JPS6337090B2 - - Google Patents

Info

Publication number
JPS6337090B2
JPS6337090B2 JP52133148A JP13314877A JPS6337090B2 JP S6337090 B2 JPS6337090 B2 JP S6337090B2 JP 52133148 A JP52133148 A JP 52133148A JP 13314877 A JP13314877 A JP 13314877A JP S6337090 B2 JPS6337090 B2 JP S6337090B2
Authority
JP
Japan
Prior art keywords
catalyst
carried out
weight
cobalt
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52133148A
Other languages
Japanese (ja)
Other versions
JPS5359604A (en
Inventor
Mihaeru Yozefu Baiwaado Henrikusu
Chon Shii Suwan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JPS5359604A publication Critical patent/JPS5359604A/en
Publication of JPS6337090B2 publication Critical patent/JPS6337090B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J35/60
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/045Regeneration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/06Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons
    • B01J35/638
    • B01J35/651
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/12Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一酸化炭素と水素との接触反応によつ
て炭化水素を製造する方法に関する。 一酸化炭素と水素の混合物を昇温昇圧下で触媒
と接触させてこの混合物から炭化水素を製造する
ことはフイツシヤー・トロプシユによる炭化水素
合成法として文献から公知である。この目的のた
めに屡々使用される触媒は鉄族金属の1種又はそ
れ以上と活性および/又は選択率を向上させるた
めの1種又はそれ以上の促進剤および時には珪藻
土のような担体材料とからなる。実際にフイツシ
ヤー・トロプシユによる炭化水素合成のために使
用される触媒は概して沈殿又は溶融によつて調製
される。簡単に言えば、沈殿による触媒の調製
は、所望ならば促進剤の塩と担体物質を加えても
よい鉄族金属の塩の水溶液を塩基性にし、その結
果触媒を沈殿として生成させることによつて行わ
れる。この沈殿に促進剤および担体物質を加えて
もよい。沈殿法によつて調製される炭化水素の合
成に適した触媒の例は、鉄100重量部当り銅4.5重
量部、ナトリウム4重量部および酸化珪素20重量
部からなるFe/Cu/Na/SiO2触媒並びにコバル
ト100重量部当り酸化トリウム5重量部、酸化マ
グネシウム8重量部および珪藻土100―200重量部
からなるCo/ThO2/MgO/珪藻土触媒である。
例えば鉄触媒の場合において溶融法による触媒の
調製は酸化鉄を1種又はそれ以上の促進剤酸化物
とともに溶融することによつて行なわれる。溶融
法によつて調製される炭化水素の合成に適した触
媒の例は、鉄100重量部当り酸化アルミニウム5
重量部、酸化カリウム1重量部および酸化カルシ
ウム3重量部からなるFe/Al2O3/K2O/CaO触
媒である。 沈殿法と溶融法はその再現性が低いために、本
発明の触媒の調製法としてはむしろ魅力がないだ
けでなく、沈殿法は極めて長時間を費し、溶融法
は多量のエネルギーを必要とする。 フイツシヤー・トロプシユによる炭化水素合成
に使用したとき上述の触媒の性能に関しては以下
のように評価することができる。フイツシヤー・
トロプシユによる炭化水素合成のための触媒の性
能は次のように定義された活性と選択率として評
価される。触媒の活性は毎時触媒1当りに製造
された炭化水素のグラム数である。触媒の選択率
は製造された炭化水素の全量の百分率として計算
された生成したC3+炭化水素の重量である。フイ
ツシヤー・トロプシユによる炭化水素合成触媒に
とつては高活性と高選択率の両方が望ましい。こ
れらの2つのパラメーターのうち選択率がより重
要なパラメーターであると考えられる。沈殿又は
溶融によつて調製された触媒の上述の欠点は別と
して、その触媒性能はいずれも余り満足なもので
はない。溶融によつて調製された触媒の特性は、
この触媒にとつて最適と考えられる約300―350℃
の温度範囲において該触媒は高い活性を示すけれ
ども中程度の選択率を示すにすぎない。溶融によ
つて調製した触媒の選択率をより低い温度を適用
することによつて、沈殿により得られた触媒のレ
ベルまで上昇させるこころみだけでなく、沈殿に
よつて調製した触媒の活性をより高い温度を適用
することによつて、溶融により得られた触媒のレ
ベルまで上昇させるこころみも従来成功しなかつ
