JPS6340708A - Production of hexagonal boron nitride fine powder - Google Patents

Production of hexagonal boron nitride fine powder

Info

Publication number
JPS6340708A
JPS6340708A JP18421686A JP18421686A JPS6340708A JP S6340708 A JPS6340708 A JP S6340708A JP 18421686 A JP18421686 A JP 18421686A JP 18421686 A JP18421686 A JP 18421686A JP S6340708 A JPS6340708 A JP S6340708A
Authority
JP
Japan
Prior art keywords
boron nitride
fine powder
powder
hexagonal boron
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18421686A
Other languages
Japanese (ja)
Other versions
JPH0757681B2 (en
Inventor
Katsura Ito
桂 伊藤
Hirozumi Izawa
伊沢 広純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP18421686A priority Critical patent/JPH0757681B2/en
Publication of JPS6340708A publication Critical patent/JPS6340708A/en
Publication of JPH0757681B2 publication Critical patent/JPH0757681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently and easily produce the fine powder of hexagonal boron nitride by pulverizing hexagonal boron nitride in an inert gas atmosphere, dispersing the powder in an org. liq. to form a slurry, and drying the slurry. CONSTITUTION:Hexagonal boron nitride is pulverized for about 2-100 hr by a ball mill, etc., in an inert gas atmosphere (preferably gaseous nitrogen atmosphere) or in a vacuum atmosphere at >=100 Torr to obtain the powder having about 2-20 mu mean particle diameter. The powder is immediately dispersed in an org. liq. (preferably 'Freon(R)') to form a slurry, and the slurry is then dried. Cubic boron nitride fine powder having <= about 1 mu mean particle diameter can be easily obtained in this way, and the powder can be used for solid lubricants, etc.

Description

【発明の詳細な説明】 産業上の利用分野 六方晶窒化ホウ素(以降窒化ホウ素と称する)はその潤
滑性ご応用した固体潤滑剤としての用途が増大している
。そして粉末が微細である程焼結性が増加し、生成せる
焼結体の特性の均一性が増加し、とくに平均粒径が1ミ
クロン以下の場合は、緻密な焼結体が得られる為その機
械的特性が向上する。さらに油等に分散して使用する場
合でも分散性が向上し安定したサスベンジ、ンが得られ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Use Hexagonal boron nitride (hereinafter referred to as boron nitride) is increasingly being used as a solid lubricant due to its lubricity. The finer the powder, the better the sinterability and the more uniform the properties of the sintered body produced. Especially when the average particle size is 1 micron or less, a dense sintered body can be obtained. Mechanical properties are improved. Furthermore, even when used dispersed in oil etc., the dispersibility is improved and a stable suspension can be obtained.

不発明は窒化ホウ素微粉の製造法に関し、とくに平均粒
径1ミクロン以下の微粉をも効率よく、シかも容易に製
造しつる方法に関する。
The present invention relates to a method for producing boron nitride fine powder, and particularly to a method for efficiently and easily producing fine powder having an average particle size of 1 micron or less.

従来の技術 従来窒化ホウ素微粉は通常の粉砕により製造されており
、粉砕機種としては、ボールミル、ジェットミル等を用
いている。又粉砕雰囲気は、空気又は炭化水素系の有機
液体が用いられている0 発明が解決しようとする問題点 従来の粉砕法では、乾式粉砕にしろ、湿式粉砕にしろ、
窒化ホウ素微粉、とくに平均粒径が1ミクロン以下の微
粉を効率よくうることは非常に困難であった。
BACKGROUND OF THE INVENTION Conventionally, boron nitride fine powder has been produced by conventional pulverization, and the pulverizer used is a ball mill, a jet mill, or the like. In addition, air or a hydrocarbon-based organic liquid is used as the pulverizing atmosphere.Problems to be Solved by the InventionIn the conventional pulverizing method, whether dry pulverizing or wet pulverizing,
It has been extremely difficult to efficiently obtain boron nitride fine powder, especially fine powder with an average particle size of 1 micron or less.

