JPH05270809A - Aluminum nitride powder and its production - Google Patents

Aluminum nitride powder and its production

Info

Publication number
JPH05270809A
JPH05270809A JP4096088A JP9608892A JPH05270809A JP H05270809 A JPH05270809 A JP H05270809A JP 4096088 A JP4096088 A JP 4096088A JP 9608892 A JP9608892 A JP 9608892A JP H05270809 A JPH05270809 A JP H05270809A
Authority
JP
Japan
Prior art keywords
aluminum nitride
powder
particle size
reaction
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4096088A
Other languages
Japanese (ja)
Other versions
JP3636370B2 (en
Inventor
Yukihiko Takahashi
行彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP09608892A priority Critical patent/JP3636370B2/en
Publication of JPH05270809A publication Critical patent/JPH05270809A/en
Application granted granted Critical
Publication of JP3636370B2 publication Critical patent/JP3636370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Abstract

PURPOSE:To provide aluminum nitride powder having uniform and a large average particle size and good dispersibility and moisture resistance which are not obtd. by any conventional method, and to provide the production method of this powder by controlling the reaction and particle size under specified conditions. CONSTITUTION:The title aluminum nitride powder having 2-20mum average particle size and <=0.6wt.% oxygen content and the production method of this powder. By this method, a mixture of alumina powder and carbon powder or carbon-contg. material is fired in a nonoxidizing atmosphere containing nitrogen to obtain aluminum nitride with <100% reaction rate while the reduction nitrification reaction is not completed (first step), then the aluminum nitride is fired in a nonoxidizing atmosphere containing no nitrogen so as not to effect nitriding (second step), and then the aluminum nitride is fired in a nonoxidizing atmosphere containing nitrogen to complete the reaction (third step).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高熱伝導性の窒化アルミ
ニウム粉末及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly heat conductive aluminum nitride powder and a method for producing the same.

【0002】[0002]

【従来の技術】窒化アルミニウムは優れた熱伝導性のた
め、高熱伝導性基板、放熱部品、放熱用フィラーなどと
して注目されている。しかし、従来の窒化アルミニウム
粉末は平均粒径が約2μm未満程度の微粒で酸素量が1
wt%以上の粉末がほとんどであり、微粒になるほど大気
中の水分や酸素によって一部分解を生じやすく、また成
形時等のハンドリングがあまり良くないという問題があ
った。また充填性が悪いため成形嵩密度が小さくなり、
結果として焼結時の収縮率が大きく、寸法制御が困難で
焼結体の歩留りが悪くなるという欠点があった。こうし
た耐湿性やハンドリング、充填性の点から、窒化アルミ
ニウム粉末は平均粒子径が約2μm以上程度と比較的大
きい方が好ましい。特に、フィラー用途の場合はより単
一粒子径が大きい方が、充填性がよくなり、またハンド
リング中の吸湿分解が少ないので、より窒化アルミニウ
ムの高熱伝導性を発揮できることは言うまでもない。
2. Description of the Related Art Since aluminum nitride has excellent thermal conductivity, it has attracted attention as a highly thermally conductive substrate, a heat dissipation component, a heat dissipation filler, and the like. However, the conventional aluminum nitride powder is fine particles having an average particle size of less than about 2 μm and an oxygen content of 1
Most of the powders were wt% or more, and the finer the particles, the more likely they were to partially decompose due to moisture and oxygen in the atmosphere, and the handling during molding was not very good. In addition, since the filling property is poor, the molded bulk density becomes small,
As a result, there are drawbacks that the shrinkage rate during sintering is large, the dimensional control is difficult, and the yield of the sintered body is poor. From the viewpoint of such moisture resistance, handling, and filling properties, it is preferable that the aluminum nitride powder has a relatively large average particle size of about 2 μm or more. In particular, in the case of use as a filler, it is needless to say that the larger the single particle diameter is, the better the filling property is and the less the hygroscopic decomposition during handling, the higher the thermal conductivity of aluminum nitride can be exhibited.

【0003】また、窒化アルミニウム原料粉末の製造方
法としては(I)アルミナ質化合物の炭素粉末による還
元窒化法、(II)アルミニウムの直接窒化法、(III )
プラズマ等による気相合成法等がある。
As a method for producing aluminum nitride raw material powder, (I) a reduction nitriding method using a carbon powder of an alumina compound, (II) a direct nitriding method of aluminum, (III)
There is a gas phase synthesis method using plasma or the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記
(I)の方法では通常、高純度で分散性の良い平均粒子
径2μm未満程度の微粒の窒化アルミニウム粉末を得る
ケースがほとんどである。この方法では余剰の炭素を除
去するための酸化雰囲気での脱炭工程が不可欠であるた
め、微粒になるほど酸素増加が顕著となり、通常0.7
wt%以上程度の比較的高い酸素量となってしまい熱伝導
率を低下させる。また、平均粒子径2μm以上の粗粒の
窒化アルミニウム粉末は合成温度を高くすることによっ
て得ることが可能であるが、粒径が不揃いになったり、
合成温度が1700℃以上になると熱伝導率が低い酸窒
化アルミニウムスピネルAlON等の中間体を生じ、熱
伝導率を低下させてしまう。
However, in the above method (I), in most cases, fine aluminum nitride powder having a high purity and good dispersibility and an average particle diameter of less than 2 μm is usually obtained. In this method, a decarburization step in an oxidizing atmosphere to remove excess carbon is indispensable, so that the finer the particles, the more remarkable the increase in oxygen.
A relatively high oxygen content of about wt% or more results in a decrease in thermal conductivity. Further, a coarse-grained aluminum nitride powder having an average particle diameter of 2 μm or more can be obtained by increasing the synthesis temperature, but the particle diameter becomes uneven,
When the synthesis temperature is 1700 ° C. or higher, an intermediate such as aluminum oxynitride spinel AlON having a low thermal conductivity is produced and the thermal conductivity is reduced.