た。なるほどこれらの処置は問題とする性質を改
善することができるけれども、これは第一の性質
が所望の高い水準に達する遥か前に他の主要な性
質がこの性質の最低許容水準以下に落ちるような
触媒の他の性質の悪化を伴う。 フイツシヤー・トロプシユによる炭化水素合成
に関する興味が増大しているために、溶融法によ
つて得られた触媒の活性に匹敵する活性だけでな
く沈殿法によつて得られた触媒の選択率に匹敵す
る選択率もそなえた炭化水素合成用の触媒の緊急
に必要となつてきた。更に上述の沈殿法又は溶融
法の欠点を持たない方法でこれらの触媒を調製す
るのが望ましい。 本出願人による広範な研究によつて、担体100
重量部当りコバルト10―75重量部、触媒上に存在
するコバルトの1―50%の量の亜鉛、マグネシウ
ム、トリウム、ジルコニウムおよびクロムから選
ばれた1種又はそれ以上の促進剤からなる触媒が
フイツシヤー・トロプシユによる炭化水素合成に
実用化され、そしてこの触媒はコバルトおよび促
進剤の塩の1種又はそれ以上の水溶液で多孔質担
体を浸漬し、つづいてその組成物を乾燥しそして
〓焼することによつて調製される。簡単な方法で
良好な再現性を保持しながら調製できるこれらの
触媒の選択率が触媒の平均孔径(p)と平均粒子
直径(d)との商に高度に依存することが判明した。
pとdに関するその他の情報並びにこれらの測定
方法はオランダ特許出願第7214397号、(特公昭55
―44795号に対応する)が参照され、そこではこ
れらの触媒データが詳細に論議されている。浸漬
によつて調製された上述の触媒に関する研究によ
つて、高々10000nmのpと高々5mmのdを有する
これらの触媒がフイツシヤー・トロプシユによる
炭化水素合成に使用したとき、商p/dが2.0よ
りも大であれば(pはnmそしてdはmm)、優れた
活性だけでなく優れた選択率も示すことがわかつ
た。 それ故本特許出願は浸漬によつて調製された上
述の性質を持つ触媒を使用する一酸化炭素と水素
との触媒反応によつて炭化水素を製造する方法に
関する。 浸漬によつて調製した本触媒の選択率を溶融に
よつて調製した上述の触媒の選択率と比較する
と、後者は概して一本特許出願におけるように一
選択率が主として重要である炭化水素合成に対し
て興味がないだけでなく更に論議する必要もない
ような低い選択率を示すことが判明した。浸漬に
よつて調製した本触媒の活性を沈殿によつて調製
した上述の触媒の活性と比較すると、前者は反応
温度の上昇温度当りかなり大きな活性の上昇を示
すだけでなく、選択率がかなり高くなることを意
に留めながらこれらの触媒をなお使用できる最高
温度も示すことが判明した。浸漬によつて調製し
た本触媒を沈殿によつて調製した触媒よりも高い
温度で使用できることによつて、活性を高めるこ
とができる上に、プロセスの廃熱を例えば沈殿に
よつて調製した触媒によつて可能な温度および圧
力よりも高い温度および圧力を有する水蒸気の製
造のためにより有効に利用することができるとい
う利益が提供される。 本発明方法において、出発物質は水素と一酸化
炭素の混合物でなければならない。このような混
合物は炭素と水素を含む材料の部分燃焼によつて
極めて好適に調製することができる。このような
材料の例は褐炭、無煙炭、コークス、原油および
その留分並びにタールサンドおよび瀝青質頁岩か
ら製造した油である。部分燃焼の間、微細に分散
した状態の装入原料は、所望ならば酸素又は酸素
を富化した空気によつて、特に水素、一酸化炭
素、二酸化炭素、窒素および水からなるガス混合
物に転化される。部分燃焼においては水を温度調
節剤として使用するのが好ましい。部分燃焼は好
ましくは900ないし1500℃の温度および10ないし
50バールの圧力で行われる。1000℃以上の温度を
有する部分燃焼において得られたガスから灰分、
炭素質物質および硫化水素のような不純物を除去
できるためには、まず最初にこのガスを100ない
し200℃の温度まで冷却しなければならない。こ
の冷却は廃熱によつて水蒸気が発生するボイラー
で行うのが極めて適している。冷却されたガスは
水洗によつて実際上すべての固体物質から遊離さ
れる。ガスの温度が20―80℃に降下したこの洗浄
の後、硫化水素と二酸化炭素を除去してガスを更
に精製する。これはADIPプロセス又は
SULFINOLプロセスによつて極めて好適に遂行
される。 本発明方法において出発材料は好ましくは0.5
ないし3のモル比を有する水素と一酸化炭素の混
合物である。1.2ないし2.5モルのモル比を有する
水素と一酸化炭素の混合物の使用が特に選択され
る。入手される水素と一酸化炭素の混合物が必要
なモル比を持たない場合には、これを水素又は一
酸化炭素を加えることによつて調整してよい。一
酸化炭素含有量に関して混合物の水素含量を増大
させることは混合物に周知の水性ガス転化反応を
受けさせても極めて好適に達成される。 本発明方法は好ましくは200―350℃の温度、10
―70バールの圧力および500―5000そして特に500
―2500Nlガス1触媒/時の空間速度において
遂行される。220―300℃の反応温度および10―35
バールの反応圧力が特に選択される。 本発明方法において使用される触媒は担体100
重量部当り10―75重量部のコバルトとともに、触
媒上に存在するコバルトの量の1―50%の量の促
進剤1種又はそれ以上を含んでいる。コバルトに
関しては、担体100重量部当り15―50、そして特
に20―40重量部含む触媒の使用が選択される。促
進剤に関しては、触媒上に存在するコバルトの5
―40そして特に10―20%の量の促進剤1種又はそ
れ以上を含む触媒の使用が選択される。本発明の