不発明の目的は平均粒径1ミクロン以下の窒化硼素微粉
2も高収率で、しかも容易に製造する方法を提供するこ
とにある。
The object of the invention is to provide a method for easily producing fine boron nitride powder 2 having an average particle size of 1 micron or less at a high yield.

問題ご解決するための手段 前記目的を達するための本発明は、窒化ホウ素を不活性
ガスふん囲気又はiQQ Torr 以下の真空ふん囲
気中で粉砕し、得られた粉末を有機液中に分散させて窒
化ホウ素を含有するスラリーを得、さらにこのスラリー
B乾燥させて窒化ホウ素微粉を製造する方法に関する。
Means for Solving the Problems To achieve the above object, the present invention comprises grinding boron nitride in an inert gas atmosphere or a vacuum atmosphere of less than iQQ Torr, and dispersing the obtained powder in an organic liquid. The present invention relates to a method of obtaining a slurry containing boron nitride and further drying this slurry B to produce fine boron nitride powder.

本発明者らは、窒化ホウ素B微粉化する場合、微粉化粉
砕におけるふん囲気が生成する微粉の平均粒径に大きな
影響を及ぼ丁との判断にもとづいて各種のふん囲気下で
粉砕テストを行なった。その結果不活性ガスふん囲気と
することが重要で、窒素ガスふん囲気の場合、とくにそ
の効果が著しいことを確認した。又ヘリウム、アルゴン
ふん囲気や、真空中の粉砕も大気中の粉砕より微粉化に
効果がある。
The present inventors conducted crushing tests under various ambient atmospheres based on the judgment that when boron nitride B is pulverized, the atmosphere during pulverization has a large effect on the average particle size of the fine powder produced. Ta. As a result, it was confirmed that it is important to create an atmosphere surrounded by inert gas, and that the effect is particularly remarkable when the environment is surrounded by nitrogen gas. Grinding in a helium or argon atmosphere or in a vacuum is also more effective for pulverization than grinding in the air.

なお本発明方法に於ては窒化ホウ素を通常の方法に従っ
て予め一次粉砕しており本発明におけるこの微粉化を円
滑に行わせるためにはこの一次粉砕粉末は平均粒径が2
μ〜20μの範囲にあることが好ましい。
In addition, in the method of the present invention, boron nitride is first pulverized in advance according to a normal method, and in order to smoothly perform this pulverization in the present invention, the average particle size of this primary pulverized powder is 2.
It is preferably in the range of μ to 20 μ.

本発明の方法により粉砕して得られた微粉はその表面が
活性化されており、このため大気に接触すると、水分や
酸素と急激に反応する。これを防ぐため本発明に於ては
微粉末を溶媒に分散させ、この微粉末を分散した溶媒を
乾燥して前記のような急激な反応をしない窒化ホウ素微
粉を生成させている。
The surface of the fine powder obtained by grinding according to the method of the present invention is activated, and therefore, when it comes into contact with the atmosphere, it rapidly reacts with moisture and oxygen. In order to prevent this, in the present invention, fine powder is dispersed in a solvent, and the solvent in which the fine powder is dispersed is dried to produce fine boron nitride powder that does not undergo the rapid reaction described above.

微粒化のためのふん囲気としては前記したように窒素ふ
ん囲気がもっともすぐれ、ヘリウム、アルゴンふん囲気
や真空中等の不活性ふん囲気も大気に比し丁ぐれている
As mentioned above, nitrogen atmosphere is the best for atomization, and inert atmospheres such as helium, argon, and vacuum are also better than air.

微粉を分散ぎせる溶媒としてはフロン、ヘキサン四塩化
炭素、トルエン、塩化メチレン等がある。このうちとく
に化学的に安定なものが好ましく、フロンがもっとも適
している。
Examples of solvents for dispersing fine powder include chlorofluorocarbons, hexane, carbon tetrachloride, toluene, and methylene chloride. Among these, chemically stable ones are particularly preferred, with Freon being the most suitable.

