JPS6339474A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPS6339474A
JPS6339474A JP61181866A JP18186686A JPS6339474A JP S6339474 A JPS6339474 A JP S6339474A JP 61181866 A JP61181866 A JP 61181866A JP 18186686 A JP18186686 A JP 18186686A JP S6339474 A JPS6339474 A JP S6339474A
Authority
JP
Japan
Prior art keywords
slider
ultrasonic
ultrasonic motor
driver
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61181866A
Other languages
Japanese (ja)
Inventor
Kazuma Suzuki
数馬 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP61181866A priority Critical patent/JPS6339474A/en
Publication of JPS6339474A publication Critical patent/JPS6339474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE: To miniaturize, thin and lighten an ultrasonic motor by monolithic- molding a driving piece to a base body, on which a piezoelectric element is stuck, and vibrating the nose of the driving piece. CONSTITUTION:A piezoelectric element 12 is pasted onto the base of a base body 11 as a square bar. A driving piece 13 integrally projected and formed from the base body 11 is shaped where displaced from nodes 14a, 14b at the time of the fundamental-tone vibrations of the base body 11. A signal from a lead 15 is transmitted over the piezoelectric element 12 for an ultrasonic unit U1, thus generating resonance and vibrations. Since the driving piece 13 is positioned on the drum section of the base body 11, it is vibrated in the vertical direction while a nose section thereof is vibrated, including even left and right components. Accordingly, when a slider 17 is brought into contact previously with the nose of the driving piece 13, the slider 17 is kicked to the right only when the nose is brought into pressure-contact with the slider 17, thus displacing the slider in the direction of the arrow (a) in the figure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超音波モータに関するものであり、とりわ
け、軽量、薄形の超音波モータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic motor, and particularly to a lightweight and thin ultrasonic motor.

〔従来の技術〕[Conventional technology]

従来、超音波モータとしてニッノrイ メノノニカル(
N工KKKI MECHANIG!AL) (1985
年9月26日号)に記載されたものがある。これは第1
2図に示すように、圧電素子を含む超1”♀波振動子(
1)にねじり結合子(2)を一体に結合してねじり振動
子(6)を形成し、ねじり結合子(2)の先端部に口−
ク(4)がコイルハネ(5)を介してホルl−(6)に
より圧着して成句けられている。
Conventionally, the ultrasonic motor used was Nippon Rime Nononical (
N-KKKI MECHANIG! AL) (1985
(September 26th issue). This is the first
As shown in Figure 2, a super 1” ♀ wave vibrator (
1) is integrally coupled with a torsion connector (2) to form a torsion vibrator (6).
The hole (4) is crimped by the hole (6) via the coil spring (5).

超音波振動子(1)は縦振動を生じるもので、ロータ(
4)はねじり結合子(2)のねじり振動に合わせて回転
するものである。
The ultrasonic transducer (1) generates longitudinal vibration, and the rotor (
4) rotates in accordance with the torsional vibration of the torsion coupler (2).

〔発明が解決しようとする問題点3 以上のような従来の超音波モータでは、回転形のみて、
直線形は実現することができない上に、寸法、重量とも
に大きく、駆動電圧が、例えば+ooVJ高い等の問題
点があった。しかし、駆動電圧が高いことから、負荷も
大きくとれるという利点はあった。
[Problem 3 to be solved by the invention In the conventional ultrasonic motor as described above, only the rotary type
In addition to being impossible to realize a linear type, the size and weight are large, and the driving voltage is, for example, +ooVJ high. However, since the driving voltage was high, it had the advantage of being able to handle a large load.

この発明は上記の問題点を解決するためになされたもの
で、回転形、直線形のいずれをも実現することができ、
寸法、重量が小さく薄形に形成でき、比較的低負荷に適
した超音波モータを得るこ古を目的とするものである。
This invention was made to solve the above problems, and can be realized in either a rotating type or a linear type.
The object of the present invention is to obtain an ultrasonic motor that is small in size and weight, can be formed into a thin shape, and is suitable for relatively low loads.

