JPS6339464A - Series resonance converter - Google Patents

Series resonance converter

Info

Publication number
JPS6339464A
JPS6339464A JP61181771A JP18177186A JPS6339464A JP S6339464 A JPS6339464 A JP S6339464A JP 61181771 A JP61181771 A JP 61181771A JP 18177186 A JP18177186 A JP 18177186A JP S6339464 A JPS6339464 A JP S6339464A
Authority
JP
Japan
Prior art keywords
series
resonant
series resonant
resonance
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61181771A
Other languages
Japanese (ja)
Other versions
JPH0740787B2 (en
Inventor
Yutaka Kuwata
豊 鍬田
Kazuhiko Sakakibara
榊原 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61181771A priority Critical patent/JPH0740787B2/en
Publication of JPS6339464A publication Critical patent/JPS6339464A/en
Publication of JPH0740787B2 publication Critical patent/JPH0740787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To remove noises by connecting a parallel resonance means in series with an AC side terminal for a rectifier circuit. CONSTITUTION:A series resonance converter is constituted of transistors 11-14 as switching elements, load 30, a capacitor 29 connected in parallel with the load, a rectifier circuit 24, etc. A parallel resonance means 31 is organized of a capacitor 32 and an inductor 33 at that time, and the parallel resonance means 31 is connected in series with the rectifier circuit 24, a capacitor 21 and an inductor 22, and fitted in common in first and second series resonance loops l1, l2. Consequently, the resonance frequency (f2)f of the parallel resonance means 31 is set at a value lower than that (fo) of a series resonance circuit, and the resonance frequency f2 is made higher than audio frequency as the lowest operating frequency of the converter. Accordingly, the impedance of the parallel resonance means 31 is maximized when operating frequency is brought to the resonance frequency f2, and reduced suddenly when operating frequency is made higher than f2, thus controlling output voltage.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は直流電圧を負荷に必要な直流電圧に変換する
直列共振コンバータに関するものでル)る。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a series resonant converter that converts a DC voltage to a DC voltage required for a load.

「従来の技術」 直流電圧を異なった極性あるいは異′なった市川値に変
換する場合に直列共振コンバータが使用きれている。直
列共振コンバー タは、インダクタ及びキャパシタの直
列共1辰回路と、バイポーラトランジスタ、M OS 
+−ランジスタ等の半導体スイッチと、ダイオードによ
り構成され、半導体スイッチを交互にオン、オンさせる
ことにより共振電流を流し、その共振電流を整流、)1
′−滑して再び直流電圧を得るコンバータである。
``Prior Art'' Series resonant converters have been used to convert DC voltages to different polarities or different Ichikawa values. A series resonant converter consists of a series circuit of an inductor and a capacitor, a bipolar transistor, and a MOS
It consists of semiconductor switches such as +- transistors and diodes, and by alternately turning the semiconductor switches on and on, a resonant current flows, and the resonant current is rectified.)1
' - is a converter that slips and obtains DC voltage again.

共振電流は一般に正弦波状の波形となり、一定時間経過
後、自然に零となるため、半導体スイッチを強制的にオ
ンさせろ必要がなく、またスイッチ素子のターンオン時
に流れる電流もゆるやかに増加することからスイッチン
グ損失は原理的に存在せず、高効率化、低雑音化及び小
形、Φγ量化の効果が期待できろ。
Resonant current generally has a sinusoidal waveform and naturally becomes zero after a certain period of time, so there is no need to forcibly turn on the semiconductor switch, and the current that flows when the switch element is turned on also increases gradually, so switching There is no loss in principle, and the effects of higher efficiency, lower noise, smaller size, and Φγ quantification can be expected.

第4図は従来の直列共振コンバータを示す(例えぼ、T
(、、、’j IぐING : Modeling T
he Full −BridgeScri〔1s−Re
sonant ’Power Converter、 
 HEEETrans onAE、 AES−18,茄
4 JUlr、Y 1982 )。
Figure 4 shows a conventional series resonant converter (for example, T
(、、、'j IGUING: Modeling T
he Full-BridgeScri[1s-Re
sonant'Power Converter,
HEEE Trans on AE, AES-18, 4 JUlr, Y 1982).