不発明において粉砕は窒化ホウ素を例えばボールミルボ
ートにいれ、不活性ふん囲気下で微粉砕するが、微粉砕
完了后直ちに溶媒ごボートに導入することにより、大気
にさらすことなく微粉を容易に溶媒に分散だせることが
できる。
In the present invention, boron nitride is placed in a ball mill boat and finely pulverized under an inert atmosphere, but by introducing the solvent into the boat immediately after the pulverization is completed, the fine powder can be easily converted into a solvent without being exposed to the atmosphere. It can be dispersed.

微粉末3分赦せる溶媒はスラリー状であり、このものは
公知の乾燥器、例えば真空恒温乾燥器で乾燥することに
より平均粒径の小さな、例えば1ミクロン以下の窒化ホ
ウ素微粉ごも容易にうろことが可能となった。
The solvent, which can be used as a fine powder for 3 minutes, is in the form of a slurry, and when dried in a known dryer, such as a vacuum constant temperature dryer, it can be easily scaled, even including boron nitride fine powder with a small average particle size, for example, 1 micron or less. became possible.

粉砕時間は目的微粉の粒径、粉砕機の種類等の影響をう
けるが前記の一次粉砕粉末の場合実用的には2時間〜1
00時間の範囲が好ましい。
The grinding time is affected by the particle size of the target fine powder, the type of grinder, etc., but in the case of the above-mentioned primary grinding powder, it is practically 2 hours to 1 hour.
A range of 00 hours is preferred.

不活性ふん囲気でとくに窒素ふん囲気がよい理由はあき
らかではないが実験的によい結果を得ている。
It is not clear why nitrogen atmosphere is particularly good for inert feces, but good results have been obtained experimentally.

又溶媒としてフロンが好ましいのは化学的に安定な為、
メカノケミカルな相互作用が小さく、溶媒置換乾燥の過
程で窒化ホウ素の変質を防ぐ為である。
Also, Freon is preferable as a solvent because it is chemically stable.
This is because the mechanochemical interaction is small and the deterioration of boron nitride is prevented during the solvent replacement drying process.

使用される粉砕機は特定されないが、実用的にはボール
ミル、振動ボールミル、遊星ボールミル、媒体攪拌ミル
等がよい。
Although the pulverizer used is not specified, a ball mill, a vibrating ball mill, a planetary ball mill, a media stirring mill, etc. are practically preferable.

ざらに窒化硼素微粉?有機液に分散させてスラリーとし
、このスラリーを乾燥ぎせて得た微粉が大気中で酸化さ
れないのは溶媒の冷却作用等により微粉表面の活性の安
定化が進行し、保存される為である。
Fine boron nitride powder? The fine powder obtained by dispersing it in an organic liquid to form a slurry and drying this slurry is not oxidized in the atmosphere because the activity of the surface of the fine powder is stabilized due to the cooling effect of the solvent, etc., and it is preserved.

発明の効果 平均粒径の極めて小である例えば平均粒径が1ミクロン
以下である立方晶窒化ホウ素微粉の製造が容易となり、
したがって緻密で機械的性質のすぐれた焼結体が容易に
出来る等の効果がある。また任意の液分散潤滑剤、固体
潤滑剤、充填材(フイラーンとして使える。
Effects of the invention It becomes easy to produce cubic boron nitride fine powder with an extremely small average particle size, for example, 1 micron or less,
Therefore, there are effects such as the ability to easily produce a dense sintered body with excellent mechanical properties. It can also be used as any liquid dispersion lubricant, solid lubricant, or filler.

実施例 以下本発明の詳細な説明する。Example The present invention will be explained in detail below.

実施例1 平均粒径が15ミクロンに予備粉砕された六方晶窒化ホ
ウ素−次粉砕粉末201ご内容量6す、トルのボールミ
ルボットに入れた。次に粉砕媒体として直径5Xのアル
ミナ製ボール1.2リツトルをポットに入れ、密封し、
ふたにとりつけたノズルより窒素ガスをポット内に導入
し、ポット内を窒素ふん囲気とした。
Example 1 Hexagonal boron nitride sub-pulverized powder 201 pre-pulverized to have an average particle size of 15 microns was placed in a 6-liter ball mill bot. Next, 1.2 liters of alumina balls with a diameter of 5X were placed in the pot as a grinding medium, and the pot was sealed.
Nitrogen gas was introduced into the pot through a nozzle attached to the lid to create a nitrogen atmosphere inside the pot.