I]問題点を解決するだめの手段〕 この発明に係る超音波モータは、角棒状、矩形板状また
は円板状などの弾性体でなる基体と、この基体に装着結
合され超音波領域の!lシ信号によって基体に屈曲振動
を起こさぜる圧電素子と、基体と一体に上記屈曲振動の
方向に突出形成された駆動子とで超音波ユニットを形成
している。
I] Means for Solving the Problems] The ultrasonic motor according to the present invention includes a base made of an elastic body such as a square rod shape, a rectangular plate shape, or a disc shape, and is attached and connected to this base body, and is connected to the base body in the ultrasonic range. An ultrasonic unit is formed by a piezoelectric element that causes a bending vibration in the base body by a signal, and a driver formed integrally with the base body so as to protrude in the direction of the bending vibration.

〔作 用〕[For production]

共振して節と腹部を作って振動し、これに伴って駆動子
の先端部は所定の方向に振動する。
It resonates and vibrates to form nodes and abdomens, and the tip of the driver vibrates in a predetermined direction.

〔実施例〕〔Example〕

第1図〜第3図はこの発明の第一の実施例を示し、第1
図において、角棒でなる基体(11)のの底面に圧電効
果(d−,1)の圧電素子(12)が貼着されている。
FIGS. 1 to 3 show a first embodiment of this invention.
In the figure, a piezoelectric element (12) with a piezoelectric effect (d-, 1) is attached to the bottom surface of a base (11) made of a square bar.

基体(11)から一体に個用形成された駆動子(16)
は、基体(11)の基音振動時の節(14a)および(
14b)からすらした位置に形成されてい4基体(11
)と駆動子(13)を一体止した弾性体は、鉄、アルミ
など振動損失の少ない金属が適している。
A driver element (16) individually formed integrally with the base body (11)
is the node (14a) and (
14b) is formed in a position that is smooth from the 4 bases (11
) and the driver (13) are integrally fixed together, metals with low vibration loss such as iron and aluminum are suitable.

以上の構成になる超音波ユニツ) (u+)の圧電素子
(12)に、リート線(15)を経て基音周波数の正弦
波信号を供給すると、超音波ユニット(ul)は節(1
4a)(14b)で共振し、振動する。したがって、駆
動子(13)は基体(11)の腹部分の上にあるため、
図で上下方向に振動すると同時に、駆動子(13)の先
端部は左右成分をも含みながら振動する。これを詳細に
みると、第2図に示すように、基体(11)が上方へ屈
曲したときは、駆動子(16)の先端は(イ)の位置に
あり、ついで基体(11)が中心位置から下方へ屈曲す
るに従い、駆動子(16)の先端は(ロ)から(/′l
の位置へくる。すなわち駆動子(13)の先端は斜めに
振動する。いま、第3図に示すように、駆動子(16)
の先端にベアリンクのコロ(16)を用いてスライダ(
17)を接触させておくと、駆動子(16)の先端が第
2図で((ロ)から(イ)の位置へ行ってスライダ(1
7)に圧接したときだけ、スライダ(17)は右に蹴ら
れて矢印(a)方向へ変位する。スリップ分が零ならば
、時間当りのスライダ(17)の移動量は、(x×駆動
周波数)となる。圧電素子(12)に駆動信号が加えら
れている間、上記の動作は続行される。(18)はケー
ス、(19)はスライダ(17)の軸受を示している。
When a sine wave signal of the fundamental frequency is supplied to the piezoelectric element (12) of the ultrasonic unit (u+) having the above configuration via the Riet wire (15), the ultrasonic unit (ul)
4a) (14b) resonates and vibrates. Therefore, since the driver (13) is located on the belly portion of the base (11),
At the same time as it vibrates in the vertical direction in the figure, the tip of the driver (13) also vibrates while including left and right components. Looking at this in detail, as shown in Figure 2, when the base (11) is bent upward, the tip of the driver (16) is at the position (A), and then the base (11) is at the center. As it bends downward from the position, the tip of the driver (16) changes from (b) to (/'l
Come to the position. That is, the tip of the driver (13) vibrates obliquely. Now, as shown in Figure 3, the driver (16)
Using the bear link roller (16) at the tip of the slider (
17), the tip of the driver (16) moves from position (B) to position (A) in Figure 2, and slides into position (17).
7), the slider (17) is kicked to the right and displaced in the direction of arrow (a). If the slip amount is zero, the amount of movement of the slider (17) per time will be (x×drive frequency). The above operation continues while a drive signal is applied to the piezoelectric element (12). (18) shows the case, and (19) shows the bearing of the slider (17).

上記実施例の具体的な数値例を以下に示す。Specific numerical examples of the above embodiments are shown below.