第4図において、スイッチ素子としてのトランジスタよ
りなる半導体スイッチ1.1..14を同時にオンする
と、直流電源23より半導体スイッチ11−整流回路2
4−負荷30(これと並列のキャパシタ29)−整流回
路24−キャンくシタ21−インダクタ22−半導体ス
イッチ14の第1の共振ループ11に直列共振電流が流
れる。インダクタ22のインダクタンスをLo 、  
キャンくシタ21のキャパシタンスをCO,キャパシタ
29のキャンくシタンスをC1とすると、Ct:))C
oとされているから前記直列共振電流は流れはじめてか
らπy’Troco時間後に零となり、その時のキャパ
シタ2]は直流電源と逆極性で2倍の大きさの電圧値に
充電される。
In FIG. 4, a semiconductor switch 1.1 consisting of a transistor as a switching element is shown. .. 14 at the same time, the DC power supply 23 connects the semiconductor switch 11 to the rectifier circuit 2.
A series resonant current flows through the first resonant loop 11 of 4-load 30 (capacitor 29 in parallel with this)-rectifier circuit 24-canceller 21-inductor 22-semiconductor switch 14. The inductance of the inductor 22 is Lo,
If the capacitance of the capacitor 21 is CO and the capacitance of the capacitor 29 is C1, then Ct:))C
0, the series resonance current becomes zero after πy'Troco time after it starts flowing, and the capacitor 2 at that time is charged to a voltage value twice as large as that of the DC power supply with the opposite polarity.

このため今度は、第1の共振ループ11に含まれ、半導
体スイッチ11.14とそれぞれ並列ダイオード15.
18が導通し、前記直列共振電流とは逆方向の直列共振
電流が流れる。この電流もインダクタ22とキャパシタ
21の共振電流となるから、π77時間後に零となり、
その時のキャパシタ21は直流電源と逆極性で負荷電圧
の2倍まで減少し、動作の半周期は終了する。
For this purpose, the first resonant loop 11 includes a semiconductor switch 11.14 and a parallel diode 15.14, respectively.
18 becomes conductive, and a series resonance current flows in the opposite direction to the series resonance current. This current also becomes a resonant current of the inductor 22 and capacitor 21, so it becomes zero after π77 hours.
At that time, the capacitor 21 has a polarity opposite to that of the DC power supply, and the voltage decreases to twice the load voltage, and a half cycle of operation is completed.

次に半導体スイッチ13.12を同時にオンさせること
により、直流電源23より半嗜体スイッチ]3−インダ
クタ22−キャパシタ2 ] −整流回路24−負荷3
0(キャパシタ29)−整流回路24−半導体スイッチ
12の第2の共振ル−プ12に直列共振電流が流れる同
様のモードが生じ、この半周期は終了する。
Next, by turning on the semiconductor switches 13 and 12 at the same time, the DC power supply 23 is connected to the semi-isolated switch ] 3 - inductor 22 - capacitor 2 ] - rectifier circuit 24 - load 3
A similar mode occurs in which a series resonant current flows in the second resonant loop 12 of 0 (capacitor 29)-rectifier circuit 24-semiconductor switch 12, and this half cycle ends.

第4図の従来の直列共振コンバータにおいて、整流回路
24を通して負荷30側へ伝達される電流は、半導体ス
イッチ素子をオン・オフさせる周波数fとキャパシタ2
1のキャンくシタンスCOに比例するため、負荷30の
抵抗値をR1とすて)と負荷電圧は、i’、Co、Rに
比例することとプエろ。
In the conventional series resonant converter shown in FIG. 4, the current transmitted to the load 30 side through the rectifier circuit 24 has a frequency f for turning on and off the semiconductor switching element and a capacitor 2.
Since the resistance value of the load 30 is assumed to be R1, the load voltage is proportional to i', Co, and R.

従って、負荷抵抗値1(・が変化する場合に、負荷電圧
を一定に保持するための制御は、[またはC()のいず
れかを制御することにより可能となるが、COを連続的
に制御することは現在のところ困難である。従って一般
に負荷が変動した場合でも負荷電圧を一定値に保持する
ためには動作周波数fを制御することにより行っている
Therefore, control to keep the load voltage constant when the load resistance value 1() changes is possible by controlling either [or C(), but CO is continuously controlled It is currently difficult to do so.Therefore, in order to maintain the load voltage at a constant value even when the load fluctuates, it is generally done by controlling the operating frequency f.

従って負荷抵抗値Rの値が増加した場合には動r[周波
数〔を比例して減少させるが、軽負荷時には動作周波数
fが可聴周波数となり、騒音が発生するという問題があ
った。
Therefore, when the value of the load resistance value R increases, the dynamic r[frequency] decreases proportionally, but when the load is light, the operating frequency f becomes an audible frequency, causing a problem that noise is generated.

この発明の目的は無負荷から全負荷まで定電圧制御を行
う場合、動作周波数の変化範囲を少なくするとともに最
低動作周波数をクランプできる直列共振コンバータを提
供することにある。
An object of the present invention is to provide a series resonant converter that can reduce the operating frequency change range and clamp the lowest operating frequency when performing constant voltage control from no load to full load.