【0005】また、上記(II)の方法では、アルミニウ
ムの融点以上の反応温度が必要であり、粗粒のものが得
られるが粒径の揃ったものが得られない。また、(I)
の様な脱炭工程がなく、粉末表面が酸化しやすいため、
ハンドリング中に酵素量が1wt%以上程度に増加して
しまうという問題がある。(III )の方法では、気相反
応であるため1μm以下程度の微粒は得られるが、2μ
m以上程度の粗粒は得られない。
Further, in the above method (II), a reaction temperature higher than the melting point of aluminum is required, and coarse particles can be obtained, but particles with a uniform particle diameter cannot be obtained. Also, (I)
Since there is no decarburization process like that, the powder surface is easily oxidized,
There is a problem that the amount of enzyme increases to about 1 wt% or more during handling. In the method (III), since it is a gas phase reaction, fine particles of about 1 μm or less can be obtained, but 2 μm
Coarse particles of about m or more cannot be obtained.

【0006】本発明は、かかる現状に鑑み鋭意研究を行
った結果なされたものであり、反応制御することにより
従来の方法では得られなかった低酸素で平均粒子径が大
きく、粒径の揃った、分散性、耐湿性のよい窒化アルミ
ニウム及びその製造方法を提供することを目的とするも
のである。
The present invention has been made as a result of intensive studies in view of the above circumstances. By controlling the reaction, the average particle size is large and the particle size is uniform with low oxygen which cannot be obtained by the conventional method. It is an object of the present invention to provide aluminum nitride having excellent dispersibility and moisture resistance, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、平均粒子径が2μmより大きく20μm
以下で、かつ酸素含有量が0.6重量%以下であること
を特徴とする窒化アルミニウム粉末、及びこの窒化アル
ミニウム粉末の製造方法を提供し、この製造方法はアル
ミナ粉末と炭素粉末又は炭素含有物質の混合物を、最初
に、窒素を含む非酸化性雰囲気中でアルミナの反応率が
100%未満となるように焼成し(第1段階)、次いで
窒素を含まない非酸化性雰囲気中で反応を進行させずに
焼成し(第2段階)、それから再び窒素を含む非酸化性
雰囲気中で焼成して反応を完結させる(第3段階)こと
を特徴とする。
In order to achieve the above object, the present invention has an average particle size of more than 2 μm and 20 μm.
Provided is an aluminum nitride powder characterized by having an oxygen content of 0.6% by weight or less, and a method for producing the aluminum nitride powder, which comprises alumina powder and carbon powder or a carbon-containing substance. Of the mixture is first calcined in a non-oxidizing atmosphere containing nitrogen so that the reaction rate of alumina is less than 100% (first step), and then the reaction is allowed to proceed in a non-oxidizing atmosphere containing no nitrogen. It is characterized in that the reaction is completed without firing (second step) and then again in a non-oxidizing atmosphere containing nitrogen to complete the reaction (third step).

【0008】窒化アルミニウム粉末の平均粒径は、粉末
を超音波分散により凝集をほぐして得られる粒子につい
て、回折式粒度分析計で測定した重量平均径である。こ
の粒子は超音波分散によるので一次粒子近くまでほぐれ
ているが、SEM観察による完全な一次粒子と比べると
分散(ほぐれ)が不十分であると思われるものである。
The average particle size of the aluminum nitride powder is the weight average particle size of the particles obtained by loosening the agglomerates of the powder by ultrasonic dispersion and measured by a diffraction type particle size analyzer. This particle is disintegrated to near the primary particle because of ultrasonic dispersion, but it is considered that the dispersal (unraveling) is insufficient as compared with the complete primary particle by SEM observation.