(1)基体(11)の寸法二幅13mm、長さ52mm
、厚さ8 mm、 駆動子(16)の寸法二幅4 mm、長さ8mm、厚さ
8mm。
(1) Dimensions of the base (11): width 13 mm, length 52 mm
, thickness: 8 mm; drive element (16) dimensions: width: 4 mm; length: 8 mm; thickness: 8 mm.

(2)基体、駆動子の材質:硬質アルミ、(3)圧電素
子(+2) :厚さ0.4mm、Ag電極、高Q材、(
4)スライダ(17) ニガラスエポキシ板、幅10m
m、厚さimm。
(2) Material of base and driver: Hard aluminum, (3) Piezoelectric element (+2): Thickness 0.4 mm, Ag electrode, high Q material, (
4) Slider (17) Nigarasu epoxy board, width 10m
m, thickness imm.

(5)コロ(16):ボールベアリンク、(6)駆動信
号:23KHz正弦波、7 V rma、(7)超音波
ユニット(u2)の固定:ノート゛をスポンジラバーで
給料は固定、 以上によりスライダ(17)を一方向に駆動して、無負
荷時に300mm/秒の移動速度が得られた。
(5) Roller (16): Ball bear link, (6) Drive signal: 23KHz sine wave, 7V rma, (7) Fixation of ultrasonic unit (U2): Fixed the payload with sponge rubber on the notebook. From the above, the slider (17) was driven in one direction, and a moving speed of 300 mm/sec was obtained under no load.

また、スライダ(17)がカラスエポキシ材であるため
、騒音の発生は皆無に近かった。
Further, since the slider (17) was made of glass epoxy material, almost no noise was generated.

なお、第1図において、フィードバック端子(j2a)
は自励発振用のもので、圧電素子(12)の電極の一部
を切欠いて充当し、位相調整をして安定な発振をさせる
ものである。また、フィードバック端子用に、別個の圧
電素子を設けてもよい。
In addition, in FIG. 1, the feedback terminal (j2a)
This is for self-excited oscillation, and a part of the electrode of the piezoelectric element (12) is cut out and used, and the phase is adjusted to achieve stable oscillation. A separate piezoelectric element may also be provided for the feedback terminal.

第4図は第二の実施例を示し、2個の超音波ユニッL 
(’l+ a) (u+ b)を対称に配置し、スライ
ダ(17)をその両側から挾み込んでなるものである。
FIG. 4 shows a second embodiment, in which two ultrasonic units L
('l+ a) (u+ b) are arranged symmetrically, and sliders (17) are inserted from both sides thereof.

このように、超音波ユニットを複数個で使用するときは
、相互の共振周波数を揃える必要があることは当然であ
る。
As described above, when a plurality of ultrasonic units are used, it is natural that the mutual resonance frequencies need to be aligned.

第5図、第6図は第三の実施例を示し、圧電る超音波ユ
ニ:zト(L12)である。駆動子(22)の、節(2
3)からの最適な位置関係は、第1図の場合と同様に考
えれはよい。(24)はリード線である。
5 and 6 show a third embodiment, which is a piezoelectric ultrasonic unit (L12). The node (2) of the driver (22)
The optimal positional relationship from 3) can be considered in the same way as in the case of FIG. (24) is a lead wire.

矢印(a、)はスライダ(図示せず)の移動方向を示し
ている。
The arrow (a,) indicates the direction of movement of the slider (not shown).

以上の構成により、圧電素子(20)にIJ −1’線
(24)を介して基音周波数の正弦波信号を供給するこ
とにより、駆動子(22)の先端に斜め方向1辰動を発
生させ、スライダを矢印fa+方向に移動させることが
できる。
With the above configuration, by supplying a sine wave signal of the fundamental frequency to the piezoelectric element (20) via the IJ-1' line (24), one diagonal movement is generated at the tip of the driver (22). , the slider can be moved in the direction of arrow fa+.

ここで、超音波ユニソl−(u2)が円板状であること
の利点は、基体(21)と駆動子(22) (!:のポ
リウム比を大きくとることができるので、薄形で比較的
負荷の大きいものが得られる。ただ、その代りにスペー
スが多少大きくなるのはやむを得ない。
Here, the advantage of the ultrasonic Unisol l-(u2) being disk-shaped is that it is possible to have a large polygon ratio between the base body (21) and the driver (22) (!), so it is thin and can be compared. You can get something with a large physical load.However, it is unavoidable that the space will be a little larger.