1問題点を解決するための手段」 この発明では上記の問題を解決するため、第1スイッチ
素子及び第2スイッチ素子を有する第1直列共振ループ
と、第3スイッチ素子及び第4スイッチ素子を有する第
2直列共振ル−プと、これら第1直列共振ループ及び第
2直列共振ル−プに共通に挿入された整流回路と、上記
第1、第2スイッチ素子の制御により上記第1直列共振
ループに電流を流し、上記第3、第4スイッチ素子の制
御により上記第2直列共振ループに電流を流す直流電源
手段と、上記第1直列共振ループ、上記第2直列共振ル
ープに挿入され、これら第1、第2直列共振ループの直
列共振周波数よりも十分低い可聴周波数以上の共振周波
数をもつ並列共振手段とを具備している。
In order to solve the above problem, the present invention has a first series resonant loop having a first switch element and a second switch element, and a third switch element and a fourth switch element. A second series resonant loop, a rectifier circuit inserted in common to the first series resonant loop and the second series resonant loop, and the first series resonant loop controlled by the first and second switch elements. DC power supply means for passing current through the second series resonant loop under the control of the third and fourth switch elements; 1. Parallel resonant means having a resonant frequency equal to or higher than an audible frequency that is sufficiently lower than the series resonant frequency of the second series resonant loop.

従来は定電圧制御を行う場合軽負荷時には動作周波数を
低くして負荷電流の増加をおさえる必要があり、このた
め動作周波数が可聴周波数帯に入り、騒音を発生すると
いう問題があったが、どの発明では軽負荷時において動
作周波数が可聴周波数帯に入る前記並列共振手段が共振
し、そのインピーダンスが著しく大きくなって負荷電流
がおさえられ、無騒音化が達成できる。
Conventionally, when performing constant voltage control, it was necessary to lower the operating frequency at light loads to suppress the increase in load current, which caused the problem that the operating frequency fell into the audible frequency band and generated noise. In the present invention, when the load is light, the parallel resonance means whose operating frequency falls within the audible frequency band resonates, and its impedance becomes significantly large, so that the load current is suppressed and noiseless operation can be achieved.

「実施例」 第1図はこの発明の第1の実施例を示す回路図である。"Example" FIG. 1 is a circuit diagram showing a first embodiment of the invention.

この例において並列共振手段3]がキャパシタ32.イ
ンダクタ33とで構成され、この並列共振手段3]は、
整流回路24、キャパシタ21、インダクタ22と直列
に接続されて、第1直列共振ループ11と第2直列共振
ループ12とに共通に設けられた場合である。その他第
4図と同一符号は同一部分を示す。
In this example, the parallel resonant means 3] is a capacitor 32. and an inductor 33, this parallel resonant means 3]
This is a case where it is connected in series with the rectifier circuit 24, the capacitor 21, and the inductor 22, and is provided in common to the first series resonance loop 11 and the second series resonance loop 12. Otherwise, the same reference numerals as in FIG. 4 indicate the same parts.

並列共振手段3]のキャパシタ32のキャパシタンスな
Cm 、  インダクタ33のインダクタンスをLTn
とすれば、並列共振手段31の共振周波数f2=%/π
/v1闇τを、キャパシタ21.インダクタ22で構成
される直列共振回路の共振周波数、fo=%/π15よ
り低く設定し、f2をコンバータの最低動作周波数とし
、このf2は可聴周波数より高くする。並列共振手段3
1のインピーダンスは、動作周波数が共振周波数f2の
点で最大となり動作周波数が「2より高くなると急減す
る。
The capacitance of the capacitor 32 of the parallel resonance means 3 is Cm, and the inductance of the inductor 33 is LTn.
Then, the resonant frequency f2 of the parallel resonant means 31=%/π
/v1 darkness τ, capacitor 21. The resonant frequency of the series resonant circuit constituted by the inductor 22 is set lower than fo=%/π15, and f2 is the lowest operating frequency of the converter, and this f2 is set higher than the audible frequency. Parallel resonance means 3
The impedance of 1 reaches its maximum at the point where the operating frequency is the resonant frequency f2, and rapidly decreases when the operating frequency becomes higher than 2.