【0009】本発明の窒化アルミニウム粉末の平均粒子
径は2μmより大きく20μm以下である。平均粒径が
2μm以下では脱炭、ハンドリング中の酵素増加によっ
て、最終的に酵素量が0.6wt%以下とならず、また
平均粒径が20μmを越えると反応時の未反応酵素が増
加し、最終的に酵素量が0.6wt%以下とならない。
好ましい平均粒径は3〜10μmの範囲内である
The average particle diameter of the aluminum nitride powder of the present invention is more than 2 μm and 20 μm or less. If the average particle size is less than 2 μm, the amount of enzyme will not finally reach 0.6 wt% or less due to the increase in enzyme during decarburization and handling, and if the average particle size exceeds 20 μm, unreacted enzyme during the reaction will increase. Finally, the enzyme amount does not fall below 0.6 wt%.
The preferred average particle size is within the range of 3 to 10 μm.

【0010】また、本発明の窒化アルミニウム粉末は酵
素含有量が0.6wt%、好ましくは0.3〜0.6w
t%である。窒化アルミニウムの熱伝導率は不純物に大
きく依存しており、中でも特に酵素は影響が大きく、酵
素含有量を小さくすれば本来の窒素アルミニウムの熱伝
導性を発揮できる。酵素含有量が0.6wt%以下であ
ることによって焼結体やフイラーと充填したものは本来
の窒化アルミニウムの熱伝導性を引出し、高熱伝導率と
なることはいうまでもない。酵素以外の不純物も熱伝導
率への寄与は小さいものの影響を及ぼすため、酵素を除
いた純度99.9wt%以上であることが望ましい。こ
れは原料であるアルミナ及び、炭素あるいは炭素含有物
質に純度99.8wt%以上程度のものを用いることに
よって容易に達成される。
The aluminum nitride powder of the present invention has an enzyme content of 0.6 wt%, preferably 0.3 to 0.6 w.
t%. The thermal conductivity of aluminum nitride is largely dependent on impurities, and the effect of enzymes is particularly large, and the original thermal conductivity of aluminum aluminum nitride can be exhibited if the enzyme content is reduced. It goes without saying that when the content of the enzyme is 0.6 wt% or less, the sintered body or the one filled with the filler draws out the original thermal conductivity of aluminum nitride and has a high thermal conductivity. Impurities other than the enzyme have a small contribution to the thermal conductivity, but they have an influence, and therefore the purity excluding the enzyme is preferably 99.9 wt% or more. This can be easily achieved by using alumina as a raw material and carbon or a carbon-containing substance having a purity of about 99.8 wt% or more.

【0011】この様に本発明の窒化アルミニウム粉末は
平均粒子経が大きく、酵素含有量が小さいため窒化アル
ミニウム本来の熱伝導率が発揮しやすい。また平均粒子
経が大きいため、表面積が小さく耐湿性に優れており、
従来不可能であった水系でのハンドリングも可能とな
る。更に平均粒子経が大きいことで充填性、成形性も向
上し、焼結時の収縮率低下による歩留まり向上にもつな
がる。
As described above, since the aluminum nitride powder of the present invention has a large average particle size and a small enzyme content, the original thermal conductivity of aluminum nitride is likely to be exhibited. Moreover, since the average particle size is large, the surface area is small and the moisture resistance is excellent.
It also enables handling in water systems, which was impossible in the past. Further, since the average particle size is large, the filling property and the moldability are also improved, which leads to the improvement of the yield due to the reduction of the shrinkage rate during sintering.

【0012】次に、本発明の窒化アルミニウム粉末の製
造方法について説明する。使用するアルミナ粉末は純度
99.8wt%以上が好ましく、さらに99.9wt%
以下が好ましい。また、炭素粉末等と均一に混合するた
めに平均粒径が10μm以下が好ましく、さらには5μ
m以下がより好ましい。
Next, the method for producing the aluminum nitride powder of the present invention will be described. The purity of the alumina powder used is preferably 99.8 wt% or more, and further 99.9 wt%
The following are preferred. Further, the average particle size is preferably 10 μm or less in order to uniformly mix with carbon powder or the like, and further 5 μm.
It is more preferably m or less.

【0013】使用する炭素粉末としてはカーボンブラッ
ク、グラファイト、活性炭等の従来用いられている炭素
粉末でよいが、灰分0.02wt%以下のものが好まし
く、アルミナ粉末と均一に混合し、反応性を大きくする
ために平均粒子径は1μm以下が好ましい。また、炭素
粉末のほかに炭素含有物質を用いてもよく、例えば炭化
水素、樹脂類、その他の有機物質等の粉末を利用でき
る。
The carbon powder to be used may be a carbon powder conventionally used such as carbon black, graphite, activated carbon, etc., but preferably has an ash content of 0.02 wt% or less, and is uniformly mixed with alumina powder to improve the reactivity. In order to increase the size, the average particle size is preferably 1 μm or less. In addition to carbon powder, a carbon-containing substance may be used. For example, powders of hydrocarbons, resins, other organic substances and the like can be used.

【0014】アルミナ粉末と炭素粉末又は炭素含有粉末
は均一に混合するが、好ましくは反応を均一かつ定常的
に進行させるために直径3〜20mm程度のペレットにし
ておくことが望ましい。
The alumina powder and the carbon powder or the carbon-containing powder are mixed uniformly, but preferably pellets having a diameter of about 3 to 20 mm are preferable in order to allow the reaction to proceed uniformly and steadily.