また、基音の)−ドは一点鎖線(23)で示すリング状
になり、組立時の固定部位として利用する。リード線(
24)は、模式的に4つかり易く示したが、実際には、
長時間の振動動作に対して断線しないように、ノート(
23) l二を這わせて組立て材に固定ずれはよい。
Furthermore, the fundamental note ()-do has a ring shape as shown by a dashed line (23), and is used as a fixed part during assembly. Lead(
24) is shown schematically to make it easier to understand, but in reality,
In order to prevent the wire from breaking due to long-term vibration operation, use a notebook (
23) Fix the l2 to the assembly material so that there is no misalignment.

第7図、第8図は第四の実施例を示し、日頃状の基体(
25)に4個の駆動子(26a)(26b)(26c)
(26a)を等分割点に形成し、4分割した圧電素子(
27)を基体(25)に貼着して直交する2つの一点鎖
線(2aa) (2!sb)の部位にノートが位置する
超音波ユニッh (u5)としたもので、駆動子(26
a)(26b)と(26C)(26d)とが互いに逆位
相で上下振動する。
FIGS. 7 and 8 show a fourth embodiment, in which the substrate (
25) with four drive elements (26a) (26b) (26c)
(26a) is formed at equal dividing points, and the piezoelectric element (26a) is divided into four parts (
27) is pasted on the base (25) to form an ultrasonic unit h (u5) in which the notebook is located at the position of two orthogonal dashed lines (2aa) (2!sb).
a) (26b), (26C) and (26d) vibrate vertically in opposite phases.

以上の構成により、第1図のものの腹、ノードおよび駆
動子の位置関係が、円周上にエンドlメスに配置された
ものとなるので、駆動子(26a)〜(26d)の端部
に当接させた円環状のスライダ(図示せず)は、矢印(
a)方向に回転駆動されることになり、2組、4箇所の
駆動子(26a)〜(26d)が交互に動作することか
ら、1サイクルで2回、スライダの蹴り出し動作が行わ
れる。
With the above configuration, the positional relationship between the antinode, the node, and the driver in FIG. The abutted annular slider (not shown) is indicated by the arrow (
Since the slider is rotationally driven in the a) direction and two sets of four driver elements (26a) to (26d) operate alternately, the slider kicks out twice in one cycle.

駆動子(26a)・・・の設定数は対称の2箇所のみで
もよく、その場合は、1サイクル当り1回の蹴り出し動
作となるのはいうまでもない。また、ノードの数は、圧
電素子(27)の分割数に従うので、駆動子(26a)
・・・の数をさらに増やして、スライダとの接触面積を
大きくして、高負荷用とすることもてきる。
The number of drive elements (26a) may be set at only two symmetrical locations, and in that case, it goes without saying that the kicking operation is performed once per cycle. Also, since the number of nodes depends on the number of divisions of the piezoelectric element (27), the driver (26a)
It is also possible to further increase the number of . . . and increase the contact area with the slider for use with high loads.

なお、基体(25)として、四角形の頃状のものを用い
てもよく、同様の動作がiUられる。
It should be noted that a square shaped body may be used as the base body (25), and the same operation will be performed.

第9図は第五の実施例であり、第1図のものと同様の発
想に基づく第1」二音で駆動する基体(29)に、2つ
の駆動子(3011,) (30b)を形成し、基体(
29)に貼着した2つの圧電素子(31a) (3+ 
b)は極性を互いに逆にして並列接続してなる。(32
a)(x2b)はそれぞれリ−1・線である。この用台
、3つのノード(3xa) (331)) (33C)
が生じ、腹は、したがって2つできる。
FIG. 9 shows a fifth embodiment, in which two drive elements (3011,) (30b) are formed on a base (29) that is driven by the first and second sounds based on the same idea as the one in FIG. and the substrate (
29) Two piezoelectric elements (31a) (3+
b) is formed by connecting in parallel with opposite polarities. (32
a) (x2b) are Lee-1 lines, respectively. This stand has 3 nodes (3xa) (331)) (33C)
occurs, and thus two bellies are formed.