ボッ)Eボールモル架台にのせ、60rlll+で65
時間粉砕を行った。粉砕完了層ポット内を真空とした後
、700ccのヘキサンをポット内に導入し、引き続き
12時間ポットを回転ぎせて窒化ホウ緊做粉をヘキサン
に対して分散・混合させた。分散混合終了后生成スラリ
ーを真空恒温乾燥器を用いて1(] Torrをこえな
いようにしながら100Cで6時間加熱乾燥を行なって
六方晶窒化ホウ素微粉18.54を得た。微粉を走査電
子顕微袋で観察したところ、大部分の粒子が1ミクロン
以下の微粉末であった。
Bot) Place it on the E-ball mole stand and set it at 60rllll+ for 65
Time pulverization was performed. After the inside of the pulverized layer pot was evacuated, 700 cc of hexane was introduced into the pot, and the pot was subsequently rotated for 12 hours to disperse and mix the boron nitride compressed powder in the hexane. After dispersion mixing was completed, the resulting slurry was heated and dried at 100C for 6 hours using a vacuum constant temperature dryer while not exceeding 1 Torr to obtain a hexagonal boron nitride fine powder of 18.54 mm.The fine powder was subjected to a scanning electron microscope. When the bag was observed, most of the particles were fine powder of 1 micron or less.

実施例2〜5 実施例1と全く同様の窒化ホウ素粉末205’ご用いて
粉砕ふん囲気、有機溶媒を次表に示す如くにした以外、
実施例1と全く同様に処理した。その結果を次表に示す
Examples 2 to 5 The same boron nitride powder 205' as in Example 1 was used, except that the grinding atmosphere and organic solvent were as shown in the table below.
It was treated in exactly the same manner as in Example 1. The results are shown in the table below.

比較例 実施例1においてボールミル中に窒素ガスを導入せず直
ちに実施例1と同様に粉砕を行ない全く同様にスラリー
2生成させ、乾燥して窒化ホウ素微粉を得た。微粉取得
量は181であり、その粒子の大いさは平均粒径で2.
5μであった。
Comparative Example In Example 1, pulverization was immediately carried out in the same manner as in Example 1 without introducing nitrogen gas into the ball mill, and slurry 2 was produced in exactly the same manner, and dried to obtain fine boron nitride powder. The amount of fine powder obtained was 181, and the particle size was 2.2 mm in average particle size.
It was 5μ.

手続補正書輸発) 昭和61年1a月16 日Procedural amendment export) January 16, 1985

Claims (2)

【特許請求の範囲】[Claims] (1)六方晶窒化ホウ素を不活性ガスふん囲気又は10
0Torr以下の真空ふん囲気中で粉砕し、ついで得ら
れた微粉を有機液中に分散させて、六方晶窒化ホウ素を
含有するスラリーを得、さらにこのスラリーを乾燥させ
て、六方晶窒化ホウ素微粉を製造する方法。
(1) Hexagonal boron nitride surrounded by an inert gas atmosphere or
The resulting fine powder is pulverized in a vacuum atmosphere of 0 Torr or less, and then the resulting fine powder is dispersed in an organic liquid to obtain a slurry containing hexagonal boron nitride, and this slurry is further dried to form hexagonal boron nitride fine powder. How to manufacture.
(2)不活性ガスふん囲気は窒素ガスふん囲気である特
許請求の範囲第1項の六方晶窒化ホウ素微粉を製造する
方法。
(2) The method for producing hexagonal boron nitride fine powder according to claim 1, wherein the inert gas atmosphere is a nitrogen gas atmosphere.
JP18421686A 1986-08-07 1986-08-07 Method for producing hexagonal boron nitride fine powder Expired - Lifetime JPH0757681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18421686A JPH0757681B2 (en) 1986-08-07 1986-08-07 Method for producing hexagonal boron nitride fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18421686A JPH0757681B2 (en) 1986-08-07 1986-08-07 Method for producing hexagonal boron nitride fine powder