【0015】こうして得た混合粉末あるいはペレットを
ガスを流通できる容器に入れ、電気炉で第一段階として
窒素を含む非酸化性雰囲気(例えば窒素、アンモニアな
ど非酸化性のガス雰囲気)中、好ましくは1400℃〜
1700℃で焼成する。これは、焼成温度が1400℃
未満だと窒化反応がおこらず、1700℃より高温にな
ると一部が熱伝導率の低い酸窒化アルミニウムスピネル
AlON等の中間体を生じてしまうからである。また、
還元窒化反応を完結させないために保持時間を、例えば
5時間未満とする事が好ましい。
The mixed powder or pellets thus obtained are placed in a container through which a gas can flow, and the first step in an electric furnace is a non-oxidizing atmosphere containing nitrogen (for example, a non-oxidizing gas atmosphere such as nitrogen or ammonia), preferably. 1400 ° C ~
Bake at 1700 ° C. This is a firing temperature of 1400 ℃
If it is less than 1, the nitriding reaction does not occur, and if the temperature is higher than 1700 ° C., a part of the intermediate product such as aluminum oxynitride spinel AlON having a low thermal conductivity is produced. Also,
The holding time is preferably, for example, less than 5 hours so as not to complete the reduction nitriding reaction.

【0016】ここに、アルミナの反応率はアルミナが窒
化アルミニウムに転化したパーセント割合をいい、X線
回折のピーク強度比より次式で算出される。
Here, the reaction rate of alumina means the percentage of conversion of alumina into aluminum nitride, and is calculated from the following formula from the peak intensity ratio of X-ray diffraction.

【0017】[0017]

【数1】 [Equation 1]

【0018】第一段階の焼成ではアルミナの反応率は1
00%未満として、第二段階の焼成時にアルミナを残す
必要がある。第二段階の焼成時にアルミナが残ることに
よってAlNの粒成長が可能になる。反応が完結した場
合は第二段階以降でAlNの粒成長が生じず、単一粒子
の大きさが2μm超とならない。この機構ははっきりわ
からないが、未反応酸素がAlNの粒成長を促進するも
のと思われる。好ましいアルミナの反応率は0〜99
%、さらには50〜99%の範囲内である。反応率が9
9%を超えると粒成長が生じにくくなり、0〜50%だ
と後の段階で未反応酵素を低減しにくくなる。
In the first stage firing, the reaction rate of alumina is 1
If it is less than 00%, it is necessary to leave alumina during the second-step firing. The remaining alumina during the second-step firing enables AlN grain growth. When the reaction is completed, grain growth of AlN does not occur in the second and subsequent stages, and the size of a single grain does not exceed 2 μm. Although this mechanism is not clear, it is considered that unreacted oxygen promotes AlN grain growth. The preferable reaction rate of alumina is 0 to 99.
%, And further within the range of 50 to 99%. Reaction rate is 9
If it exceeds 9%, grain growth becomes difficult to occur, and if it is 0 to 50%, it becomes difficult to reduce unreacted enzyme in the later stage.

【0019】続いて第二段階として、窒素を含まない非
酸化性雰囲気中(例えば真空中、アルゴン、ヘリウム等
の不活性ガス雰囲気)、1600℃〜2000℃でこの
混合粉末あるいはペレットを焼成する。このアルミナを
残存する窒化アルミニウム粉末の焼成により窒化アルミ
ニウム粉末の粒径が増大し、かつ窒化されるべきアルミ
ナは少量であるので、次の第三段階の焼成で完全に窒化
され酸素含有率の少ない窒化アルミニウム粉末が2μm
超の大きい粒径で得ることが可能になる。焼成温度が1
600℃より低いと、窒化アルミニウムの粒径が2μm
以上とならず、また2000℃より高いと、粒径が20
μm以上となったり、窒化アルミニウムの揮発が一部生
じてしまう。焼成時間は、平均粒径が大略2μm以上に
なるまでとし、一般的には1〜10時間程度である。
Then, as a second step, the mixed powder or pellets are fired at 1600 ° C. to 2000 ° C. in a nitrogen-free non-oxidizing atmosphere (for example, in a vacuum, an atmosphere of an inert gas such as argon or helium). By firing this remaining aluminum nitride powder, the grain size of the aluminum nitride powder increases, and since the amount of alumina to be nitrided is small, it is completely nitrided in the third firing step and has a low oxygen content. Aluminum nitride powder is 2μm
It is possible to obtain with a super large particle size. Firing temperature is 1
If it is lower than 600 ° C, the grain size of aluminum nitride is 2 μm
If the above is not satisfied and the temperature is higher than 2000 ° C, the particle size is 20
The thickness may be more than μm, or aluminum nitride may partially volatilize. The firing time is until the average particle diameter becomes about 2 μm or more, and is generally about 1 to 10 hours.