極めて好適なコバルト触媒の例はシリカ担体上に
担持されたコバルト、マグネシウムおよびトリウ
ムからなる触媒である。本発明のその他の極めて
好適なコバルト触媒はシリカ担体上に担持された
Co/Cr、Co/Zr、Co/Zn又はCo/Mgからなる
触媒である。 本発明方法においては、コバルトの塩および促
進剤の塩の1種又はそれ以上の水溶液で多孔質担
体を浸漬し、つづいてその組成物を乾燥しそして
〓焼することによつて調製した触媒を使用する。
本発明の触媒を調製するために使用される担体は
無定形でも結晶質でもよい。適当な担体の例はシ
リカ、アルミナ、ジルコニア、トリア、マグネシ
ア、酸化ホウ素並びにシリカ―アルミナおよびシ
リカ―マグネシアのようなこれらの組合せであ
る。その他の適当な担体はモルデナイト、ホウジ
ヤサイトおよびゼオライト―オメガのようなゼオ
ライトである。酸化亜鉛も本触媒に適した担体で
あることがわかつた。触媒の調製においては1段
階又はそれ以上の段階で塩を担体中に混入するこ
とができる。その材料は個々の浸漬段階の間で乾
燥される。高い金属含有量を有する触媒の調製の
ためには多段階の浸漬法を適用することが必要な
場合もある。コバルトの塩および促進剤の塩は
別々に又は1種の溶液から出発して一緒に担体中
に混入してもよい。コバルトと促進剤を担体中に
混入する魅力的な方法は乾燥浸漬法であり、そし
てその方法によれば担体の孔容積と実質的に等し
い容積を有する塩の水溶液と担体が接触する。混
合物を穏かに加熱することによつて水溶液の吸収
を促進してもよい。高い金属含有量を有する触媒
の調製のためにこの調製方法を選んだ場合、1回
よりも多い乾燥浸漬を遂行し、かつ個々の浸漬段
階の間で材料を乾燥する必要がある。 本発明方法において使用される触媒は高々
10000nmの平均孔径(p)と高々5mmの平均粒子
直径を持つべきである。pに関しては高高
1000nmのpそして特に高々500nmのpを有する
触媒が選択される。dの選択はプロセスの遂行法
によつて決定する。本発明方法の極めて好適な具
体例は本触媒粒子の固定床又は移動床を含む垂直
に配置された反応器に装入原料を上向き又は下向
きに通す具体例であを。炭化水素の合成は、例え
ば垂直に置かれた触媒床に装入原料を上向きに通
し、そして触媒床の膨脹をひき起こすような速度
でガスを流すことによつて遂行してよい。所望な
らば、炭化水素の合成はまた炭化水素油中に触媒
を懸濁させて遂行してもよい。炭化水素の合成を
固定触媒床、膨脹触媒床又は触媒懸濁物を使用し
て遂行する場合に応じて、それぞれdが1ないし
5mm0.5ないし2.5mmおよび20ないし150μである触
媒粒子の使用が選択される。固定触媒床を使用し
て炭化水素の合成を遂行する場合、ワツクス状の
炭化水素が触媒上に沈着する結果その活性が低下
する。この困難を回避するため触媒を周期的に、
例えば運転時間1000時間毎に幾時間か上述の重質
炭化水素のための溶媒で洗浄してよい。この目的
のために適した溶媒は、例えばメチル エチル
ケトンとトルエンとの混合物である。上述の触媒
の脱活性は好ましくは炭化水素合成において製造
された生成物の留分で触媒を連続的に洗浄するこ
とによつて防止される。この目的のためには200
℃以上の初留点と550℃以下の終留点を有する留
分が選ばれる。上述の触媒の連続的な洗浄の付加
的な利益は高度に発熱性の炭化水素合成反応中の
温度制御が簡単になることである。 本発明方法において反応器を出る反応生成物は
分子量が広範囲に亘る炭化水素と酸素含有炭化水
素の他に、特に水、窒素、二酸化炭素および未転
化の一酸化炭素と水素を含んでいる。本発明方法
を“一回通過(once―through)”操作として知
られている方法で遂行した場合、C3+留分は最終
生成物として反応生成物から分離される。本発明
方法を“循環(recycle)”操作として知られてい
る方法で遂行した場合、C3+留分は同様に最終生
成物として反応生成物から分離されるが、ここで
反応生成物の残余は必要ならば二酸化炭素の含有
量を低下させた後、反応器に循環し、そして特に
窒素の増大を避けるためにブリード流(bleed
stream)を適用する。 ここに本発明を以下の実施例によつて説明す
る。 実施例 フイツシヤー・トロプシユによる炭化水素合成
のために12種の触媒(触媒A―Dおよび11―16,
18,19)を試験した。触媒の調製は下記のように
実施した。 触媒 A 水10中にFe(NO33・9水塩2886gとCu
(NO32・3水塩76gを含む沸騰溶液を水10.5
中に無水Na2CO31000gを含む沸騰溶液に撹拌し
ながら加えた。このようにして得た混合物に無水
Na2CO3130gとクレー14.4gを連続して加えた。
混合物を過した後、液がナトリウムを含まな
くなるまでフイルターケーキを熱湯で洗浄し、次
いで1当り10gの硝酸アンモニウムを含む水溶
液10で洗浄した。フイルターケーキをソーダ水
ガラス240gとともに捏和し、110℃において24時
間乾燥しそして粉砕した。このように沈殿法によ
つて製造した触媒AはFe100重量部当りCu3.6重
量部、Na4.1重量部およびSiO223重量部を含んで
いた。 触媒 B 上記の触媒Aの製造と同様な方法で触媒Bを調
製し、これはFe100重量部当りCu4.43重量部、
Na3.95重量部およびSiO220.5重量部を含んでい
た。 触媒 C Fe(NO33・9水塩225gを含む水溶液、Cu
(NO32・3水塩5.9gを含む水溶液および
KNO33.2gを含む水溶液を混合し、そしてその
混合溶液の容量を水で希釈して150mlにした。全
体の孔容積が150mlであるSiO2125g中に上記の