以上の構成により、入力の1→)゛イクルてスライダを
2回蹴り出すことになり、スライダの移送速度は、第1
図のもののほは2倍となる。1(体側としては、X=1
07irx、周波数f = 25 K、Hz、駆動子が
(3oa) (30b)と2個であれば、スライダは1
0XIOX25X10X2=50[]1面/GθCて動
くことになり、実測値も無負荷状態て470 mm/ 
socであった。
With the above configuration, the slider is kicked out twice for every 1→) cycle of input, and the slider transfer speed is the first
The size of the picture is doubled. 1 (For the body side, X=1
07irx, frequency f = 25 K, Hz, if there are two drivers (3oa) (30b), the slider is 1
It will move at 0XIOX25X10X2=50[]1 plane/GθC, and the actual measured value is 470 mm/ under no load condition.
It was soc.

また、基体(29)を円弧状にして、円板形スライダの
外周部を蹴って回転移送することも考えられる。
It is also conceivable to make the base body (29) arc-shaped and rotate and transfer it by kicking the outer periphery of the disc-shaped slider.

第10図、第11図は第六の実施例を示し、第9図の場
合のような第1上音基体(64)に、駆動子(35a)
 (35b) (35c)および(6sd)を、対称位
置に上下4箇所形成し、圧電素子(36a)〜(x6h
)は、比較的薄い基体(64)の側面に、2段に、表裏
合計8分割して貼着されている。
10 and 11 show a sixth embodiment, in which a drive element (35a) is attached to the first upper tone base (64) as in the case of FIG.
(35b) (35c) and (6sd) are formed in four upper and lower positions at symmetrical positions, and piezoelectric elements (36a) to (x6h
) is attached to the side surface of a relatively thin base (64) in two stages, dividing into eight sections on the front and back sides.

以上の構成になる超音波ユニット(u4)は、上下にス
ライダに相当するレールを設置しておいて、その間に超
音波ユニソh (u4)を挾持し、リート゛線伺きの超
音波ユニソh (u4)を摺動させるものに適している
The ultrasonic unit (U4) having the above configuration has rails corresponding to sliders installed on the top and bottom, and the ultrasonic Uniso h (U4) is held between them. Suitable for sliding u4).

上記の構成において、圧電素子は、例えば上段表裏の(
36a) (36b) (36C)および(+6a)の
みてもよい。
In the above configuration, the piezoelectric elements are, for example, (
36a) (36b) (36C) and (+6a) may also be used.

なお、以上の各実施例において、基体と駆動子の一体構
成は、ロストワックス手法で量産することがてきる。
In each of the above embodiments, the integrated structure of the base and the driver can be mass-produced using the lost wax method.

また、駆動子のみの共振点は、基体の共振点よりも高く
しておくのが、相互の干渉による不都合を避ける上で効
果的である。例えば、第1図のものの前記の具体例では
、基体(11)の共振周波数が23 KHzて強く、駆
動子(13)の共振周波数が43 KHzで非常に弱い
ため、安定な振動動作が得られる。駆動子の側断面形状
は、若干のテーパとして基体との結合基部を太き目にす
ることが考えられる。さらに、駆動子の先端接触部分は
、若干の丸みをつけた方がよく、使用頻度が多いもので
は、耐摩耗材でなるアダプタを取付けてもよい。
Furthermore, it is effective to set the resonance point of only the driver element higher than the resonance point of the base body in order to avoid problems caused by mutual interference. For example, in the specific example shown in FIG. 1, the resonant frequency of the base (11) is strong at 23 KHz, and the resonant frequency of the driver (13) is very weak at 43 KHz, resulting in stable vibration operation. . It is conceivable that the side cross-sectional shape of the driver element is slightly tapered so that the connecting base to the base body is made thicker. Furthermore, it is better to make the tip contact portion of the driver slightly rounded, and if it is used frequently, an adapter made of wear-resistant material may be attached.

スライダの断面形状は矩形とし、駆動子との接触面には
ギシミ音の発生と磨耗を少なくするために、ゴムシート
(ネオブレン、フチルゴム)などを貼るか、スライダを
合成樹脂で形成することが考えられる。スライダを樹脂
成形で作るときは、スライダの位置検知手段を同時に埋
設することも考えられる。
The cross-sectional shape of the slider should be rectangular, and in order to reduce the occurrence of creaking noise and wear on the contact surface with the driver, it is considered that a rubber sheet (neobrene, phthyl rubber), etc. should be pasted, or the slider should be made of synthetic resin. It will be done. When the slider is made by resin molding, it is also conceivable to embed the slider position detection means at the same time.