【0020】更に第三段階として再び窒素を含む非酸化
性雰囲気中、1700〜2000℃でこの混合粉末ある
いはペレットを焼成する。この焼成により、粒径が略2
μm越にされた窒化アルミニウム粉末中に残存するアル
ミナを最終的に完全な窒化アルミニウムに転換される。
焼成温度が1700℃より低いと未反応の酸素が0.6
wt%以上となり、また2000℃より高いと、窒化アル
ミニウムの揮発が一部生じてしまう。
In the third step, the mixed powder or pellets are fired again at 1700 to 2000 ° C. in a non-oxidizing atmosphere containing nitrogen. By this firing, the particle size is approximately 2
The alumina remaining in the aluminum nitride powder passed over μm is finally converted to complete aluminum nitride.
When the firing temperature is lower than 1700 ° C, unreacted oxygen is 0.6
If it is more than wt% and is higher than 2000 ° C., volatilization of aluminum nitride partially occurs.

【0021】[0021]

【作用】アルミナの炭素還元窒化の途中で、窒素を含ま
ない非酸化性雰囲気中で焼成して粒成長させることによ
り、酸素含有量の少ない粒径2μm〜20μmの窒化ア
ルミニウム粉末を得ることができる。
Function: During the carbon reduction nitriding of alumina, by firing in a non-oxidizing atmosphere containing no nitrogen to grow grains, an aluminum nitride powder having a small oxygen content and a grain size of 2 μm to 20 μm can be obtained. ..

【0022】本発明によって得られる窒化アルミニウム
は、粒子の平均径が2〜20μmと大きく、粒径が揃っ
ており、また酸素量が0.6wt%以下と少ないため、従
来の微粒の窒化アルミニウムと比べて放熱性、充填性、
耐湿性に優れたものである。次に実施例により、本発明
の内容をさらに詳しく説明する。
The aluminum nitride obtained according to the present invention has a large average particle size of 2 to 20 μm, a uniform particle size, and a small oxygen content of 0.6 wt% or less. Compared with heat dissipation, filling,
It has excellent moisture resistance. Next, the contents of the present invention will be described in more detail by way of examples.

【0023】[0023]

【実施例】【Example】

(実施例1)平均粒子径0.5μmのアルミナ100重
量部に平均粒子径0.3μmのカーボンブラック60重
量部を加えボールミルで混合した。この混合粉末を造粒
するため、ポリビニルアルコールの水溶液を加えパン型
造粒機で粒子径が5mmになる様に造粒した。造粒物を乾
燥した後、2リットルの黒鉛ルツボに500g充填し、
まず第一段階として窒素を流速20リットル/min で導
入しながら1450℃にて1時間焼成した。この時点で
の反応率は42%であった。続いて第二段階としてガス
を同じ流速のアルゴンに切り替え、1800℃にて4時
間焼成した。次に第三段階として、ガスを同じ流速の窒
素に切り替え、1900℃にて10時間焼成した。この
時点で酸素量を測定(LECO社製酸素窒素同時分析装
置TC−436を使用)したところAlN換算で0.1
8wt%であった。得られた粉末を650℃、4時間空気
中で焼成して残留炭素の除去(脱炭)を行った。こうし
て得られた粉末は、X線回折からAlN単相であり、平
均粒径はレーザー回折方式の粒度分析計で測定したとこ
ろ4.1μmであった。(AlN粉末0.02gをエタ
ノール200ccに投入し、超音波分散器で15分間分散
させ凝集をほぐした後、Leeds & Northrup社製のレーザ
ー回折式の粒度分析計マイクロトラックにて、粒度を測
定した。)SEMによる観察(図1)から、単一粒子の
大きさが約2.5μmで、粒径の揃った粉末であった。
酸素量は0.41wt%であり、脱炭前と比べると0.3
wt%増加していた。
Example 1 60 parts by weight of carbon black having an average particle size of 0.3 μm was added to 100 parts by weight of alumina having an average particle size of 0.5 μm, and mixed by a ball mill. In order to granulate this mixed powder, an aqueous solution of polyvinyl alcohol was added and granulated with a pan granulator so that the particle diameter was 5 mm. After drying the granulated product, 500 g was filled in a 2-liter graphite crucible,
First, as the first step, calcination was performed at 1450 ° C. for 1 hour while introducing nitrogen at a flow rate of 20 liter / min. The reaction rate at this point was 42%. Subsequently, in the second step, the gas was switched to argon at the same flow rate and firing was performed at 1800 ° C. for 4 hours. Next, as the third step, the gas was switched to nitrogen at the same flow rate, and firing was performed at 1900 ° C. for 10 hours. At this point, the amount of oxygen was measured (using an oxygen-nitrogen simultaneous analyzer TC-436 manufactured by LECO), and it was 0.1 in terms of AlN.
It was 8 wt%. The obtained powder was calcined in air at 650 ° C. for 4 hours to remove residual carbon (decarburization). The powder thus obtained was an AlN single phase by X-ray diffraction, and the average particle size was 4.1 μm as measured by a laser diffraction type particle size analyzer. (0.02 g of AlN powder was added to 200 cc of ethanol, dispersed with an ultrasonic disperser for 15 minutes to loosen the agglomerates, and then the particle size was measured with a laser diffraction type particle size analyzer Microtrac manufactured by Leeds & Northrup. .) From the observation by SEM (FIG. 1), it was found that the size of the single particle was about 2.5 μm, and the particle size was uniform.
The amount of oxygen is 0.41wt%, 0.3 compared to before decarburization
It was increasing by wt%.

