JPS6337308B2 - - Google Patents

Info

Publication number
JPS6337308B2
JPS6337308B2 JP54054495A JP5449579A JPS6337308B2 JP S6337308 B2 JPS6337308 B2 JP S6337308B2 JP 54054495 A JP54054495 A JP 54054495A JP 5449579 A JP5449579 A JP 5449579A JP S6337308 B2 JPS6337308 B2 JP S6337308B2
Authority
JP
Japan
Prior art keywords
natural gas
air
liquefied natural
gas
lng
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54054495A
Other languages
English (en)
Other versions
JPS55146372A (en
Inventor
Hiroshi Ishii
Hidetake Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP5449579A priority Critical patent/JPS55146372A/ja
Publication of JPS55146372A publication Critical patent/JPS55146372A/ja
Publication of JPS6337308B2 publication Critical patent/JPS6337308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0222Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】
本発明は液化天然ガス(以下LNGという。)を
利用した空気液化方法に関する。 従来よりLNGの寒冷を利用することは種々の
分野で提案され、一部は実施されている。このう
ち例えばガスタービン発電に於ける助燃用空気を
燃料用LNGの寒冷を利用して液化貯溜しておき、
電力需要のピーク時にその液体空気を集中的に気
化使用することにより発電を行う方法がある。こ
の方法によると、ガスタービン発電に於ける助燃
用空気を供給するための動力が節約できるので高
効率で発電できる特徴があるが、空気の液化貯溜
に要する動力を節減することが発電コストを低減
させることから望まれる。又一般に空気を液化し
て液体空気を製造する場合、その製造コストの大
部分は動力費であり、この動力費節減のために
LNGの寒冷を利用することが提案される理由で
あるが、実際にはLNGの寒冷費等と相殺され、
実用化に至らないのが現状である。 本発明はこのようなことから、LNGの寒冷を
有効に利用すると共にLNG中に含まれる高沸点
有機物の濃縮対策のために加圧する圧力を利用し
て膨脹タービンを駆動し圧縮機用動力節減を図る
ことにより液体空気製造コストのうち大部分を占
める電力費の低減を実現した方法である。 即ち圧縮空気を冷却液化するためのLNG蒸発
器に低圧にした気化量以上の過剰のLNGを供給
し、気化した天然ガスは天然ガス圧縮機により所
要圧に再加圧・圧送し、高沸点成分の多くなつた
余剰のLNGはポンプで臨界圧以上に加圧し、こ
れを予冷過程の圧縮空気との間接熱交換によつて
加温し、更に必要な場合は海水、温廃水などによ
つて常温以上迄加温した後膨脹タービンに導入し
て膨脹させ、発生した動力によつて前記気化天然
ガスの圧縮機を駆動する。これによつて圧縮空気
を低圧LNGの蒸発によつて低温に冷却できるた
め空気の圧縮圧力を比較的低くし、液化動力を節
減させることができる。同時に膨脹タービン駆動
による回収動力によつて所要動力を節減し得る。 更に本発明に於てはLNGの需要増大時に増大
分のLNGをポンプで臨界圧以上に加圧し、この
高圧LNGを海水・温廃水等により常温以上に加
温した後、膨脹タービンにより膨脹させて動力を
発生させ、これを原料空気圧縮機の動力源とする
ことにより空気液化の所要動力節減を図る方法を
も含む。火力発電所の燃料であるLNGは電力需
要に応じて変動があるが、空気液化の寒冷用に利
用するLNG量は最小需要量即ちベースロード値
に基づいて決めることが空気液化装置を常時安定
運転するために望ましい。従つて電力需要の大き
い昼間は使用LNG量も増加するので、この増加
分のLNGを利用して上記の如く膨脹タービンを
駆動する。即ち、相当大きな電力消費設備である
空気液化装置の空気圧縮機を電動機と膨脹タービ
ンとの両方により駆動し得る様にしておき、電力
需要の少ない夜間は安価な夜間電力を利用して電
動機を駆動源とし、電力需要の多い昼間はこの結
果として駆動する膨脹タービンを主駆動源とする
ことにより空気液化用の動力費の大巾な低減化を
可能としたものである。 以下に本発明の実施例を詳細に説明する。 第1図は火力発電所に供給するLNGを利用し
て液体空気を毎時48000Nm3製造する場合におけ
る本発明方法の一実施例である。管1より30℃の
大気48000Nm3/hが吸入され、冷却器2に於て
LNGにより冷却されたフレオンと熱交換して+
5℃迄冷却され、管24よりの空気と合流して
