the reactive power of the present invention with an alternating current voltage.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように電力基準値が電力検出値
より大きくなつた場合には、無効電力制御回路に
制限をかけることにより、送電電力を確保して安
定な電力融通を行うことができる直流送電系統の
変換装置の制御方法を具現することができる。
As explained above, when the power reference value becomes larger than the power detection value, the DC power transmission system can secure the transmitted power and perform stable power interchange by placing restrictions on the reactive power control circuit. It is possible to realize a method of controlling a converting device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流送電系統の変換装置の概略
制御ブロツク図、第2図は変換装置の特性曲線、
第3図は本発明の一実施例を示す概略制御ブロツ
ク図である。 1A,1B…変換器、41…電力設定器、42
…加算器、43…電力検出器、44…定電力制御
回路、45…無効電力設定器、46…加算器、4
7…無効電力検出器、48…定無効電力制御回
路、51…増巾回路、52…加算器。
Figure 1 is a schematic control block diagram of a converter for a conventional DC transmission system, Figure 2 is a characteristic curve of the converter,
FIG. 3 is a schematic control block diagram showing one embodiment of the present invention. 1A, 1B...Converter, 41...Power setting device, 42
...Adder, 43...Power detector, 44...Constant power control circuit, 45...Reactive power setter, 46...Adder, 4
7... Reactive power detector, 48... Constant reactive power control circuit, 51... Amplification circuit, 52... Adder.

Claims (1)

【特許請求の範囲】[Claims] 1 定電力制御回路と定無効電力制御回路とを具
備した直流送電系統の変換装置の制御装置におい
て、前記定電力制御回路の電力基準値が電力検出
値より大きくなつた場合には前記定無効電力制御
回路の制限をかけるようにしたことを特徴とする
変換装置の制御方法。
1. In a control device for a converter of a DC power transmission system that includes a constant power control circuit and a constant reactive power control circuit, when the power reference value of the constant power control circuit becomes larger than the power detection value, the constant reactive power A method for controlling a conversion device, characterized in that a control circuit is limited.
JP58234572A 1983-12-13 1983-12-13 Method of controlling converter Granted JPS60128828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234572A JPS60128828A (en) 1983-12-13 1983-12-13 Method of controlling converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234572A JPS60128828A (en) 1983-12-13 1983-12-13 Method of controlling converter

Publications (2)

Publication Number Publication Date
JPS60128828A JPS60128828A (en) 1985-07-09
JPS6343975B2 true JPS6343975B2 (en) 1988-09-02

Family

ID=16973113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234572A Granted JPS60128828A (en) 1983-12-13 1983-12-13 Method of controlling converter

Country Status (1)

Country Link
JP (1) JPS60128828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127967A1 (en) 2017-01-06 2018-07-12 株式会社東芝 Reactive power control device and reactive power control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240025A (en) * 1985-08-14 1987-02-21 東京電力株式会社 Cooperative controller for dc transmission system
JPH01321823A (en) * 1988-06-23 1989-12-27 Toshiba Corp Controller for power inverter
JP2695009B2 (en) * 1989-07-11 1997-12-24 株式会社東芝 Control device of power converter for grid connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127967A1 (en) 2017-01-06 2018-07-12 株式会社東芝 Reactive power control device and reactive power control method

Also Published As

Publication number Publication date
JPS60128828A (en) 1985-07-09

Similar Documents

Publication Publication Date Title
JPH0145297B2 (en)
US4263517A (en) Control method and system for an high voltage direct current system
JPS64899B2 (en)
JPH0570391B2 (en)
JPH057927B2 (en)
CA1279096C (en) Dc power transmission system
JPS6343975B2 (en)
JPS6252617A (en) Controller for phase modifying equipment
JPH0347522B2 (en)
EP0583875B1 (en) Power conversion control apparatus and process
JP2801758B2 (en) Monitoring device
JPS6110917A (en) Method of controlling ac/dc converter
JPS60223432A (en) Method of controlling voltage of ac/dc converter
JPH05207650A (en) Controller for dc transmission system
JPH04313108A (en) Reactive power compensating device
JP2606946Y2 (en) Control device for voltage fluctuation suppression device
JP2507434B2 (en) Excitation controller for synchronous machine
JP3276980B2 (en) Control device for AC / DC converter
JPH02178714A (en) Operation control system for voltage fluctuation contermeasure equipment
JPH0432633B2 (en)
JPH08223921A (en) Control device of ac-dc conversion apparatus
JPS6148724B2 (en)
JP3228033B2 (en) Control method of DC intermediate voltage of reactive power compensator
JPH04236131A (en) Controller for converter
JPS6277831A (en) Controlling method for frequency converter