【0024】また、得られた粉末を30℃の水(イオン
交換水)中に分散し、スターラー攪拌しながらpHの経時
変化を調べた。結果を図3に示す。さらに、得られた粉
末を500 kgf/cm2 の圧力でプレス成形した時の成形
嵩密度は2.01g/cm3 であった。
The obtained powder was dispersed in water (ion-exchanged water) at 30 ° C., and the change in pH with time was examined while stirring with a stirrer. Results are shown in FIG. Further, when the obtained powder was press-molded at a pressure of 500 kgf / cm 2 , the molding bulk density was 2.01 g / cm 3 .

【0025】(実施例2〜3)実施例1と同じ組成、方
法で作製したアルミナとカーボンブラックの混合ペレッ
トを、2リットルの黒鉛ルツボに充填し、表1に示す様
な条件で焼成した後、実施例1と同じ条件にて脱炭しA
lNを得た。結果もあわせて表1及び図3に示す。
(Examples 2 to 3) A mixed pellet of alumina and carbon black produced by the same composition and method as in Example 1 was filled in a 2 liter graphite crucible and fired under the conditions shown in Table 1. , Decarburizing under the same conditions as in Example 1
1N was obtained. The results are also shown in Table 1 and FIG.

【0026】(比較例1)実施例1と同じ組成、方法で
作製したアルミナとカーボンブラックの混合ペレット
を、2リットルの黒鉛ルツボに500g充填し、窒素を
流速20リットル/min で導入しながら、1600℃、
4時間で焼成した。この時点での反応率は100%であ
った。続いて第二段階としてガスを同じ流速のアルゴン
に切り替え、1800℃にて4時間焼成した。次に第三
段階として、ガスを同じ流速の窒素に切り替え、190
0℃にて10時間焼成した。この時点で実施例1と同様
の方法で酸素量を測定したところAlN換算で0.1wt
%であった。得られた粉末を650℃、4時間空気中で
焼成して脱炭を行った。得られた粉末を実施例1と同様
の方法で測定したところ、平均粒子径は1.7μmであ
った。SEMによる観察(図2)から、単一粒子の大き
さが約0.7μmで、粒径の揃った粉末であった。酸素
量は1.0wt%であり、脱炭前と比較して0.9wt%増
加していた。また、実施例1と同様にして耐湿性試験し
た結果を図3に示す。また実施例1と同様にプレス成形
した時の成形嵩密度は1.71g/cm3 であった。
Comparative Example 1 500 g of a mixed pellet of alumina and carbon black produced by the same composition and method as in Example 1 was filled in a 2 l graphite crucible and nitrogen was introduced at a flow rate of 20 l / min. 1600 ° C,
It was baked for 4 hours. The reaction rate at this point was 100%. Subsequently, in the second step, the gas was switched to argon at the same flow rate and firing was performed at 1800 ° C. for 4 hours. Next, in the third step, the gas was switched to nitrogen at the same flow rate,
It was baked at 0 ° C. for 10 hours. At this point, the amount of oxygen was measured by the same method as in Example 1 and found to be 0.1 wt% in terms of AlN.
%Met. The obtained powder was fired in air at 650 ° C. for 4 hours for decarburization. When the obtained powder was measured by the same method as in Example 1, the average particle size was 1.7 μm. From the observation by SEM (FIG. 2), the size of the single particle was about 0.7 μm, and the powder was uniform in particle size. The amount of oxygen was 1.0 wt%, which was increased by 0.9 wt% compared to before decarburization. The results of the moisture resistance test conducted in the same manner as in Example 1 are shown in FIG. The molded bulk density when press-molded in the same manner as in Example 1 was 1.71 g / cm 3 .

【0027】(比較例2〜3)比較例1と同じ混合ペレ
ットを、2リットル黒鉛ルツボに500g充填し、表1
に示す様な条件で焼成した後、実施例1と同じ条件にて
脱炭しAlNを得た。結果もあわせて表1に示す。
(Comparative Examples 2 and 3) The same mixed pellets as in Comparative Example 1 were filled in a 2 liter graphite crucible (500 g), and the results are shown in Table 1.
After firing under the conditions as shown in (1), decarburization was performed under the same conditions as in Example 1 to obtain AlN. The results are also shown in Table 1.

