JPS6342723B2 - - Google Patents

Info

Publication number
JPS6342723B2
JPS6342723B2 JP57055521A JP5552182A JPS6342723B2 JP S6342723 B2 JPS6342723 B2 JP S6342723B2 JP 57055521 A JP57055521 A JP 57055521A JP 5552182 A JP5552182 A JP 5552182A JP S6342723 B2 JPS6342723 B2 JP S6342723B2
Authority
JP
Japan
Prior art keywords
tube
steel pipe
light
photodetectors
tube axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57055521A
Other languages
Japanese (ja)
Other versions
JPS58172507A (en
Inventor
Shigeo Kawabata
Isamu Komine
Morio Saito
Tetsuo Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP57055521A priority Critical patent/JPS58172507A/en
Publication of JPS58172507A publication Critical patent/JPS58172507A/en
Publication of JPS6342723B2 publication Critical patent/JPS6342723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 この発明は、鋼管等の管の外面の突起等の異常
形状を正確に検出することができる、管外面の異
常形状検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for detecting abnormal shapes on the outer surface of a pipe, such as a steel pipe, which can accurately detect abnormal shapes such as protrusions on the outer surface of a pipe.

例えば、鋼管の非破壊検査方法として、磁気探
傷法や超音波探傷法が知られているが、そのいず
れにおいても、探触子と、被探傷材としての鋼管
とは、接触しているか、あるいは、0.5〜数mmの
小さな間隔を保つた状態で検査が行なわれる。
For example, magnetic flaw detection and ultrasonic flaw detection are known as non-destructive testing methods for steel pipes, but in both of these methods, the probe and the steel pipe as the material being tested are either in contact with each other or , inspection is performed while maintaining a small distance of 0.5 to several mm.

従つて、第1図に示すように、被探傷材である
鋼管1に異常突起1aが存在すると、その大きさ
によつては、探触子の破損を始め、探触子保持機
構の破損、回転体を有するものでは回転体の歪み
などの重大な故障も起こしかねず、何らかの対策
が必要である。このような異常突起としては、鋼
管の圧延過程で発生する管尾部でのフイツシユテ
ールと呼ばれるものや、管急冷時の焼入れ割れな
どが挙げられる。通常これらは、定径機と呼ばれ
る外径圧延機や、管の曲り矯正機により、管外面
下に押し込まれるが、特に弾性復元力のある鋼管
では、異常突起がその外面より突出したままとな
る。また、第2図に示すように、ローラコンベア
2などによる搬送過程で、ローラ2aに、鋼管1
の端が衝突して曲げられ、かくして鋼管1の端に
発生する異常突起もある。さらに、その他、鋼管
外面に発生する異常形状としては、ピアサーおよ
びエロンゲータでの圧延で見られるフレアーと呼
ばれるものがある。この異常形状は、鋼管の管端
尾部がラツパ状(末広り状)に成形されるもの
で、この形状が極端なものでは、次圧延機で圧延
されたときに、鋼管に尾端割れが発生し、その結
果、歩留低下、ロール疵の原因となる。
Therefore, as shown in FIG. 1, if an abnormal protrusion 1a exists in the steel pipe 1, which is the material to be tested, depending on its size, it may cause damage to the probe, damage to the probe holding mechanism, or damage to the probe holding mechanism. If the device has a rotating body, serious failures such as distortion of the rotating body may occur, so some kind of countermeasure is required. Examples of such abnormal protrusions include what is called a fishtail at the pipe tail that occurs during the rolling process of the steel pipe, and quench cracks during rapid cooling of the pipe. Normally, these are pushed under the outer surface of the pipe by an outside diameter rolling machine called a diameter-sizing machine or a pipe straightening machine, but especially in steel pipes with elastic resilience, the abnormal protrusions remain protruding from the outer surface. . In addition, as shown in FIG. 2, during the conveyance process by the roller conveyor 2, the steel pipe 1
There are also abnormal protrusions that occur at the ends of the steel pipe 1, where the ends collide and are bent. Furthermore, as an abnormal shape that occurs on the outer surface of a steel pipe, there is a so-called flare that is observed during rolling with a piercer and an elongator. This abnormal shape occurs when the tail end of the steel pipe is formed into a flared shape (widening shape), and if this shape is extreme, the tail end cracks will occur in the steel pipe when it is rolled in the next rolling mill. However, this results in a decrease in yield and roll defects.