令弟1図において半導体スイッチ1.1.74を同時オ
ンすると従来の直列共振コンバータ(第4図)と同様に
第1の共振ルー プ11により、直列共振電流が流れる
が、この実施例では11の中に並列共振手段31が含ま
れるため、直列共振電流の犬きさが動作周波数により大
きく変化できる。すなわち、動作周波数が並列共振手段
3]の共振周波数より充分に高い場合には並列共振手段
3]のインピーダンスが充分に低いため、直列共振電流
の大きさは第4図に示した従来回路のそれとほぼ同等と
なる。しかし、動作周波数が並列共振手段31の共振周
波数に近づくと並列共振手段3]のインピーダンスが急
増するため、直列共振電流の大きさは急減する。
When the semiconductor switches 1, 1, and 74 are simultaneously turned on in Figure 1, a series resonant current flows through the first resonance loop 11, similar to the conventional series resonant converter (Figure 4). Since the parallel resonant means 31 is included in the parallel resonant means 31, the magnitude of the series resonant current can vary greatly depending on the operating frequency. In other words, when the operating frequency is sufficiently higher than the resonant frequency of the parallel resonant means 3], the impedance of the parallel resonant means 3 is sufficiently low, so the magnitude of the series resonant current is equal to that of the conventional circuit shown in Fig. 4. Almost equivalent. However, as the operating frequency approaches the resonant frequency of the parallel resonant means 31, the impedance of the parallel resonant means 3 increases rapidly, and the magnitude of the series resonant current rapidly decreases.

次に半導体スイッチ13.12を同時にオンさせること
により第2の共振ループ12に直列共振電流が流れ、こ
の電流も上記l]により流れる直列共振電流と同様に動
作周波数により大きく変化する。
Next, by simultaneously turning on the semiconductor switches 13 and 12, a series resonant current flows through the second resonant loop 12, and this current also varies greatly depending on the operating frequency, similar to the series resonant current flowing due to 1] above.

従って12付近においては動作周波数をわずかに変える
ことにより、直列共振電流を大幅に変化させることが可
能となり、出力電圧をN制御することができる。
Therefore, by slightly changing the operating frequency near 12, it is possible to significantly change the series resonance current, and the output voltage can be controlled by N.

第2図はこの発明の第2の実施例を示す回路図で、直流
入力と直流出力とを直流的に絶縁するためにトランス3
4を使った直列共振コンバータにこの発明を適用したも
のである。ずなわちトランス34の一次側が並列共振手
段31.キャパシタ21、インダクタ22と直列に接続
され、トランス34の二次側は整流回路24の交流側入
力端子と接続される。この第2の実施例による動作は第
1図に示した第1の実施例による動作と同一であるため
説明は省略する。この第2の実施例によれば入力側と出
力側とを直流的に絶縁でき、かつトランス34の巻数n
+/n2により出力電圧を自由に設定できる。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention, in which a transformer is used to isolate DC input and DC output.
This invention is applied to a series resonant converter using 4. That is, the primary side of the transformer 34 is the parallel resonant means 31. The transformer 34 is connected in series with the capacitor 21 and the inductor 22, and the secondary side of the transformer 34 is connected to the AC side input terminal of the rectifier circuit 24. The operation of this second embodiment is the same as the operation of the first embodiment shown in FIG. 1, so a description thereof will be omitted. According to this second embodiment, the input side and the output side can be isolated in terms of direct current, and the number of turns of the transformer 34 is n.
+/n2 allows the output voltage to be freely set.

第3図はこの発明の第3の実施例を示し、並列共振手段
41.42を各直列共振ループ11.hにそれぞれ各別
に挿入した場合である。
FIG. 3 shows a third embodiment of the invention, in which parallel resonant means 41, 42 are connected to each series resonant loop 11. This is a case where each is inserted separately into h.

「発明の効果」 以」二説明したようにこの発明は並列共振手段を整流回
路の交流側端子と直列に接続したので、負荷電流の変化
に対して動作周波数の変化範囲を狭くすることができ、
直列共振コンバータを可聴領域以」二の周波数で動作さ
せることが可能となり、無騒音の直列共振コンバータが
実現できる利点がある。
``Effects of the Invention'' As explained hereinafter, in this invention, the parallel resonant means is connected in series with the AC side terminal of the rectifier circuit, so the range of change in operating frequency can be narrowed in response to changes in load current. ,
It becomes possible to operate the series resonant converter at a frequency below the audible range, and there is an advantage that a noiseless series resonant converter can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例を示す回路図、第2図
はこの発明の第2の実施例を示す回路121、第3図は
この発明の第3の実施例を示す回路図、第4図は従来の
直列共振コンバークを示す回路図である。 11.12,13.1/I:半導体スイッチ、15.1
6,17,18,25.2J  27゜28:ダイオー
ド、23:直流電源、22.33=インダクタ、21,
29,32:キャパシタ、24:整流回路、30:負荷
、31,41./12=並列共振手段、11:第1の共
振ルー プ、e2:第2の共振ループ、34 : l−
ランス。
FIG. 1 is a circuit diagram showing a first embodiment of this invention, FIG. 2 is a circuit diagram 121 showing a second embodiment of this invention, and FIG. 3 is a circuit diagram showing a third embodiment of this invention. , FIG. 4 is a circuit diagram showing a conventional series resonant converter. 11.12, 13.1/I: Semiconductor switch, 15.1
6, 17, 18, 25.2J 27° 28: Diode, 23: DC power supply, 22.33 = Inductor, 21,
29, 32: Capacitor, 24: Rectifier circuit, 30: Load, 31, 41. /12=parallel resonant means, 11: first resonant loop, e2: second resonant loop, 34: l-
Lance.