基音の周波数は、通常、可聴域を外して18KH2〜5
0KH2に設定する。
The frequency of the fundamental tone is usually 18KH2~5 outside the audible range.
Set to 0KH2.

スライダに往復運動をさせるには、2つの超音波ユニッ
トを逆向きに配置しておいて、通電を切換えるようにず
れはよい。
In order to make the slider reciprocate, two ultrasonic units are arranged in opposite directions and the energization is switched so that the two ultrasonic units are shifted.

また、上記実施例では、スライダとの相対移動の場合に
ついてであるが、例えば、第9図で、駆動子(son)
 (3ob)をノー1への位置近傍に設け1、駆動子の
先端にタイヤモンドヂソプなどの超硬工具を成句ければ
、文字などの彫刻機として利用することかでき、あるい
は歯科医用霧化頭にも供用できる。
Further, in the above embodiment, the case of relative movement with the slider is described, but for example, in FIG. 9, the driver (son)
(3ob) is installed near the position to No. 1, and if a carbide tool such as a tire mold disop is attached to the tip of the drive element, it can be used as an engraving machine for letters, etc., or it can be used as an atomizer for dentists. It can also be used on the head.

駆動子を股上の位置に設けたものは、駆動方向切換用モ
ータとして利用することができ、このときは、駆動子に
も圧電素子を貼付して共振周波数を基体と一致させると
共に位相を異なるように切換えて方向転換を行わせても
よい。
A motor with a drive element installed at the crotch position can be used as a drive direction switching motor. In this case, a piezoelectric element is attached to the drive element to match the resonance frequency with the base body and to change the phase. The direction may be changed by switching to .

〔発明の効果〕〔Effect of the invention〕

この発明は、以上の説明から明らかなように、超音波信
号が加えられて屈曲振動をする圧電素子が貼着された基
体に、駆動子を一体に形成し、駆動子の先端に所定の振
動を起こさせるようにしたので、下記のような効果を奏
する。
As is clear from the above description, in this invention, a driver element is integrally formed on a base body to which a piezoelectric element that undergoes bending vibration when an ultrasonic signal is applied is attached, and a predetermined vibration is applied to the tip of the driver element. Since this is made to occur, the following effects are achieved.

(1)小形、薄形、軽量に設計することができ、安価で
ある。
(1) It can be designed to be small, thin, and lightweight, and is inexpensive.

(2)負荷等の使用条件によって弾力性のある設計が可
能である。
(2) Flexible design is possible depending on usage conditions such as load.

(3)駆動電圧が低く、 、二ニー; −電源が簡単で
ある。
(3) Low driving voltage; - Simple power supply.

(4)  QMの大きい利料で共振点近傍で動作させる
ため、省電力になる。
(4) Since it operates near the resonance point with a large QM interest, it saves power.

(5)進行方向は、一方向、左右方向が任意にてきる。(5) The direction of travel can be one direction or the left/right direction.

また、回転運動もてきる。Rotational motion also occurs.

(6)運転時の騒音の発生がほとんどない。(6) Almost no noise is generated during operation.

(7)  スライダが駆動子に圧接しているために慣性
によるフラツキがなく、スイッチのON。
(7) Since the slider is in pressure contact with the drive element, there is no fluctuation due to inertia, and the switch turns ON.