65000Nm3/hとなり圧縮機3によつて加圧され、
20気圧、+30℃の圧縮空気となつて管6を経、予
冷器7に導入される。圧縮機3の駆動に必要な動
力は10000kWであるが、駆動源は同容量の電動
機4と共に膨脹タービン5を連設しておく。この
膨脹タービン5は後記する如く高圧天然ガスを作
動ガスとし、LNG需要の大きい時期にはその駆
動力を利用することによつて電動機に要する電力
を軽減または不要とする。LNG需要の小さい時
期には膨脹タービン5は作動を停止し、電動機4
のみで圧縮機3を駆動する。予冷器7に導入され
た圧縮空気はここで伝熱管69内を流れる冷媒フ
レオンにより再び冷却され+5℃で導出し、切換
使用される吸着器8a又は8bの片方に導入さ
れ、ここで水分及び炭酸ガスが吸着除去される。
吸着により精製された空気は管9より原料空気予
冷用熱交換器10に導入され後記する気液分離器
18よりの低温気化空気および循環フレオンと熱
交換して−130℃まで冷却され、次いで管11を
経てLNG蒸発器12に導入される。LNG蒸発器
12に於て圧縮精製空気は大気圧のLNGと熱交
換し−155℃まで冷却されて液化する。液化した
空気は管13を経てLNG蒸発器14に導入され、
0.5気圧(絶対)のLNGと熱交換し−168℃に過
冷されて管15より導出する。過冷された液体空
気は更に熱交換器16に導入されて後記する気液
分離器18よりの気化空気と熱交換し一層過冷さ
れて導出し、膨脹弁17に於て1.5気圧に膨脹し
気液分離器18に導入される。気液分離器18の
底部より管19を経て液体空気48000Nm3/hが
取出され弁20を経て液体空気貯槽21に貯蔵さ
れる。一方気液分離器18の低温気化空気
17000Nm3/hは管22より熱交換器16に入つ
て液体空気を過冷し、自身は昇温して導出し、管
23より更に熱交換器10に導入されて圧縮精製
空気を冷却し自身はほぼ常温附近迄昇温して管2
4を経、管1よりの原料空気と合流し圧縮機3の
吸入側へ戻される。 寒冷用LNGは10気圧、−155℃の状態で管25
より供給され、2分してその一部80000Nm3/h
が管26を経て前記した空気の液化用に供され
る。即ち管26のLNGは更に2分してその一部
は弁27を経て大気圧まで降圧し−160℃の状態
でLNG蒸発器12に導入され、空気と熱交換し
て蒸発する。この場合弁27で調整されるLNG
蒸発器12へのLNGの供給量はLNG蒸発器12
で蒸発する量よりも過剰にしておく。従つて
LNG蒸発器12を導出し管28を流れるLNGは
気液混合状態であり、これが気液分離器29に入
つて気液分離され、ガス33000Nm3/hが管30
より導出される。一方空気液化用LNGの分岐流
れは弁31を経てLNG蒸発器14へ導入され、
ここで0.5気圧(絶対)、−170℃の状態で蒸発する
が、この場合も弁31で調整するLNGの供給量
はLNG蒸発器14で蒸発する量よりも過剰にし
ておく。従つて気液混合状態のLNGは管32よ
り気液分離器33に導入され、分離されたガス
12000Nm3/hは電動機34により駆動される真
空ポンプ35により圧縮され、大気圧−110℃の
状態で管36を経て前記管30よりのガスと合流
する。合流して45000Nm3/hとなつたガスは膨
脹タービン37によつて駆動される圧縮機38に
よつて10気圧、+10℃の天然ガスとして管39を
経、後記する他の管52および60よりの天然ガ
スと合流した上、管40より需要先の火力発電所
41に供給される。気液分離器29および33で
分離された液には一般にLNG中に含まれる炭化
水素等の高沸点成分が濃縮されており、これらの
析出によつて蒸発器内が閉塞する不都合が生ず
る。これを防ぐため、高沸点成分の濃縮された
LNGを加圧した後、加温することにより、LNG
中の主成分であるメタンと高沸点成分との比揮発
度を小さくし、メタン気流中に均一に気化される
ようにする必要がある。このため気液分離器29
および33で分離されたLNGは各々管42およ
び43よりポンプ44および45に導入され各々
200気圧に加圧された後合流して管46を経、熱
交換器47に入る。該熱交換器47に於て、後記
する循環フレオンと熱交換し−40℃まで昇温され
て導出し、管48より加熱器49に導入され、こ
こで廃熱源50により+100℃まで加熱された後、
管51より膨脹タービン37に入り、200気圧か
ら10気圧まで膨脹して動力を発生し管52へ導出
する。この場合膨脹タービン37を2段以上とし
て常温以上加熱された最初の高圧天然ガスを先ず
第1段タービンにて中間圧力まで膨脹し、その際
温度降下した出口ガスを再び温廃水等による加熱
によつて常温以上に昇温して次段タービンにて膨
脹させ、最終段タービンの出口ガスを天然ガス圧
送配管52に送る多段式タービンを採用すること
により更に効率を上げることが可能である。 以上に述べた空気液化用のLNGの流れは電力
需要の変動に伴なうLNG量の増減に拘らず定常
的に供給する、いわゆるベースロード用LNGを
利用したものであるが、次に述べるLNGの流れ
は電力需要がピークの時にのみ流されるLNGを
利用したものである。即ち発電所のLNG消費量
が増加した時の増加分で、夜間は実質的に流さず
日中はその使用量に応じて流すLNGの流れを利
用したものである。管25より供給され前記2分
されたLNGの他部は管54よりポンプ55に導
入され200気圧に加圧され弁56に至る。弁56