溶液を混入した。暫時の後その組成物を120℃で
乾燥し、500℃において1時間〓焼し、粉砕しそ
して篩分けした。このように浸漬法によつて調製
した触媒CはSiO2100重量部当りFe25重量部、
Cu1.25重量部およびK1重量部を含んでいた。 触媒Dおよび11―16,18,19 上記の触媒Cの製法と同様な方法で触媒Dおよ
び11―16,18,19を浸漬法によつて調製した。促
進剤としてTh,Mg,Crおよび/又はZnを含む
触媒の調製においてはこれらの元素の硝酸塩の水
溶液を使用した。促進剤としてZrを含む触媒の
調製においては塩化ジルコニルの水溶液を使用し
た。 触媒の組成並びにそれらの平均孔径および平均
粒子直径をA表に示す。表でpとdに対して示さ
れた値はオランダ特許出願第7214397号に記載さ
れた窒素吸着/脱着、水銀浸入度および篩分析に
よつて測定した。
The present invention relates to a method for producing hydrocarbons by a catalytic reaction between carbon monoxide and hydrogen. The production of hydrocarbons from a mixture of carbon monoxide and hydrogen by contacting it with a catalyst at elevated temperature and pressure is known from the literature as the Fischer-Tropsch hydrocarbon synthesis process. Catalysts often used for this purpose are composed of one or more iron group metals, one or more promoters to improve activity and/or selectivity, and sometimes a support material such as diatomaceous earth. Become. The catalysts used in practice for Fischer-Tropsch hydrocarbon synthesis are generally prepared by precipitation or melting. Briefly, the preparation of catalysts by precipitation involves making an aqueous solution of a salt of an iron group metal basic, to which a promoter salt and a support material may be added if desired, so that the catalyst forms as a precipitate. It is carried out at the same time. Accelerators and carrier substances may be added to this precipitate. An example of a suitable catalyst for the synthesis of hydrocarbons prepared by the precipitation method is Fe/Cu/Na/SiO 2 consisting of 4.5 parts by weight of copper, 4 parts by weight of sodium and 20 parts by weight of silicon oxide per 100 parts by weight of iron. The catalyst is a Co/ThO 2 /MgO/diatomaceous earth catalyst consisting of 5 parts by weight of thorium oxide, 8 parts by weight of magnesium oxide and 100-200 parts by weight of diatomaceous earth per 100 parts by weight of cobalt.
For example, in the case of iron catalysts, preparation of the catalyst by the melt process is carried out by melting iron oxide together with one or more promoter oxides. An example of a suitable catalyst for the synthesis of hydrocarbons prepared by the melt method is 5 parts by weight of aluminum oxide per 100 parts by weight of iron.