OFFにより、スライダの即動、即停止ができる。By turning OFF, the slider can be moved or stopped immediately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はこの発明の第一の実施例を示し、第1
図は超音波ユニットの側面図、第2図は同じくその動作
説明線図、第6図は全体側面図である。第4図は第二の
実施例の側面図、第5図は第三の実施例の剥加図、第6
図は第5図のVl−Vl線に沿う平面での断面図、第7
図は第四の実施例の平面図、第8図は同じく側面図、第
9図は第五の実施例の側面図、第10図は第六の実施例
の側面図、第11図は第10図のX−XI線に沿う平面
での断面図、第12図は従来の超音波モータの分解斜視
図である。 (11)、(21)、(25)、(29)・・基体、(
+2)、(20)、(27)、 (xla)、(x+b
)および(66a)〜(36h)・・圧電素子、(12
a)・・フィードバック端子、(+3)、(22)、(
26a)〜(26d、)、(30a)、(30b)、(
x5a)〜(35d) −駆動子、(17)・・スライ
ダ、(u+)、(u+a)、(u+b)、(u2)、(
u3)、(u4)* +超音波ユニット。 罠1図 薊2図 工 %3図 普4図 罠5図     お6図 兜7図     児8図 狸9図
FIGS. 1 to 3 show a first embodiment of this invention.
The figure is a side view of the ultrasonic unit, FIG. 2 is a diagram illustrating its operation, and FIG. 6 is a side view of the entire unit. Fig. 4 is a side view of the second embodiment, Fig. 5 is a peeled-off view of the third embodiment, and Fig. 6 is a side view of the second embodiment.
The figure is a sectional view taken along the Vl-Vl line in Fig. 5,
The figure is a plan view of the fourth embodiment, FIG. 8 is a side view, FIG. 9 is a side view of the fifth embodiment, FIG. 10 is a side view of the sixth embodiment, and FIG. 11 is a side view of the fifth embodiment. FIG. 10 is a sectional view taken along the line X-XI in FIG. 10, and FIG. 12 is an exploded perspective view of a conventional ultrasonic motor. (11), (21), (25), (29)...Base, (
+2), (20), (27), (xla), (x+b
) and (66a) to (36h)...piezoelectric element, (12
a) Feedback terminal, (+3), (22), (
26a) to (26d,), (30a), (30b), (
x5a) to (35d) -Driver, (17)...Slider, (u+), (u+a), (u+b), (u2), (
u3), (u4)* + Ultrasonic unit. Trap 1 drawing 薊 2 drawing % 3 drawing general 4 drawing trap 5 drawing 6 drawing helmet 7 drawing child 8 drawing raccoon drawing 9 drawing

Claims (8)

【特許請求の範囲】[Claims] (1)超音波領域の電気信号が印加されて屈曲振動をす
る圧電素子が装着結合され弾性体でなる基体と、この基
体と一体にして前記屈曲振動の方向に突出形成された駆
動子とからなる超音波ユニットを備えてなる超音波モー
タ。
(1) A base made of an elastic body to which a piezoelectric element that generates bending vibration when an electric signal in the ultrasonic range is applied is attached and bonded thereto, and a driver formed integrally with the base and protruding in the direction of the bending vibration. An ultrasonic motor equipped with an ultrasonic unit.
(2)角棒状、矩形板状、円板状、円環状および四角環
状のいずれかの基体を備えた特許請求の範囲第1項記載
の超音波モータ。
(2) The ultrasonic motor according to claim 1, comprising a base body in the shape of a square bar, a rectangular plate, a disc, a ring, or a square ring.
(3)超音波ユニットの振動の腹および節に対して所定
位置に駆動子が設けられている特許請求の範囲第1項記
載の超音波モータ。
(3) The ultrasonic motor according to claim 1, wherein a driver is provided at a predetermined position relative to an antinode and a node of vibration of the ultrasonic unit.
(4)複数個の駆動子を備えた特許請求の範囲第1項記
載の超音波モータ。
(4) The ultrasonic motor according to claim 1, comprising a plurality of drive elements.
(5)電気信号は、共振近傍で基音、第一上音等の高調
波である特許請求の範囲第1項記載の超音波モータ。
(5) The ultrasonic motor according to claim 1, wherein the electric signal is a harmonic of a fundamental tone, a first upper tone, etc. near resonance.
(6)駆動子の先端にスライダが圧接されている特許請
求の範囲第1項記載の超音波モータ。
(6) The ultrasonic motor according to claim 1, wherein a slider is pressed into contact with the tip of the driver.
(7)圧電素子の一部分割および別個の圧電素子のいず
れかでなるフィードバック端子を備えた特許請求の範囲
第1項記載の超音波モータ。
(7) The ultrasonic motor according to claim 1, comprising a feedback terminal formed of either a partially divided piezoelectric element or a separate piezoelectric element.
(8)平行な1対のレール間に超音波ユニットを挾持し
て摺動させる特許請求の範囲第1項記載の超音波モータ
(8) The ultrasonic motor according to claim 1, wherein the ultrasonic unit is slid between a pair of parallel rails.
JP61181866A 1986-08-04 1986-08-04 Ultrasonic motor Pending JPS6339474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181866A JPS6339474A (en) 1986-08-04 1986-08-04 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181866A JPS6339474A (en) 1986-08-04 1986-08-04 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS6339474A true JPS6339474A (en) 1988-02-19