Publications (2)

Publication Number Publication Date
JPS6340708A true JPS6340708A (en) 1988-02-22
JPH0757681B2 JPH0757681B2 (en) 1995-06-21

Family

ID=16149398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18421686A Expired - Lifetime JPH0757681B2 (en) 1986-08-07 1986-08-07 Method for producing hexagonal boron nitride fine powder

Country Status (1)

Country Link
JP (1) JPH0757681B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139330A (en) * 2006-01-12 2014-07-31 Board Of Trustees Of The Univ Of Arkansas:The Nanoparticle composition and manufacturing method and utility method of the same
US10066187B2 (en) 2012-07-02 2018-09-04 Nanomech, Inc. Nanoparticle macro-compositions
US10100266B2 (en) 2006-01-12 2018-10-16 The Board Of Trustees Of The University Of Arkansas Dielectric nanolubricant compositions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139330A (en) * 2006-01-12 2014-07-31 Board Of Trustees Of The Univ Of Arkansas:The Nanoparticle composition and manufacturing method and utility method of the same
JP2016153505A (en) * 2006-01-12 2016-08-25 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ アーカンソー Nanoparticle compositions, method of manufacturing the same, and method of using the same
US9650589B2 (en) 2006-01-12 2017-05-16 The Board Of Trustees Of The University Of Arkansas Nanoparticle compositions and additive packages
US9718967B2 (en) 2006-01-12 2017-08-01 The Board Of Trustees Of The University Of Arkansas Nano-tribology compositions and related methods including nano-sheets
US9868920B2 (en) 2006-01-12 2018-01-16 The Board Of Trustees Of The University Of Arkansas Nanoparticle compositions and greaseless coatings for equipment
US9902918B2 (en) 2006-01-12 2018-02-27 The Board Of Trustees Of The University Of Arkansas Nano-tribology compositions and related methods including hard particles
US10100266B2 (en) 2006-01-12 2018-10-16 The Board Of Trustees Of The University Of Arkansas Dielectric nanolubricant compositions
US10066187B2 (en) 2012-07-02 2018-09-04 Nanomech, Inc. Nanoparticle macro-compositions

Also Published As

Publication number Publication date
JPH0757681B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US5874684A (en) Nanocrystalline materials
US7300958B2 (en) Ultra-dispersed nanocarbon and method for preparing the same
KR102027128B1 (en) Manufacturing method of YOF based powder
US4999182A (en) Stabilized zirconia powders
KR20020053883A (en) Method for producing graphite powder with an increased bulk density
JPS6340708A (en) Production of hexagonal boron nitride fine powder
JP3706176B2 (en) Aluminum nitride granules and method for producing the same
JP3693424B2 (en) Method for producing iron powder for reactants
US4318876A (en) Method of manufacturing a dense silicon carbide ceramic
JPH05270809A (en) Aluminum nitride powder and its production
JPH0211701A (en) Production of fe-si alloy powder
EP0581080B1 (en) High-packing silicon nitride powder and method for making
JP2002137913A (en) Silica gel and its manufacturing method
JPH09100163A (en) Spherical nitride
JPH0735251B2 (en) Graphite fine powder
JPS62265110A (en) Production of slurry containing dispersed fine graphite powder
Qiu et al. Fabrication of fine AlN particles by pulverizing with very small ZrO2 beads
JP2003206476A (en) Heat-treated diamond fine powder and method for producing the same
KR102584925B1 (en) Manufacturing method of spherical aluminum nitride powder
JPH02120214A (en) Production of aluminum nitride powder
Chunbo et al. Atom Force Microscopic Characterization of Ultrafine Fe3O4Powders
JPH0615404B2 (en) High-purity aluminum nitride powder and method for producing the same
JP2946990B2 (en) Method for producing highly-fillable silicon nitride powder
JPH10338576A (en) Silicon nitride sintered compact and its production
KR100733569B1 (en) Method for synthesizing carbon nanotube powder with improved dispersibility

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term