に於て、電力需要に応じた使用量に調節されて加
熱器57に入り、廃熱源58により+100℃まで
加熱された後管59を経て膨脹タービン5に導入
され、ここで200気圧から10気圧まで膨脹しその
際発生した動力は連設した空気圧縮機3に必要な
動力の一部又は大部分として利用される。膨脹タ
ービン5は2段以上とし前段タービンでの膨脹で
温度降下したガスを再び温廃水等による加熱によ
つて常温以上に昇温した後、後段タービンに導入
する多段再熱式とすることも可能である。膨脹タ
ービン5の出口ガスは管60を経、管39および
52よりのガスと合流し、需要先の火力発電所4
1へ送られる。 次に本発明方法に於てはLNGの寒冷をより有
効且つ安全に利用するためにフレオン冷媒の循環
系が設けられている。管61を流れる10気圧、−
150℃の液状フレオンはポンプ62により圧送さ
れ管63を経て熱交換器10へ導入される。熱交
換器10では精製圧縮空気の冷却源として用いら
れ、自身は昇温して−20℃となり管64より導出
する。次いでこのフレオンの流れは2分し、その
一部は管65を経て冷却器2の伝熱管66内を流
れ原料空気を熱交換してこれを冷却し自身は0℃
迄昇温して管67へ導出する。一方2分した他部
は管68を経て予冷器7の伝熱管69内を流れ、
圧縮原料空気を冷却して自身は昇温し0℃となり
管70へ導出する。管70は前記管67と合流し
て熱交換器47に至り、ここでフレオンは高圧
LNGに冷却されて−150℃となつて導出しポンプ
62により循環する。尚、このフレオン循環系を
用いず、直接圧縮空気とLNGを熱交換しても良
いことは勿論である。 次に本発明の他の実施例について説明する。前
記の如く本発明に於ては膨脹タービンを多段とし
各段の中間に再熱回路を組合せることにより、高
圧天然ガスの膨脹タービンに於ける発生動力を大
ならしめ、電力節減の効果を更に大ならしめるこ
とが可能である。第2図はこの場合の実施例であ
る。管48より供給される200気圧、−40℃の天然
ガスは加熱器49Aに於て廃熱源50により+
100℃迄加熱された後、管51Aより膨脹タービ
ン37Aに導入され、膨脹して45気圧、20℃の状
態となり管52Aを通つて加熱器49Bに入り再
び100℃まで加熱されて管51Bより膨脹タービ
ン37Bに導入される。ここで再び膨脹して10気
圧、+20℃の状態となり、管52Bへ導出する。
膨脹タービン37Aおよび37Bで発生した動力
は共に連設された圧縮機38を駆動する動力とし
て用いられる。一方管54より供給される10気
圧、−155℃のLNGはポンプ55により200気圧に
加圧された後弁56に至り、ここで電力需要に応
じた供給量に調節された上加熱器57Aに入り熱
源58により100℃まで加熱されて管59Aより
膨脹タービン5Aに導入される。ここで高圧の
LNGは膨脹して45気圧、+20℃の状態となり、管
60Aより加熱器57Bに入り、再び熱源58に
より+100℃迄加熱されて管59Bを経、膨脹タ
ービン5Bに入り再び膨脹して10気圧、+20℃の
状態となり管60Bへ導出する。管60Bは前記
52Bおよび39と合流し、管40となつて需要
先の火力発電所に至る。膨脹タービン5Aおよび
5Bは連設されている空気圧縮機3に発生動力を
伝達し、原料空気圧縮に必要な動力の一部又は大
部分を供給する。 本発明は以上の様にLNGに通常含まれる高沸
点有機物が気化過程で濃縮・析出する不都合を解
決するため、該有機物が濃縮されたLNGを加圧
することに着目し、この圧力を有効に利用するこ
とにより圧縮機の動力節減化を図ると共にLNG
の寒冷を最大限に利用して空気の液化率の向上を
可能としたもので、この方法によつて液体空気を
製造した場合の原単位を従来法の場合と比較する
と次の如くになる。今LNGの最終需要先である
火力発電所における消費量が夜間80000Nm3/h、
昼間の電力ピーク時は150000Nm3/hになるもの
と仮定する。即ち第1図の実施例に於て、
LNG80000Nm3/hが常時管26を通つて空気液
化用として流れる一方、管54を流れるLNG量
は夜間は無視し得る程度であり、昼間のピーク時
は70000Nm3/hに達すると仮定すると、各機器
の消費動力、本発明方法の膨脹タービンによる発
生動力、このタービンによる発生動力を圧縮機の
駆動源とした場合の差引必要動力は次表の如くな
る。
【表】 従つて液体空気48000Nm3/h製造時に於ける
電力原単位は従来法では 13700/48000=0.285kWH/Nm3 であるのに対し、実施例1によつた場合は 7000/48000=0.146kWH/Nm3 となる。即ち本発明方法により、電力原単位が従
来法に比して約半分になるという大きな経済的効
果が得られる。
【図面の簡単な説明】
第1図は本願発明の方法の一実施例を示す系統
図、第2図は他の実施例を示す系統図である。 2は冷却器、3は圧縮機、4は電動機、5,5
A,5Bは膨脹タービン、7は予冷器、8a及び
8bは吸着器、10は原料空気予冷用熱交換器、
12及び14はLNG蒸発器、16は熱交換器、
17は膨脹弁、18は気液分離器、21は液体空
気貯槽、29及び33は気液分離器、34は電動
機、35は真空ポンプ、37,37A,37Bは
膨脹タービン、38は圧縮機、41は火力発電
所、44及び45はポンプ、47は熱交換器、4
9,49A,49Bは加熱器、55はポンプ、5
7,57A,57Bは加熱器、62はポンプであ
る。

Claims (1)

  1. 【特許請求の範囲】 1 液化天然ガスを利用して空気を液化する方法
    に於て、原料空気を圧縮機で圧縮し、かつ予備処
    理した後、液化天然ガス蒸発器に導入し、蒸発量
    以上供給される液化天然ガスにより冷却した上膨
    張せしめ、生成液体空気を貯留すると共に分離低
    温空気を、その寒冷を回収した後、前記圧縮機に
    吸引される原料空気に合流せしめる工程と、前記
    液化天然ガス蒸発器に蒸発量以上供給された液化
    天然ガスの蒸発ガスを加圧して需要先に供給する
    と共に余剰液を臨界圧以上に加圧し、かつ加温し
    た後、膨張タービンに導入し前記蒸発天然ガス加
    圧用の動力源として膨張せしめる工程とからなる
    ことを特徴とする液化天然ガスを利用した空気液
    化方法。 2 前記臨界圧以上に加圧され、かつ加温された
    天然ガスが複数段からなる膨張タービンにより膨
    張されることを特徴とする特許請求の範囲第1項
    記載の液化天然ガスを利用した空気液化方法。 3 液化天然ガスを利用して空気を液化する方法
    に於て、原料空気を圧縮機で圧縮し、かつ予備処
    理した後、液化天然ガス蒸発器に導入し蒸発量以
    上に供給される液化天然ガスにより冷却した上膨
    張せしめ、生成液体空気を貯留すると共に、分離
    低温空気をその寒冷を回収した後、前記圧縮機に
    吸引される原料空気に合流せしめる工程と、前記
    液化天然ガス蒸発器に蒸発量以上供給された液化
    天然ガスの蒸発ガスを加圧して需要先に供給する
    と共に余剰液を臨界圧以上に加圧し、かつ加温し
    た後、膨張タービンに導入し、前記蒸発天然ガス
    加圧用の動力源として膨張せしめる工程と、別途
    供給液化天然ガスを臨界圧以上に加圧し、かつ加
    温した後、膨張タービンに導入し前記原料空気加
    圧用の動力源として膨張せしめて供給する工程と
    からなることを特徴とする液化天然ガスを利用し
    た空気液化方法。 4 前記臨界圧以上に加圧され、かつ加温された
    別途供給の天然ガスが複数段からなる膨張タービ
    ンにより膨張されることを特徴とする特許請求の
    範囲第3項記載の液化天然ガスを利用した空気液
    化方法。
JP5449579A 1979-05-02 1979-05-02 Method of liquefying air by liquefied natural gas Granted JPS55146372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5449579A JPS55146372A (en) 1979-05-02 1979-05-02 Method of liquefying air by liquefied natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5449579A JPS55146372A (en) 1979-05-02 1979-05-02 Method of liquefying air by liquefied natural gas

Publications (2)

Publication Number Publication Date
JPS55146372A JPS55146372A (en) 1980-11-14
JPS6337308B2 true JPS6337308B2 (ja) 1988-07-25

Family

ID=12972209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5449579A Granted JPS55146372A (en) 1979-05-02 1979-05-02 Method of liquefying air by liquefied natural gas

Country Status (1)

Country Link
JP (1) JPS55146372A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180271A (ja) * 1983-03-31 1984-10-13 中部電力株式会社 液化天然ガスの冷熱を利用した空気液化方法
JP6087196B2 (ja) * 2012-12-28 2017-03-01 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 低温圧縮ガスまたは液化ガスの製造装置および製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216479A (en) * 1975-07-30 1977-02-07 Nippon Sanso Kk Process for production of liquid air using chilling of liquefied natur al gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216479A (en) * 1975-07-30 1977-02-07 Nippon Sanso Kk Process for production of liquid air using chilling of liquefied natur al gas

Also Published As

Publication number Publication date
JPS55146372A (en) 1980-11-14

Similar Documents

Publication Publication Date Title
US5137558A (en) Liquefied natural gas refrigeration transfer to a cryogenics air separation unit using high presure nitrogen stream
WO2006051622A1 (ja) 低温液化冷凍方法及び装置
EP1055894A1 (en) Air separation method and air separation plant
US4227374A (en) Methods and means for storing energy
AU785125B2 (en) A method and a device for the liquefaction of natural gas
US20230417482A1 (en) Power generation process utilizing fuel, liquid air and/or oxygen with zero co2 emissions
KR102005812B1 (ko) 공기 액화 시스템 및 방법
US20110308275A1 (en) Method and system for periodic cooling, storing, and heating of atmospheric gas
JPH09250360A (ja) エネルギー貯蔵型ガスタービン発電システム
CN115451647B (zh) 一种集成液化空气储能***的氢液化***
JPH0545050A (ja) 液化天然ガスの寒冷を利用した永久ガスの液化方法
KR101103769B1 (ko) 히트펌프를 이용한 lng 기화공정 시스템
JPH1019402A (ja) ガスタービンによる低温冷凍システム
JPS6337308B2 (ja)
US20180038639A1 (en) Robust recovery of natural gas letdown energy for small scale liquefied natural gas production
KR20240028594A (ko) 장치
JP2004150685A (ja) 窒素製造設備及びタービン発電設備
JP2002318069A (ja) 深冷空気分離装置
JPH06123553A (ja) 液化天然ガス冷熱発電設備を組込んだ空気分離方法および装置
US9608498B2 (en) Method and device for generating electrical energy
JP2000120404A (ja) 複合発電プラント
CN112361208B (zh) 一种船用闪蒸天然气处理装置和方法
JPS6338632B2 (ja)
JPH10205353A (ja) 石炭ガス化複合サイクルシステムの駆動方法及び装置
JP4879606B2 (ja) 冷熱供給システム