Family

ID=16108211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181866A Pending JPS6339474A (en) 1986-08-04 1986-08-04 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS6339474A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151277A (en) * 1988-09-30 1990-06-11 Rockwell Internatl Corp Piezoelectric actuator
US5073739A (en) * 1990-02-27 1991-12-17 Nisca Corporation Vibration-coupling type ultrasonic actuator and method for operating the same
JPH03289372A (en) * 1990-04-04 1991-12-19 Kenwood Corp Linear ultrasonic motor
JPH04183U (en) * 1990-04-09 1992-01-06
JPH04182U (en) * 1990-04-09 1992-01-06
JPH04184U (en) * 1990-04-16 1992-01-06
US5101132A (en) * 1989-08-31 1992-03-31 Brother Kogyo Kabushiki Kaisha Linear ultrasonic motor
US5105117A (en) * 1989-10-31 1992-04-14 Brother Kogyo Kabushiki Kaisha Ultrasonic motor
US5136200A (en) * 1989-07-27 1992-08-04 Olympus Optical Co., Ltd. Ultransonic motor
US5216313A (en) * 1988-12-16 1993-06-01 Alps Electric Co., Ltd. Ultrasonic wave linear motor
US7646137B2 (en) 2004-06-11 2010-01-12 Fujinon Corporation Actuator and its control method and lens device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987514A (en) * 1982-11-10 1984-05-21 Matsushita Electric Ind Co Ltd Fine movement device
JPS6154884A (en) * 1984-08-24 1986-03-19 Hitachi Maxell Ltd Both-end oblique support beam type piezoelectric motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987514A (en) * 1982-11-10 1984-05-21 Matsushita Electric Ind Co Ltd Fine movement device
JPS6154884A (en) * 1984-08-24 1986-03-19 Hitachi Maxell Ltd Both-end oblique support beam type piezoelectric motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151277A (en) * 1988-09-30 1990-06-11 Rockwell Internatl Corp Piezoelectric actuator
US5216313A (en) * 1988-12-16 1993-06-01 Alps Electric Co., Ltd. Ultrasonic wave linear motor
US5136200A (en) * 1989-07-27 1992-08-04 Olympus Optical Co., Ltd. Ultransonic motor
US5101132A (en) * 1989-08-31 1992-03-31 Brother Kogyo Kabushiki Kaisha Linear ultrasonic motor
US5105117A (en) * 1989-10-31 1992-04-14 Brother Kogyo Kabushiki Kaisha Ultrasonic motor
US5073739A (en) * 1990-02-27 1991-12-17 Nisca Corporation Vibration-coupling type ultrasonic actuator and method for operating the same
JPH03289372A (en) * 1990-04-04 1991-12-19 Kenwood Corp Linear ultrasonic motor
JPH04183U (en) * 1990-04-09 1992-01-06
JPH04182U (en) * 1990-04-09 1992-01-06
JPH04184U (en) * 1990-04-16 1992-01-06
US7646137B2 (en) 2004-06-11 2010-01-12 Fujinon Corporation Actuator and its control method and lens device

Similar Documents

Publication Publication Date Title
JPS6339474A (en) Ultrasonic motor
JPH0140597B2 (en)
JPS63277477A (en) Piezoelectric resonance motor
EP0495665A1 (en) Ultrasonic stepping motor
JPH0458273B2 (en)
JP3190634B2 (en) Piezoelectric actuator, method of driving piezoelectric actuator, and computer-readable storage medium storing program for causing computer to execute method of driving piezoelectric actuator
JPH06311765A (en) Ultrasonic motor
JPS63316675A (en) Piezoelectric linear motor
JPS63316676A (en) Piezoelectric linear motor
WO2017022242A1 (en) Actuator and electric beauty device
JP2003111453A (en) Piezoelectric motor
JPS59185179A (en) Supersonic motor
JPH02188169A (en) Ultrasonic motor
JPH0773428B2 (en) Piezoelectric drive
JPS63283473A (en) Ultrasonic motor
JPS63294279A (en) Piezoelectric driving device
JPH0315278A (en) Elastic vibrator in traveling bending vibration motor
JPS63110973A (en) Piezoelectric driver
JPH0564465A (en) Ultrasonic transducer
JPH08329181A (en) Two-dimensional light scanner
JP2534343B2 (en) Ultrasonic linear motor
JPH081911Y2 (en) XY coordinate positioning mechanism
JPH01321875A (en) Ultrasonic actuator and control thereof
JPH0619338Y2 (en) Ultrasonic linear motor
JPH0552137B2 (en)