Claims (1)

【特許請求の範囲】[Claims] (1)第1スイッチ素子及び第2スイッチ素子を有する
第1直列共振ループと、 第3スイッチ素子及び第4スイッチ素子を有する第2直
列共振ループと、 これら第1直列共振ループ及び第2直列共振ループに共
通に挿入された整流回路と、 上記第1、第2スイッチ素子の制御により上記第1直列
共振ループに電流を流し、上記第3、第4スイッチ素子
の制御により上記第2直列共振ループに電流を流す直流
電源手段と、 上記第1直列共振ループ、上記第2直列共振ループに挿
入され、これら第1、第2直列共振ループの直列共振周
波数よりも十分低い可聴周波数以上の共振周波数をもつ
並列共振手段とを具備する直列共振コンバータ。
(1) A first series resonant loop having a first switch element and a second switch element; a second series resonant loop having a third switch element and a fourth switch element; these first series resonant loops and second series resonance loops; A rectifier circuit commonly inserted into the loop, and a current flowing through the first series resonant loop by controlling the first and second switch elements, and a current flowing through the second series resonant loop by controlling the third and fourth switch elements. a direct current power supply means that is inserted into the first series resonant loop and the second series resonant loop, and has a resonant frequency equal to or higher than an audible frequency that is sufficiently lower than the series resonant frequencies of the first and second series resonant loops; A series resonant converter comprising parallel resonant means.
JP61181771A 1986-08-01 1986-08-01 Series resonance converter Expired - Fee Related JPH0740787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181771A JPH0740787B2 (en) 1986-08-01 1986-08-01 Series resonance converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181771A JPH0740787B2 (en) 1986-08-01 1986-08-01 Series resonance converter

Publications (2)

Publication Number Publication Date
JPS6339464A true JPS6339464A (en) 1988-02-19
JPH0740787B2 JPH0740787B2 (en) 1995-05-01

Family

ID=16106597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181771A Expired - Fee Related JPH0740787B2 (en) 1986-08-01 1986-08-01 Series resonance converter

Country Status (1)

Country Link
JP (1) JPH0740787B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123369A (en) * 1982-01-14 1983-07-22 Matsushita Electric Ind Co Ltd Constant-voltage power source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123369A (en) * 1982-01-14 1983-07-22 Matsushita Electric Ind Co Ltd Constant-voltage power source

Also Published As

Publication number Publication date
JPH0740787B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
US10263528B2 (en) Resonant converter with adaptive switching frequency and the method thereof
US7304463B2 (en) DC-DC converter
US8837174B2 (en) Switching power-supply apparatus including switching elements having a low threshold voltage
US6483721B2 (en) Resonant power converter
US10601308B2 (en) Power factor improving converter, and power supply device including power factor improving converter
JPH04351465A (en) Dc/dc converter
US7957161B2 (en) Power converters
US5166869A (en) Complementary electronic power converter
JP5280766B2 (en) DCDC converter, switching power supply and uninterruptible power supply
JP2001186764A (en) Power source controller and its operating method
US6963497B1 (en) Power converter with an inductor input and switched capacitor outputs
US4947308A (en) High power switching power supply
JP2005065497A (en) Pulse-width modulation soft switching control
US6166927A (en) Push-pull power converter circuit
EP0534422B1 (en) A power supply device
JP4582318B2 (en) Resonant power supply
JP2002112548A (en) Constant power output dc power supply apparatus
JPS6339464A (en) Series resonance converter
CN111525802B (en) Conversion device
JP2016039663A (en) Power conversion device
CN113014112B (en) Control circuit, control method and power converter
US20170244329A1 (en) Converter circuit and operating method thereof
JPH0258861B2 (en)
JP2003348834A (en) Single-phase step-up/down converter
JP7472818B2 (en) Power Conversion Equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees