JPS6338055B2 - - Google Patents

Info

Publication number
JPS6338055B2
JPS6338055B2 JP58076195A JP7619583A JPS6338055B2 JP S6338055 B2 JPS6338055 B2 JP S6338055B2 JP 58076195 A JP58076195 A JP 58076195A JP 7619583 A JP7619583 A JP 7619583A JP S6338055 B2 JPS6338055 B2 JP S6338055B2
Authority
JP
Japan
Prior art keywords
film
coating film
acrylate prepolymer
coating
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58076195A
Other languages
Japanese (ja)
Other versions
JPS59202229A (en
Inventor
Setsuo Suzuki
Nobutaka Takasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP58076195A priority Critical patent/JPS59202229A/en
Publication of JPS59202229A publication Critical patent/JPS59202229A/en
Publication of JPS6338055B2 publication Critical patent/JPS6338055B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は透明コーテイングフイルムの製造方法
に係るものであり、更に詳しくは高分子フイルム
の少くとも片面に、室温で固形のエポキシアクリ
レートプレポリマーおよび/またはウレタンアク
リレートプレポリマーを増感剤とともに溶剤に溶
解せしめた溶液を塗布乾燥せしめて、一旦常温下
でタツクフリーの未硬化塗膜を形成せしめ、しか
る後に放射線照射を施こし、固形常態で硬化反応
を生ぜしめることを特徴とする均一なコートの施
こされた透明コーテイングフイルムの製造方法に
関するものである。 従来各種高分子フイルム上に紫外線硬化型樹脂
組成物を塗布し照射硬化せしめてコーテイング膜
を形成し、支持体フイルムの有する欠点を補なう
試みは広く行なわれて来た。 この様な方法に用いられる紫外線硬化樹脂組成
物としては、エポキシアクリレートプレポリマ
ー、ウレタンアクリレートプレポリマーを低粘度
の重合可能な二重結合を有するモノマーで希釈
し、これを該高分子フイルム上に塗布し、照射硬
化せしめるのが一般的であつた。 一方近年透明導電フイルム作成時に必要な導電
機能膜と高分子フイルムの間に形成されるアンダ
ーコート膜、記憶材料に用いられる磁気機能膜、
光記憶材料に用いられる色素膜等に見られる如く
非常に薄い欠点の無いコート膜形成の要求が強
い。 これら薄膜コートの要求に対して前記UV樹脂
系は以下の点で不充分なものであり、現実には使
用不可能であつた。 即ち、 (1) 液状樹脂である為造膜性が無く、塗布に際し
て樹脂の凝集に起因するハジキ、ピンホール、
凹凸等を生じ、良好な薄い塗膜が得られない。 (2) 硬化収縮が大きく、塗膜表面に凹凸が生じる
と同時に、内部残留歪みのため密着性に劣る。 (3) 膜厚が薄いため低沸点架橋モノマー、増感剤
等が飛散し易く未硬化状態になる。 (4) 液状樹脂であるため希釈モノマーの単独重合
が生じ易く所望の塗膜性能が得にくい。 (5) 酸素の影響を受け易く、酸素禁止効果が生じ
重合阻害を生じる。 (6) 100%硬化成分の場合(溶剤が無い場合)、薄
膜塗布が全く困難である為、希釈溶剤を使用す
ると、溶剤の飛散に伴ない樹脂が凝集し易く均
一厚みの塗膜が得難い。 (7) ポリエーテルスルフオン、ポリスルフオン、
ポリスチレン等の耐溶剤性に劣る樹脂に塗膜を
施そうとした場合、長時間液状樹脂に晒らされ
る為、支持体フイルムの劣化を起し易い 等の欠点である。 本発明者らはこれらの数多い従来技術の欠点を
克服すべく鋭意研究を行ない本発明に到達した。 即ち高分子フイルムの少くとも片面に、室温下
で固形のエポキシアクリレート系プレポリマーお
よび/またはウレタンアクリレート系プレポリマ
ーを希釈モノマーを用いること無く、溶剤に溶解
し、これに増感剤および必要ならばカツプリンク
剤、消泡剤等を添加したワニスを塗布し、塗布後
可及的速やかに乾燥により溶剤を除去する。この
方法により室温で粘着性の無い、謂ゆるタツクフ
リーの固形塗膜の形成された高分子フイルムを得
る。 次いで形成された乾燥塗膜上に放射線を照射し
完全硬化させる。かくして透明コーテイングフイ
ルムを得るといつた画期的発明に到達し得たもの
である。 以下に本発明の詳細につき述べる。 本発明において用いられる高分子フイルムと
は、可撓性を有する透明フイルムもしくはシート
であり、ポリエチレンテレフタレート等のポリエ
ステル系フイルム、ビスフエノールA系ポリカー
ボネート等のポリカーボネートフイルム、セルロ
ースアセテート等のセルロース誘導体系フイル
ム、ポリ塩化ビニール等のビニル系フイルム、ポ
リエーテルサルフオン、ポリサルフオン等のサル
フオン系フイルム等透明なフイルムであればすべ
て使用可能である。この中で特に非晶性で光学異
方性の無いサルフオン系フイルムが好ましい。ま
たフイルムの厚さについては特に限定は無い。 上記フイルム面状に塗膜を形成するが樹脂とし
ては、溶剤の飛散に伴ない膜を形成出来る樹脂で
ある必要が有る。樹脂としては多官能アクリレー
ト系であつて室温下で固形の樹脂であれば原理的
にすべて使用可能であるが、上記の造膜性という
観点および工業的意味において常温で固形であ
り、融点が50℃以上のエポキシアクリレートプレ
ポリマーおよび/またはウレタンアクリレート系
プレポリマーが特に好ましい。融点が50℃以下の
場合は得られる塗膜にベタツキが生じ工程的に不
都合である。 上記の如き樹脂を溶剤に溶解せしめるが、該溶
剤は樹脂に対して良溶媒であるものならばすべて
使用可能であるが、用いられる高分子フイルムを
犯す溶剤であつてはならないことは当然であり、
フイルムとの濡れ性も加味して適宜選択される。 また必要に応じて混合溶媒系を用いることも適
宜可能である。また樹脂濃度も所望の塗膜厚みに
より適宜変更することもある。これら溶媒を用い
た樹脂溶液にベンゾフエノン、ベンゾインメチル
エーテル、ミヒラーケトン等の増感剤を添加し、
必要ならばビニルシラン、アクリルシラン等の謂
ゆるカツプリング剤、シリコン系脱泡剤、染料、
熱重合防止剤等の添加も適宜可能である。 得られた樹脂溶液を次いで該高分子フイルム上
に塗布するが、その方法としてはバーコーター
法、ロールコーター法、カーテンフローコーター
法、デイツプ法、スピンナー法等の通常の方法を
用いて実施される。 次いで塗布物は一旦乾燥せしめるが、造膜性を
有しているため均一なコート膜が得られる。乾燥
後の膜厚は0.5μm〜10μmであり、0.5μm以下の
場合コートの信頼性に欠ける場合が多く、10μm
以上では特に本発明の方法を用いる意味が薄くな
る。また膜厚が厚くなると可撓性を損うとか、膜
に複屈折が生じるとか、透明性を損うといつた問
題が生じて来る。 かくして高分子フイルム上に形成された乾燥塗
膜に、紫外線、電子線等の放射線を照射する。本
発明においては固形塗膜に照射する点が従来と大
きく異なるところであり、このことにより計り知
れない効果が前述の如く発現するのである。 かくして得られた透明コーテイングフイルム
は、薄膜であるにも拘らず均一にコートされてお
り、高分子フイルムと塗膜の密着性に優れ、硬化
歪みが無いため複屈折を生ぜず、完全硬化した、
可撓性を有する、優れたフイルムであることに加
え、高分子フイルムの摩耗性、耐湿性、水蒸気透
過性、耐薬品性等の性能を大巾に改良出来る工業
的に意義の大きい透明フイルムであつた。 以下に実施例を示す。 実施例 1 分子量約1040、融点55℃のエポキシアクリレー
トプレポリマー(昭和高分子株式会社製VR―
90)100重量部、キシレン200重量部、ジエチレン
グリコール200重量部、酢酸エチル100重量部、ベ
ンゾインエチルエーテル2重量部を50℃にて撹
拌、溶解して均一な溶液とした。この溶液を75μ
m厚のポリエーテルサルフオンフイルム上にデイ
ツプ法により両面に塗布し、80℃で10分間加熱し
て溶媒を除去したところ、室温においてはタツク
フリーなコーテイング膜が均一に形成された。こ
のコーテイング膜に80w/cmの高圧水銀灯により
15cmの距離で30秒間紫外線を照射し樹脂層を硬化
せしめた。このコーテイングフイルムの特性を第
1表に記す。 実施例 2 イソシアネート成分としてイソホロンジイソシ
アネート、ポリオール成分として1,6―ヘキサ
ンジオール、アクリル成分として2―ヒドロキシ
エチルメタクリレートよりなる反応生成物のウレ
タンアクリレートプレポリマー(分子量約3200、
融点55℃)30重量部、実施例1で用いたエポキシ
アクリレートプレポリマー70重量部、ベンジルア
ルコール300重量部、エチレングリコール200重量
部、メチルイソブチルケトン150重量部、ベンゾ
インエチルエーテル2重量部を、50℃にて撹拌、
溶解して均一な溶液とした。これを75μm厚のポ
リエーテルサルフオンフイルム上にデイツプ法に
より両面に塗布し、80℃で10分間乾燥したとこ
ろ、室温においてはタツクフリーなコーテイング
膜が均一に形成された。このコーテイング膜を実
施例1と同様な条件によつて硬化した後のフイル
ム特性を第1表に記す。 比較例 1 実施例1で用いたエポキシアクリレートプレポ
リマー30重量部、トリメチロールプロパントリア
クリレート60重量部、2―ヒドロキシエチルメタ
クリレート10重量部、キシレン100重量部、ジエ
チレングリコール100重量部、酢酸エチル50重量
部、ベンゾインエチルエーテル2重量部を50℃に
て撹拌、溶解して均一な溶液とした。この溶液を
75μm厚のポリエーテルサルフオンフイルム上に
デイツプ法により両面に塗布し、80℃で10分間乾
燥したところ、室温ではべたつきが大きく、また
コーテイング厚みの不均一なコーテイング層が得
られた。実施例1と同様な条件での硬化後のフイ
ルム特性を第1表に記す。 比較例 2 75μm厚のポリエーテルサルフオンに何らコー
テイングを施していない場合のフイルム特性を第
1表に記す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a transparent coating film, and more specifically, the present invention relates to a method for producing a transparent coating film, and more particularly, an epoxy acrylate prepolymer and/or a urethane acrylate prepolymer that is solid at room temperature is coated on at least one side of a polymer film. It is characterized by applying and drying a solution dissolved in a solvent together with a sensitizer to form a tack-free uncured coating film at room temperature, and then irradiating it with radiation to cause a curing reaction in the solid state. The present invention relates to a method for producing a transparent coating film having a uniform coating. Conventionally, attempts have been made to compensate for the deficiencies of support films by coating various types of polymer films with ultraviolet curable resin compositions and curing them by irradiation to form coating films. The ultraviolet curable resin composition used in such a method involves diluting an epoxy acrylate prepolymer or a urethane acrylate prepolymer with a low-viscosity monomer having a polymerizable double bond, and coating this on the polymer film. However, it was common practice to cure the material by irradiation. On the other hand, in recent years, there has been an undercoat film formed between a conductive functional film and a polymer film necessary when creating a transparent conductive film, a magnetic functional film used for memory materials,
There is a strong demand for the formation of a very thin, defect-free coating film, such as that seen in dye films used in optical storage materials. In response to these thin film coating requirements, the UV resin system is insufficient in the following points and cannot be used in reality. (1) Since it is a liquid resin, it does not have film-forming properties, and there are no repellents, pinholes, or cracks caused by resin aggregation during application.
It causes unevenness, etc., and a good thin coating film cannot be obtained. (2) Large curing shrinkage causes unevenness on the coating surface, and at the same time, adhesion is poor due to internal residual distortion. (3) Because the film is thin, low-boiling point crosslinking monomers, sensitizers, etc. easily scatter, resulting in an uncured state. (4) Since it is a liquid resin, homopolymerization of diluted monomers tends to occur, making it difficult to obtain the desired coating performance. (5) Easily affected by oxygen, causing oxygen inhibition effect and inhibiting polymerization. (6) In the case of a 100% curing component (without a solvent), it is difficult to apply a thin film, so if a diluted solvent is used, the resin tends to aggregate as the solvent scatters, making it difficult to obtain a coating of uniform thickness. (7) Polyether sulfon, polysulfon,
When attempting to apply a coating film to a resin having poor solvent resistance such as polystyrene, it is exposed to the liquid resin for a long period of time, resulting in disadvantages such as the tendency for the support film to deteriorate. The present inventors have conducted extensive research to overcome these numerous drawbacks of the prior art and have arrived at the present invention. That is, on at least one side of a polymer film, a solid epoxy acrylate prepolymer and/or urethane acrylate prepolymer is dissolved in a solvent at room temperature without using a diluting monomer, and a sensitizer and, if necessary, a sensitizer is added to the polymer film. A varnish containing a linking agent, an antifoaming agent, etc. is applied, and the solvent is removed by drying as soon as possible after application. By this method, a polymer film having a so-called tack-free solid coating film which is not sticky at room temperature is obtained. Next, the formed dry coating film is irradiated with radiation to completely cure it. In this way, we were able to achieve an epoch-making invention in which we obtained a transparent coating film. The details of the present invention will be described below. The polymer film used in the present invention is a flexible transparent film or sheet, such as a polyester film such as polyethylene terephthalate, a polycarbonate film such as bisphenol A polycarbonate, a cellulose derivative film such as cellulose acetate, Any transparent film can be used, such as a vinyl film such as polyvinyl chloride, a sulfon film such as polyether sulfone, or polysulfon. Among these, sulfon-based films that are amorphous and have no optical anisotropy are particularly preferred. Further, there is no particular limitation on the thickness of the film. The resin used to form a coating film on the surface of the film needs to be one that can form a film as the solvent scatters. In principle, any resin can be used as long as it is a polyfunctional acrylate resin that is solid at room temperature. Particularly preferred are epoxy acrylate prepolymers and/or urethane acrylate prepolymers having a temperature of .degree. C. or higher. When the melting point is below 50°C, the resulting coating film becomes sticky, which is inconvenient in terms of process. The above-mentioned resin is dissolved in a solvent. Any solvent can be used as long as it is a good solvent for the resin, but of course it must not be a solvent that will harm the polymer film used. ,
It is selected as appropriate, taking into consideration the wettability with the film. Moreover, it is also possible to use a mixed solvent system as appropriate. Further, the resin concentration may be changed as appropriate depending on the desired coating film thickness. A sensitizer such as benzophenone, benzoin methyl ether, Michler's ketone, etc. is added to the resin solution using these solvents,
If necessary, so-called coupling agents such as vinyl silane and acrylic silane, silicone defoamers, dyes,
It is also possible to add a thermal polymerization inhibitor or the like as appropriate. The obtained resin solution is then applied onto the polymer film using a conventional method such as a bar coater method, a roll coater method, a curtain flow coater method, a dip method, or a spinner method. . Next, the coated material is once dried, and since it has film-forming properties, a uniform coating film can be obtained. The film thickness after drying is 0.5 μm to 10 μm, and if it is less than 0.5 μm, the coating often lacks reliability, and if it is less than 0.5 μm,
In this case, the use of the method of the present invention becomes particularly meaningless. Further, as the film thickness increases, problems arise such as loss of flexibility, birefringence in the film, and loss of transparency. The dried coating film thus formed on the polymer film is irradiated with radiation such as ultraviolet rays or electron beams. The present invention differs greatly from the conventional method in that a solid coating film is irradiated, and this produces the immeasurable effects as described above. The thus obtained transparent coating film was coated uniformly despite being a thin film, had excellent adhesion between the polymer film and the coating film, had no curing distortion, did not produce birefringence, and was completely cured.
In addition to being an excellent film with flexibility, it is a transparent film that has great industrial significance as it can greatly improve the performance of polymer films such as abrasion resistance, moisture resistance, water vapor permeability, and chemical resistance. It was hot. Examples are shown below. Example 1 Epoxy acrylate prepolymer with a molecular weight of approximately 1040 and a melting point of 55°C (VR- manufactured by Showa Kobunshi Co., Ltd.)
90) 100 parts by weight, 200 parts by weight of xylene, 200 parts by weight of diethylene glycol, 100 parts by weight of ethyl acetate, and 2 parts by weight of benzoin ethyl ether were stirred and dissolved at 50°C to form a uniform solution. Add this solution to 75μ
When it was coated on both sides of a polyether sulfonate film with a thickness of m by the dip method and heated at 80°C for 10 minutes to remove the solvent, a tack-free coating film was formed uniformly at room temperature. This coating film is coated with a high pressure mercury lamp of 80w/cm.
The resin layer was cured by irradiating it with ultraviolet light for 30 seconds at a distance of 15 cm. The properties of this coating film are shown in Table 1. Example 2 Urethane acrylate prepolymer (molecular weight approximately 3200,
melting point 55°C), 70 parts by weight of the epoxy acrylate prepolymer used in Example 1, 300 parts by weight of benzyl alcohol, 200 parts by weight of ethylene glycol, 150 parts by weight of methyl isobutyl ketone, 2 parts by weight of benzoin ethyl ether, 50 parts by weight of Stir at °C.
Dissolved to form a homogeneous solution. This was coated on both sides of a 75 μm thick polyether sulfon film by the dip method and dried at 80° C. for 10 minutes, resulting in a uniform coating film that was tack-free at room temperature. Table 1 shows the properties of this coating film after it was cured under the same conditions as in Example 1. Comparative Example 1 30 parts by weight of the epoxy acrylate prepolymer used in Example 1, 60 parts by weight of trimethylolpropane triacrylate, 10 parts by weight of 2-hydroxyethyl methacrylate, 100 parts by weight of xylene, 100 parts by weight of diethylene glycol, 50 parts by weight of ethyl acetate. , 2 parts by weight of benzoin ethyl ether were stirred and dissolved at 50°C to form a homogeneous solution. This solution
When it was coated on both sides of a 75 μm thick polyether sulfon film by the dip method and dried at 80° C. for 10 minutes, a coating layer was obtained that was highly sticky at room temperature and had an uneven coating thickness. Table 1 shows the properties of the film after curing under the same conditions as in Example 1. Comparative Example 2 Table 1 shows the film properties of a 75 μm thick polyether sulfon without any coating. 【table】

Claims (1)

【特許請求の範囲】 1 高分子フイルムの少なくとも片面に、融点50
℃以上の室温下で固形のエポキシアクリレートプ
レポリマーおよび/またはウレタンアクリレート
プレポリマーを液状多官能アクリレートモノマー
類を添加すること無く、増感剤とともに溶解せし
めた溶液を、塗布乾燥せしめて常温下でタツクフ
リーの厚み05μm〜10μmの未硬化塗膜を形成し
た後、該乾燥塗膜に放射線照射を施こし、固形状
態で硬化せしめて塗膜となすことを特徴とする透
明コーテイングフイルムの製造方法。 2 融点50℃以上のエポキシアクリレートプレポ
リマーが次式で示され、且つ式中nの値が3以上
のプレポリマーである特許請求の範囲第1項記載
の透明コーテイングフイルムの製造方法。 (n≧3 R;水素原子またはメチル基) 3 融点50℃以上のウレタンアクリレートプレポ
リマーが次式で表わされ、且つnの値が3以上の
プレポリマーである特許請求の範囲第1項記載の
透明コーテイングフイルムの製造方法。 或いは、 (n≧3 R;水素原子またはメチル基 R1;炭素数2〜20個の2価の有機基 R2;炭素数2〜20個のジイソシアネート残基 R3;炭素数2〜20個のジオール残基)。
[Claims] 1. At least one side of the polymer film has a melting point of 50
A solution prepared by dissolving solid epoxy acrylate prepolymer and/or urethane acrylate prepolymer together with a sensitizer without adding liquid multifunctional acrylate monomers at room temperature above ℃ is coated and dried to form a tack-free product at room temperature. 1. A method for producing a transparent coating film, which comprises forming an uncured coating film with a thickness of 05 μm to 10 μm, and then irradiating the dried coating film to cure it in a solid state to form a coating film. 2. The method for producing a transparent coating film according to claim 1, wherein the epoxy acrylate prepolymer having a melting point of 50° C. or higher is a prepolymer represented by the following formula, in which the value of n is 3 or higher. (n≧3 R; hydrogen atom or methyl group) 3. The urethane acrylate prepolymer having a melting point of 50°C or higher is represented by the following formula, and the value of n is 3 or higher, according to claim 1. A method for producing a transparent coating film. Or, (n≧3 R; hydrogen atom or methyl group R 1 ; divalent organic group having 2 to 20 carbon atoms R 2 ; diisocyanate residue having 2 to 20 carbon atoms R 3 ; diol having 2 to 20 carbon atoms residue).
JP58076195A 1983-05-02 1983-05-02 Production of transparent coating film Granted JPS59202229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076195A JPS59202229A (en) 1983-05-02 1983-05-02 Production of transparent coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076195A JPS59202229A (en) 1983-05-02 1983-05-02 Production of transparent coating film

Publications (2)

Publication Number Publication Date
JPS59202229A JPS59202229A (en) 1984-11-16
JPS6338055B2 true JPS6338055B2 (en) 1988-07-28

Family

ID=13598358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076195A Granted JPS59202229A (en) 1983-05-02 1983-05-02 Production of transparent coating film

Country Status (1)

Country Link
JP (1) JPS59202229A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066632B2 (en) * 1985-09-14 1994-01-26 日本写真印刷株式会社 Method for producing film having ultraviolet curable coating film
FR2730239B1 (en) * 1995-02-02 1997-04-25 Basf Peintures Encres PLASTIC ICE PROTECTION METHOD FOR VEHICLE HEADLAMPS AND PHOTOPOLYMERIZABLE COMPOSITION USED IN THIS METHOD
DE10206831A1 (en) * 2002-02-18 2003-08-28 Basf Ag Coatings for substrates to achieve an oxygen barrier
JP2007254529A (en) * 2006-03-22 2007-10-04 Dainippon Ink & Chem Inc Photo radical reactive coating composition and coated wood substrate
JP6452320B2 (en) * 2014-05-26 2019-01-16 日本合成化学工業株式会社 Urethane (meth) acrylate-based compound, active energy ray-curable resin composition, and coating agent composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997037A (en) * 1972-12-27 1974-09-13
JPS55104327A (en) * 1979-02-05 1980-08-09 Mitsubishi Gas Chem Co Inc Surface treatment of plastic molded article
JPS56135526A (en) * 1980-03-27 1981-10-23 Matsushita Electric Ind Co Ltd Coating composition and resin molded product prepared therefrom
JPS5775857A (en) * 1980-08-29 1982-05-12 Anic Spa Complex using polycarbonate as base material and its manufacture
JPS5989330A (en) * 1982-11-09 1984-05-23 Showa Denko Kk Surface coating of molded plastic article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997037A (en) * 1972-12-27 1974-09-13
JPS55104327A (en) * 1979-02-05 1980-08-09 Mitsubishi Gas Chem Co Inc Surface treatment of plastic molded article
JPS56135526A (en) * 1980-03-27 1981-10-23 Matsushita Electric Ind Co Ltd Coating composition and resin molded product prepared therefrom
JPS5775857A (en) * 1980-08-29 1982-05-12 Anic Spa Complex using polycarbonate as base material and its manufacture
JPS5989330A (en) * 1982-11-09 1984-05-23 Showa Denko Kk Surface coating of molded plastic article

Also Published As

Publication number Publication date
JPS59202229A (en) 1984-11-16

Similar Documents

Publication Publication Date Title
US4426431A (en) Radiation-curable compositions for restorative and/or protective treatment of photographic elements
US4312916A (en) Process for producing adhesive film
US4885332A (en) Photocurable abrasion resistant coatings comprising silicon dioxide dispersions
US5104929A (en) Abrasion resistant coatings comprising silicon dioxide dispersions
US4060656A (en) Support for photosensitive resin
US4069368A (en) Workable and curable epoxy-terminated silane films
JPH0211665A (en) Coating composition
JPS6354474A (en) Electroconductive coating composition
US4340453A (en) U.V.-Curable resin with amine accelerator
JP3251614B2 (en) Polysilane
JP2877854B2 (en) Method for forming cured resin layer having antistatic surface
JPS61285201A (en) Active energy ray curing type resin composition
JPS6338055B2 (en)
JPS6014406B2 (en) Method for manufacturing magnetic recording tape
JP2527166B2 (en) Polyetherimide film having adhesive layer
JP2541997B2 (en) Curing method with active energy rays
JP2002240203A (en) Releasing base
JP2931801B2 (en) Alkali-soluble resist composition
JPS5828572B2 (en) Shinki Kankouseiji Yushijiban
JPS59148060A (en) Lithographic plate requiring no damping water
JPS60115626A (en) Photopolymer composition
JPS6232101B2 (en)
JPH04305450A (en) Method for forming hard coat layer having anti-fogging surface
JPS60215030A (en) Production of abrasion-resistant synthetic resin molding
JPH0495962A (en) Photosensitive resin composition