従つて、非破壊検査に先立つて、鋼管外面の異
常形状を検出する必要があるが、従来、このよう
な鋼管外面の異常形状検出方法の1つとして、第
3図に示すように、導電性ゴムのリング3中を、
鋼管1が通過する際に、このリング3と、鋼管1
の外面との電気的導通を導通検出器3′によつて
検知して、その外面に異常突起等の異常形状の有
無を検出する方法がある。しかしこの方法では、
搬送の際の鋼管1の躍り、鋼管1の曲りによるそ
の外面の上下動により誤動作が多く、また接触式
であるから、リング3の摩耗、引裂きによる破損
などにより、リング3の内周と鋼管1の外面との
間隙が、必要以上に大きくなつて、接触式の探傷
機を保護するに必要な小さな突起等の異常形状を
検出することが困難になる可能性が大きかつた。
その上、異なつた外径を持つ鋼管に対しては、そ
れに適合する内径を持つリングを使用しなければ
ならず、そのセツテイングは面倒である。
Therefore, it is necessary to detect abnormal shapes on the outer surface of steel pipes prior to non-destructive testing. Conventionally, as one method for detecting such abnormal shapes on the outer surface of steel pipes, as shown in FIG. Inside the rubber ring 3,
When the steel pipe 1 passes, this ring 3 and the steel pipe 1
There is a method of detecting the presence or absence of an abnormal shape such as an abnormal protrusion on the outer surface by detecting electrical continuity with the outer surface using a continuity detector 3'. However, with this method,
There are many malfunctions due to the movement of the steel pipe 1 during transportation and the vertical movement of the outer surface due to the bending of the steel pipe 1. Also, since it is a contact type, the inner circumference of the ring 3 and the steel pipe 1 may be damaged due to wear or tearing of the ring 3. The gap with the outer surface of the contact type flaw detector becomes larger than necessary, and there is a high possibility that it will be difficult to detect abnormal shapes such as small protrusions necessary to protect the contact type flaw detector.
Moreover, for steel pipes with different outer diameters, rings with matching inner diameters must be used, making setting them cumbersome.

なお、その他、鋼管のフイツシユテール部をカ
ツトして、管端の仕上げを行なつてから、これを
探傷機に適用することも行なわれているが、その
設置場所の選定に制約を作ることになり、このよ
うな仕上げは、製造工程上不可能な場合もある。
また、このような仕上げを行なうことは、後工程
における探傷機につき管端部の未探傷領域が増加
し、後工程に別の探傷機が必要になるなど、経済
上、工程上に問題が生ずる。
Another method is to cut the fishtail of a steel pipe and finish the end of the pipe before applying it to a flaw detector, but this creates restrictions on the selection of the installation location. However, such a finish may not be possible due to the manufacturing process.
In addition, performing this type of finishing causes economic and process problems, such as increasing the undetected area at the end of the tube with a flaw detector in the later process, and requiring a separate flaw detector in the later process. .

そこで、この発明は、以上のような問題を解消
すべくなされたもので、 その光の一部が、管軸方向に移動中の管の外面
によつて遮られるように、所定箇所に固定された
複数の光源と、 前記複数の光源の各々からの光を、前記管の外
面の投影を含むように受光するための、所定箇所
に固定された複数の光検出器と、 信号処理手段とを備え、 前記複数の光源および前記複数の光検出器は、
前記管の外面における、前記複数の光源の各々か
らの光の接線形成位置が、前記管の周方向に複数
得られるように配置されており、 前記複数の光検出器の各々は、前記管軸に直交
する方向と平行に複数のセンサを持つており、 前記信号処理手段は、前記複数の光検出器の
各々の複数のセンサからの信号に基づいて、前記
管軸方向に移動中の管の外面の異常形状を検出す
る管外面の異常形状検出装置としたことに特徴を
有する。
Therefore, this invention was made to solve the above-mentioned problems.The present invention was made in order to solve the above-mentioned problems. a plurality of light sources, a plurality of photodetectors fixed at predetermined locations for receiving light from each of the plurality of light sources so as to include a projection of the outer surface of the tube; and a signal processing means. comprising: the plurality of light sources and the plurality of photodetectors,
A plurality of tangent lines of light from each of the plurality of light sources are arranged on the outer surface of the tube in a circumferential direction of the tube, and each of the plurality of photodetectors is arranged along the tube axis. The signal processing means has a plurality of sensors in parallel with a direction orthogonal to the tube axis, and the signal processing means detects the temperature of the tube moving in the tube axis direction based on the signals from the plurality of sensors of each of the plurality of photodetectors. The present invention is characterized in that it is an abnormal shape detection device for the outer surface of a tube that detects abnormal shapes on the outer surface.

以下この発明を、実施例とともに図面を参照し
ながら説明する。
The present invention will be described below with reference to embodiments and drawings.

第4図はこの発明にかかる鋼管外面の異常形状
検出装置の概略構成図である。図示されるよう
に、鋼管1は、搬送ローラ4(図では1つしか示
してないが、所要数が間隔をあけて設けられてい
る)上に載置され、これによつて、その管軸方向
に搬送される。5は、その発生した光の一部が、
管軸方向に移動中の鋼管1の外面によつて遮ぎら
れるように、所定箇所に固定された光源、6は、
光源5からの光を、移動中の鋼管1の外面の投影
を含むように受光する位置に固定された光検出器
である。
FIG. 4 is a schematic diagram of an apparatus for detecting abnormal shape on the outer surface of a steel pipe according to the present invention. As shown in the figure, the steel pipe 1 is placed on conveyor rollers 4 (only one is shown in the figure, but the required number are provided at intervals), thereby controlling the pipe axis. conveyed in the direction. 5, some of the generated light is
A light source 6 fixed at a predetermined location so as to be blocked by the outer surface of the steel pipe 1 moving in the direction of the pipe axis,
This is a photodetector fixed at a position that receives the light from the light source 5 so as to include the projection of the outer surface of the moving steel pipe 1.

光源5は、例えば、ランプと集光用のレンズと
の組合せからなり、少なくとも光検出器6のセン
サ(後述)を照射可能な照射角度を持つている。
光検出器6は、例えば、集光用のレンズと、管軸
方向に移動中の鋼管1の管軸に直交する方向と平
行に配置した複数の(例えば15〜25μ間隔)セン
サとの組合せからなる。従つて、光源5からの光
を光検出器6の複数のセンサが受光するので、こ
れら複数のセンサの受光信号に基づいて、管軸方
向に移動中の鋼管1の外面の管軸と直交する方向
上の位置を検出することができる。例えば、第5
図イに示すように、フイツシユテール1bを持つ
鋼管1が矢印方向に移動し、光検出器6のセンサ
部分6aを、フイツシユテール1bの投影が通過
すると、光検出器6において、第5図ロに示すよ
うな受光信号が得られる。即ち、図中、縦軸は、
複数のセンサの位置(鋼管1の外面の位置に対
応)、横軸は鋼管1の管軸方向の位置を示してお
り、プロツト(点)は、光検出器6の複数のセン
サのうち、鋼管1の外面の投影と、光源6からの
光との境に該当したセンサの受光信号を示してい
る。従つて図中、プロツトは、鋼管1の管軸と直
交する方向上の外面位置を示しており、図からわ
かるように、フイツシユテール1bに対応してプ
ロツトの縦軸上の位置が変化しており、鋼管1の
外面において、正常位置より、ある値以上突出し
た位置を検出することによつて、これを、異常形
状として検出することができる。なお、鋼管1
は、搬送ローラ4によつて、管軸方向に移動する
際に、必ずしも上下動なく移動するとは限らない
が、その上下動の速度は、50mm/S程度以下であ
ることが経験上知られており、また、鋼管1の正
常外面は、その移動に際して、ある範囲内を上下
動することが知られており、しかも、鋼管1の外
面には、100mm以上の長さの異常形状は無いこと
が経験上知られていることから、ある程度短い時
間で、光検出器6の複数のセンサの受光信号を処
理し、且つある程度短い間隔(管軸方向)で同受
光信号をとり込むようにすれば、管軸方向に移動
中の鋼管1の外面の異常形状を、十分正確に検出
(認識)することができる。その検出(認識)の
基本としては、鋼管1の外面の軸方向上の位置を
x、鋼管1の外面の前記軸方向に直交する方向上
の位置をyとして、xの変化に対するyの変化
dy/dxに対し、dy/dx>αを、且つ、軸方向に
100mm以上離れた位置の外面位置(は外面位
置yの移動平均値で代表することができる。従つ
て、以下、を“yの移動平均値”という)に
対してy−>β(α、βは探傷機により定まる
定数)を設定する。例えば、光検出器6によつ
て、計測時間0.3mS、軸方向2mm毎に、鋼管1
の外面を検出した場合、第5図ロにサイズを示す
ようなフイツシユテール1bを異常形状として検
出しようとすると、 α<7/50、β<7 を設定すればよい。
The light source 5 is, for example, a combination of a lamp and a condensing lens, and has an irradiation angle that can irradiate at least a sensor (described later) of a photodetector 6.
The photodetector 6 is, for example, a combination of a condensing lens and a plurality of sensors (for example, at intervals of 15 to 25 μ) arranged in parallel to the direction perpendicular to the tube axis of the steel tube 1 that is moving in the tube axis direction. Become. Therefore, since the plurality of sensors of the photodetector 6 receive the light from the light source 5, based on the light reception signals of these plurality of sensors, the direction of the outer surface of the steel pipe 1 that is moving in the tube axis direction is perpendicular to the tube axis. The position in the direction can be detected. For example, the fifth
As shown in FIG. A received light signal like this can be obtained. That is, in the figure, the vertical axis is
The positions of the plurality of sensors (corresponding to the position of the outer surface of the steel pipe 1), the horizontal axis indicates the position in the tube axis direction of the steel pipe 1, and the plot (point) indicates the position of the steel pipe among the plurality of sensors of the photodetector 6. 1 shows a light reception signal of a sensor corresponding to the boundary between the projection of the outer surface of the light source 1 and the light from the light source 6. Therefore, in the figure, the plot indicates the outer surface position of the steel pipe 1 in the direction orthogonal to the tube axis, and as can be seen from the figure, the position of the plot on the vertical axis changes in correspondence with the fishtail 1b. By detecting a position on the outer surface of the steel pipe 1 that protrudes by a certain value or more from the normal position, this can be detected as an abnormal shape. In addition, steel pipe 1
It is known from experience that the speed of the vertical movement is approximately 50 mm/s or less, although it does not necessarily move without vertical movement when it is moved in the tube axis direction by the conveyance roller 4. In addition, it is known that the normal outer surface of the steel pipe 1 moves up and down within a certain range when it moves, and furthermore, there is no abnormal shape with a length of 100 mm or more on the outer surface of the steel pipe 1. From what is known from experience, if the light reception signals of the plurality of sensors of the photodetector 6 are processed in a relatively short time, and the same light reception signals are taken in at relatively short intervals (in the tube axis direction), It is possible to detect (recognize) an abnormal shape on the outer surface of the steel pipe 1 while it is moving in the pipe axis direction with sufficient accuracy. The basic principle of detection (recognition) is that the position of the outer surface of the steel pipe 1 in the axial direction is x, the position of the outer surface of the steel pipe 1 in the direction perpendicular to the axial direction is y, and the change in y with respect to the change in x.
For dy/dx, dy/dx>α and in the axial direction
y->β(α, β is a constant determined by the flaw detector). For example, the photodetector 6 detects the steel pipe 1 every 2 mm in the axial direction for a measurement time of 0.3 mS.
If the outer surface of the body is detected, and the size of the fish tail 1b shown in FIG.

一方、光源5および光検出器6の必要個数は、
次のようにして定める。例えば、鋼管1の外径
300mm、管軸と直交する方向上における、正常外
面から5mm以上突出した突起を異常形状として検
出するように設定すると、第6図に示すように、
鋼管1の正常外面から5mm突出した異常形状1c
の先端を通過した。2つの光源5からの2つの光
5aが、鋼管1の外面に接した2つの位置、即
ち、2つの接線形成位置が、鋼管1の軸心となす
角度2θは、次の式で求められる。
On the other hand, the required number of light sources 5 and photodetectors 6 is:
It is determined as follows. For example, the outer diameter of steel pipe 1
If the setting is set to detect a protrusion that protrudes 5 mm or more from the normal outer surface in a direction perpendicular to the tube axis at 300 mm as an abnormal shape, as shown in Figure 6,
Abnormal shape 1c protruding 5mm from the normal outer surface of steel pipe 1
passed the tip of. The angle 2θ between the two positions where the two lights 5a from the two light sources 5 touch the outer surface of the steel pipe 1, that is, the two tangent line formation positions, with the axis of the steel pipe 1 is determined by the following formula.

(x′+r)cosθ=r x′=(1/cosθ−1)r<5(mm) (不等号を付けたのは、計測上の誤差による未検
出をカバーするためである) r=150mmとして計算すると、 θ<14.5゜ が得られる。鋼管1の円周にそつて、θが14.5゜
以内になるように、光源5および光検出器6の組
を設ければよい(必ずしも、等間隔である必要は
ない)。なお、各々の光源5および光検出器6の
組は、互いの受光に支障をきたさないように、鋼
管1の管軸方向に順次ずれて設置してあつてもよ
い。
(x′+r)cosθ=r x′=(1/cosθ−1)r<5(mm) (The inequality sign is added to cover non-detection due to measurement error.) Assuming r=150mm When calculated, θ<14.5° is obtained. A pair of light sources 5 and photodetectors 6 may be provided along the circumference of the steel pipe 1 so that θ is within 14.5 degrees (they do not necessarily have to be equally spaced). In addition, each set of light source 5 and photodetector 6 may be installed sequentially shifted in the tube axis direction of steel pipe 1 so as not to interfere with each other's light reception.

第4図は、一例として、1つの光源5および1
つの光検出器6の組のみを示してあり、図示され
るように、演算器7は、光源6を制御し、光検出
器6の受光信号は、演算器7に入力される。演算
器7には、さらに、搬送ローラ4の回転軸4a
(4bは軸受)に連結したパルス発生器8からの
信号が、搬送ローラ4上を移動中の鋼管1におけ
る、移動方向上の位置同期信号として入力され、
演算器7は、両入力に基づいて、後述する演算を
行なつて、鋼管1の外面の異常形状を検出し、異
常形状を検出した場合には、搬送ローラ4の駆動
モータ9の制御装置10に駆動モータ停止指令信
号を出力する。
FIG. 4 shows, by way of example, one light source 5 and one light source 1.
Only one set of photodetectors 6 is shown, and as shown, a computing unit 7 controls the light source 6, and the light reception signal of the photodetector 6 is input to the computing unit 7. The computing unit 7 further includes a rotating shaft 4a of the conveying roller 4.
(4b is a bearing) A signal from the pulse generator 8 connected to the steel pipe 1 is inputted as a position synchronization signal in the moving direction of the steel pipe 1 moving on the conveying roller 4,
The calculator 7 performs calculations to be described later based on both inputs to detect an abnormal shape on the outer surface of the steel pipe 1. When an abnormal shape is detected, the controller 10 of the drive motor 9 of the conveying roller 4 Outputs a drive motor stop command signal to

第7図は、演算器7における演算のフローチヤ
ートを示す図であり、図中記号の意味は前述の通
りである。図示されるように、パルスジエネレー
タ8からの、所定間隔毎の管位置同期信号と、光
検出器6からの受光信号とに基づいて、dy/dx
を演算し、次いでを演算し(の演算には、例
えば移動平均を用いる)、dy/dx>α、y−>
βを判定する。そして、dy/dx>αで、かつ、
y−がβを越えたときを、異常形状検出とし、
制御装置10に、駆動モータ停止指令信号を出力
する。なお、鋼管1の搬送ラインの条件によつて
は、1本1本の鋼管1毎に、その全長にわたる検
出データを採取(記憶)し終つてから、即ち、鋼
管1を、光源5と光検出器6との検出部を通過さ
せて、探傷機に至る前に、データを処理してもよ
い。
FIG. 7 is a diagram showing a flowchart of calculations in the calculator 7, and the meanings of the symbols in the figure are as described above. As shown in the figure, the dy/dx
and then calculate (for example, a moving average is used to calculate), dy/dx>α, y−>
Determine β. Then, dy/dx>α, and
When y- exceeds β, the abnormal shape is detected,
A drive motor stop command signal is output to the control device 10. Depending on the conditions of the conveyance line for the steel pipes 1, it may be necessary to collect (memorize) the detection data over the entire length of each steel pipe 1 before moving the steel pipe 1 to the light source 5 for optical detection. The data may be processed before passing through the detector 6 and the flaw detector.

以上説明したように、この発明においては、光
を使用して非接触で、管軸方向に移動中の管の外
面の異常形状を検出することができ、従つて、搬
送中に管に上下動があつても正確に異常形状を検
出することができ、何ら設備に破損を与えること
がなく、しかも、管外径サイズが異なつても、そ
の検出を行なうことができる。
As explained above, in this invention, it is possible to detect an abnormal shape on the outer surface of a tube moving in the tube axis direction without contact using light. It is possible to accurately detect an abnormal shape even when there is a problem, without causing any damage to the equipment, and even when the outside diameter of the pipe is different.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は鋼管の正面図、第3図は
鋼管外面の従来異常形状検出方法の概念図、第4
図はこの発明にかかる鋼管外面の異常形状検出装
置の概略構成図、第5図イはフイツシユテールを
持つ鋼管の断面図、第5図ロは同鋼管に対する光
検出器のセンサの受光信号の一例を示す図、第6
図は鋼管外面と光源および光検出器の設置態様の
一例を示す図、第7図は演算器のフローチヤート
の一例を示す図である。 1……鋼管、5……光源、6……光検出器、7
……演算器。
Figures 1 and 2 are front views of the steel pipe, Figure 3 is a conceptual diagram of the conventional abnormal shape detection method on the outer surface of the steel pipe, and Figure 4
Figure 5 is a schematic configuration diagram of an abnormal shape detection device on the outer surface of a steel pipe according to the present invention, Figure 5A is a cross-sectional view of a steel pipe with a fishtail, and Figure 5B is an example of a light reception signal of a photodetector sensor for the same steel pipe. Figure shown, No. 6
The figure shows an example of how the outer surface of the steel pipe and the light source and photodetector are installed, and FIG. 7 is a diagram showing an example of a flowchart of the arithmetic unit. 1... Steel pipe, 5... Light source, 6... Photodetector, 7
...Arithmetic unit.

Claims (1)

【特許請求の範囲】 1 その光の一部が、管軸方向に移動中の管の外
面によつて遮られるように、所定箇所に固定され
た複数の光源と、 前記複数の光源の各々からの光を、前記管の外
面の投影を含むように受光するための、所定箇所
に固定された複数の光検出器と、 前記管の前記管軸方向への移動距離を検出する
ための距離検出器と、 信号処理手段とを備え、 前記複数の光源および前記複数の光検出器は、
前記管の外面における、前記複数の光源の各々か
らの光の接線形成位置が、前記管の周方向に複数
得られるように配置されており、 前記複数の光検出器の各々は、前記管軸方向に
直交する方向と平行に複数のセンサを持つてお
り、 前記信号処理手段は、前記複数の光検出器の
各々の複数のセンサからの信号と前記距離検出器
からの信号とに基づいて、前記管の外面の前記管
軸方向上の位置xの変化に対する前記管の外面の
前記管軸方向に直交する方向上の位置yの変化
dy/dxを算出する手段と、前記dy/dxが規定値
αより大きいとき出力を出す傾き判定手段と、前
記yの移動平均値を算出する手段と、前記yが
前記よりも規定値βを超えて大きいとき出力を
出す偏差検出手段と、前記傾き判定手段の出力と
前記偏差検出手段の出力の論理積を出力する異常
形状検出手段とからなることを特徴とする、管外
面の異常形状検出装置。
[Claims] 1. A plurality of light sources fixed at predetermined locations such that a portion of the light is blocked by the outer surface of the tube moving in the tube axis direction, and from each of the plurality of light sources. a plurality of photodetectors fixed at predetermined locations for receiving the light including the projection of the outer surface of the tube; and a distance detection device for detecting the moving distance of the tube in the tube axis direction. and a signal processing means, the plurality of light sources and the plurality of photodetectors,
A plurality of tangent lines of light from each of the plurality of light sources are arranged on the outer surface of the tube in a circumferential direction of the tube, and each of the plurality of photodetectors is arranged along the tube axis. It has a plurality of sensors parallel to a direction orthogonal to the direction, and the signal processing means is configured to perform processing based on signals from each of the plurality of sensors of the plurality of photodetectors and a signal from the distance detector. A change in the position y of the outer surface of the tube in a direction perpendicular to the tube axis direction with respect to a change in the position x of the outer surface of the tube in the tube axis direction.
means for calculating dy/dx; slope determining means for outputting an output when said dy/dx is greater than a specified value α; means for calculating a moving average value of said y; Detection of abnormal shape on the outer surface of a tube, characterized by comprising: a deviation detecting means that outputs an output when the deviation exceeds the limit; and an abnormal shape detecting means that outputs a logical product of the output of the inclination determining means and the output of the deviation detecting means. Device.
JP57055521A 1982-04-05 1982-04-05 Detecting device for extraordinary form of outer surface of pipe Granted JPS58172507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055521A JPS58172507A (en) 1982-04-05 1982-04-05 Detecting device for extraordinary form of outer surface of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055521A JPS58172507A (en) 1982-04-05 1982-04-05 Detecting device for extraordinary form of outer surface of pipe

Publications (2)

Publication Number Publication Date
JPS58172507A JPS58172507A (en) 1983-10-11
JPS6342723B2 true JPS6342723B2 (en) 1988-08-25

Family

ID=13001008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055521A Granted JPS58172507A (en) 1982-04-05 1982-04-05 Detecting device for extraordinary form of outer surface of pipe

Country Status (1)

Country Link
JP (1) JPS58172507A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0614305B1 (en) 2005-08-02 2020-02-18 Nippon Steel Corporation FAULT DETECTION APPLIANCE AND METHOD FOR A MATRIX TUBE
DE102006032813A1 (en) * 2006-07-14 2008-01-24 Sms Demag Ag Device for rotational locking of the back-up roll balancing of rolling stands

Also Published As

Publication number Publication date
JPS58172507A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
US4641092A (en) Rotary probe apparatus for detecting flaws in a test object
EP0214046B1 (en) Method and system for locating and inspecting seam weld in metal seam-welded pipe
JPS5940265B2 (en) Thermal billet eddy current flaw detection equipment
EP2864065B1 (en) Apparatus to detect the deformity in thickness of tubular elements and corresponding method
JPS6342723B2 (en)
US9291451B2 (en) Method and device for measuring the centricity of a conductor in an insulating casing
JP2007187497A (en) Method and device for detecting collapse in internal diameter of rolled coil
US11808720B2 (en) Edge crack detection device, rolling mill facility and edge crack detection method
JP2985740B2 (en) Pipe end detector for automatic flaw detector
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
JP2021094575A (en) Workpiece correction method and workpiece correction apparatus
JP2012006059A (en) Device and method for detecting bead position in weld zone of uo steel pipe
JP2007263586A (en) Ultrasonic flaw detector
JP2005062117A (en) Device and method for measuring outside diameter of metal bar material
JP4879584B2 (en) Cylindrical shape measurement method
JPS618610A (en) Apparatus for inspecting steel sheet surface
JPH06229742A (en) Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously
JP3286549B2 (en) Surface flaw detection method for long steel materials
JP6156322B2 (en) Mandrel bar surface crack detection method and surface crack detection apparatus
JP6090263B2 (en) Inspected material position adjustment mechanism in non-destructive inspection equipment for long materials
JPH06288991A (en) Nondestructive testing device
JP2001165867A (en) Surface inspection device
JP6393666B2 (en) Steel plate behavior detection method
JPS5939702B2 (en) Measuring device for moving objects
JP2002122573A (en) Method and apparatus for inspection of defect of round material