【0028】(比較例4〜5)従来のアルミナ還元法に
よる窒化アルミニウム粉末として徳山曹達(株)製Typ
e F(平均粒径2.0μm、酸素含有量1.2wt%)、
また従来の直接窒化法粉末として東洋アルミ(株)製U
F(平均粒径2.2μm、酸素含有量1.1wt%)を選
び、これらの粒子について実施例1と同様に耐湿性試験
を行なった結果を図3に併せて示す。
(Comparative Examples 4 to 5) Typ manufactured by Tokuyama Soda Co., Ltd. as aluminum nitride powder by the conventional alumina reduction method.
e F (average particle size 2.0 μm, oxygen content 1.2 wt%),
As a conventional direct nitriding powder, U manufactured by Toyo Aluminum Co., Ltd.
F (average particle size 2.2 μm, oxygen content 1.1 wt%) was selected, and the results of the moisture resistance test performed on these particles in the same manner as in Example 1 are also shown in FIG.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】上述の実施例から明らかなように、本発
明により、単一粒子の平均径が2〜20μm以上と大き
く、酸素量も0.6wt%以下と非常に低く、充填性、耐
湿性に優れた窒化アルミニウム粉末が得られるようにな
った。この窒化アルミニウム粉末は、高熱伝導焼結体原
料、放熱用フィラー等として放熱部品、IC基板等広い
分野ですぐれた原料として利用できる。
As is apparent from the above examples, according to the present invention, the average diameter of single particles is as large as 2 to 20 μm and the oxygen content is very low at 0.6 wt% or less, and the filling property and moisture resistance are high. Aluminum nitride powder having excellent properties has been obtained. This aluminum nitride powder can be used as a raw material excellent in a wide range of fields such as a high thermal conductive sintered material, a heat radiating filler, a heat radiating component, an IC substrate and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の製造方法によって得られた窒化アル
ミニウム粉末の粒子構造を示すSEM写真である。
1 is an SEM photograph showing the grain structure of aluminum nitride powder obtained by the manufacturing method of Example 1. FIG.

【図2】比較例2によって得られた窒化アルミニウム粉
末の粒子構造を示すSEM写真である。
FIG. 2 is an SEM photograph showing a grain structure of an aluminum nitride powder obtained in Comparative Example 2.

【図3】実施例及び比較例の窒化アルミニウム粉末の耐
湿性試験結果を示すグラフ図である。
FIG. 3 is a graph showing the results of a moisture resistance test of aluminum nitride powders of Examples and Comparative Examples.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が2μmより大きく20μm
以下で、かつ酸素含有量が0.6重量%以下であること
を特徴とする窒化アルミニウム粉末。
1. An average particle size of more than 2 μm and 20 μm
An aluminum nitride powder having the following content and an oxygen content of not more than 0.6% by weight.
【請求項2】 アルミナ粉末と炭素粉末又は炭素含有物
質の混合物を、最初に、窒素を含む非酸化性雰囲気中で
アルミナの反応率が100%未満となるように焼成し
(第1段階)、次いで窒素を含まない非酸化性雰囲気中
で反応を進行させずに焼成し(第2段階)、それから再
び窒素を含む非酸化性雰囲気中で焼成して反応を完結さ
せる(第3段階)ことを特徴とする窒化アルミニウム粉
末の製造方法。
2. A mixture of alumina powder and carbon powder or a carbon-containing substance is first calcined in a non-oxidizing atmosphere containing nitrogen so that the reaction rate of alumina is less than 100% (first step). Then, firing is performed in a non-oxidizing atmosphere containing no nitrogen without progressing the reaction (second step), and then firing is performed again in a non-oxidizing atmosphere containing nitrogen to complete the reaction (third step). A method for producing a characteristic aluminum nitride powder.
【請求項3】 第1段階の焼成を1400〜1700
℃、第2段階の焼成を1600〜2000℃、第3段階
の焼成を1700〜2000℃の温度範囲内で行なう請
求項2記載の窒化アルミニウム粉末の製造方法。
3. The first stage firing is 1400 to 1700.
The method for producing an aluminum nitride powder according to claim 2, wherein the second stage firing is performed at a temperature of 1600 to 2000 ° C and the third stage firing is performed at a temperature of 1700 to 2000 ° C.
JP09608892A 1992-03-24 1992-03-24 Aluminum nitride powder and method for producing the same Expired - Lifetime JP3636370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09608892A JP3636370B2 (en) 1992-03-24 1992-03-24 Aluminum nitride powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09608892A JP3636370B2 (en) 1992-03-24 1992-03-24 Aluminum nitride powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05270809A true JPH05270809A (en) 1993-10-19
JP3636370B2 JP3636370B2 (en) 2005-04-06

Family

ID=14155649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09608892A Expired - Lifetime JP3636370B2 (en) 1992-03-24 1992-03-24 Aluminum nitride powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3636370B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284315A (en) * 2006-04-19 2007-11-01 Denki Kagaku Kogyo Kk Aluminum nitride powder and resin composition
JP2012041253A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride-based particle, method for producing the same, and apparatus for producing aluminum nitride-based particle
JP2012041255A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride particle, method for producing the same, and apparatus for producing aluminum nitride particle
WO2013122296A1 (en) * 2012-02-13 2013-08-22 영남대학교 산학협력단 Method for producing aluminum nitride powder
WO2013146894A1 (en) * 2012-03-30 2013-10-03 株式会社トクヤマ Method for producing aluminum nitride powder
JP2014080362A (en) * 2013-12-06 2014-05-08 Tokuyama Corp Aluminum nitride powder
WO2014118993A1 (en) * 2013-02-04 2014-08-07 株式会社トクヤマ Method for producing sintered aluminum nitride granules
JP2018044072A (en) * 2016-09-15 2018-03-22 株式会社トクヤマ Aluminum nitride-containing curable resin composition
JP2019147709A (en) * 2018-02-27 2019-09-05 株式会社トクヤマ Method for producing aluminum nitride powder
KR20200021023A (en) * 2018-08-17 2020-02-27 (주) 존인피니티 Memufacturing method of High thermal conductivity AlN subtrate
CN115961163A (en) * 2023-02-20 2023-04-14 承德天大钒业有限责任公司 Preparation method of high-nitrogen titanium-silicon alloy co-produced titanium nitride powder
CN115961163B (en) * 2023-02-20 2024-04-26 承德天大钒业有限责任公司 Preparation method for co-production of titanium nitride powder by high-nitrogen titanium-silicon alloy

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284315A (en) * 2006-04-19 2007-11-01 Denki Kagaku Kogyo Kk Aluminum nitride powder and resin composition
JP4664229B2 (en) * 2006-04-19 2011-04-06 電気化学工業株式会社 Aluminum nitride powder and resin composition
JP2012041253A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride-based particle, method for producing the same, and apparatus for producing aluminum nitride-based particle
JP2012041255A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride particle, method for producing the same, and apparatus for producing aluminum nitride particle
WO2013122296A1 (en) * 2012-02-13 2013-08-22 영남대학교 산학협력단 Method for producing aluminum nitride powder
US9145301B2 (en) 2012-03-30 2015-09-29 Tokuyama Corporation Method for producing aluminum nitride powder
WO2013146894A1 (en) * 2012-03-30 2013-10-03 株式会社トクヤマ Method for producing aluminum nitride powder
JPWO2013146894A1 (en) * 2012-03-30 2015-12-14 株式会社トクヤマ Method for producing aluminum nitride powder
WO2014118993A1 (en) * 2013-02-04 2014-08-07 株式会社トクヤマ Method for producing sintered aluminum nitride granules
US9403680B2 (en) 2013-02-04 2016-08-02 Tokuyama Corporation Method for producing sintered aluminum nitride granules
JP2014080362A (en) * 2013-12-06 2014-05-08 Tokuyama Corp Aluminum nitride powder
JP2018044072A (en) * 2016-09-15 2018-03-22 株式会社トクヤマ Aluminum nitride-containing curable resin composition
JP2019147709A (en) * 2018-02-27 2019-09-05 株式会社トクヤマ Method for producing aluminum nitride powder
KR20200021023A (en) * 2018-08-17 2020-02-27 (주) 존인피니티 Memufacturing method of High thermal conductivity AlN subtrate
CN115961163A (en) * 2023-02-20 2023-04-14 承德天大钒业有限责任公司 Preparation method of high-nitrogen titanium-silicon alloy co-produced titanium nitride powder
CN115961163B (en) * 2023-02-20 2024-04-26 承德天大钒业有限责任公司 Preparation method for co-production of titanium nitride powder by high-nitrogen titanium-silicon alloy

Also Published As

Publication number Publication date
JP3636370B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
KR101659700B1 (en) A novel method for the production of aluminum nitride and aluminum nitride-based composite substances
US4778778A (en) Process for the production of sintered aluminum nitrides
US20120172193A1 (en) Method for producing pressurelessly sintered zirconium diboride/silicon carbide composite bodies
CN1326833A (en) Mo-Cu composite powder
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
US5837633A (en) Method for production of aluminum nitride sintered body and aluminum nitride powder
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
JPH0323206A (en) Aluminum nitride powder and its production
JPH0952704A (en) Aluminum nitride granule and its production
JPS6278103A (en) Production of aluminum nitride powder
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH10259054A (en) Tungsten oxide sintered product, its production and powdery composition for sintering
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0524810A (en) Production of aluminum nitride powder
JP2654108B2 (en) Manufacturing method of aluminum nitride sintered body
JPH01264914A (en) Production of aluminum nitride powder and powder composition
JPS62270468A (en) Aluminum nitride base sintered body
JPH02160610A (en) Production of aluminum nitride powder
JP2722533B2 (en) Aluminum nitride powder and method for producing the same
JPH0575688B2 (en)
JPH0597523A (en) Production of sintered aluminum nitride
JPH05330808A (en) Production of aluminum nitride powder
JPS63277568A (en) Production of sintered aluminum nitride having high thermal conductivity
JPH06329404A (en) Silicon nitride powder
JPS63297207A (en) Production of aluminum nitride powder

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8