1 part by weight of potassium oxide and 3 parts by weight of calcium oxide. Precipitation and melting methods are not only rather unattractive as methods for preparing the catalyst of the present invention due to their low reproducibility, but also precipitation methods are extremely time consuming and melting methods require large amounts of energy. do. The performance of the above-mentioned catalyst when used in Fischer-Tropschew hydrocarbon synthesis can be evaluated as follows. Fitzsiar
The performance of catalysts for hydrocarbon synthesis by tropschule is evaluated as activity and selectivity defined as follows. Catalyst activity is the number of grams of hydrocarbon produced per hour of catalyst. The selectivity of the catalyst is the weight of C 3+ hydrocarbons produced calculated as a percentage of the total amount of hydrocarbons produced. Both high activity and high selectivity are desirable for Fischer-Tropsch hydrocarbon synthesis catalysts. Of these two parameters, selectivity is considered to be the more important parameter. Apart from the above-mentioned drawbacks of catalysts prepared by precipitation or melting, their catalytic performance is not very satisfactory either. The properties of the catalyst prepared by melting are:
Approximately 300-350℃, which is considered optimal for this catalyst.
In the temperature range of , the catalyst exhibits high activity but only moderate selectivity. We not only attempt to increase the selectivity of catalysts prepared by melting to the level of catalysts obtained by precipitation by applying lower temperatures, but also increase the activity of catalysts prepared by precipitation to higher levels. Attempts to raise the level of the catalyst obtained by melting by applying temperature have also hitherto been unsuccessful. While these treatments can indeed improve the property in question, this means that long before the primary property reaches the desired high level, other key properties fall below the minimum acceptable level for this property. with deterioration of other properties of the catalyst. Due to the increasing interest in the synthesis of hydrocarbons by Fischier-Tropschew, it has been found that not only the activity is comparable to that of catalysts obtained by the melt method, but also the selectivity is comparable to that of catalysts obtained by the precipitation method. There is an urgent need for catalysts for hydrocarbon synthesis that also have selectivity. Furthermore, it would be desirable to prepare these catalysts by a method that does not have the disadvantages of the precipitation or melting methods described above. Extensive research by the applicant has shown that carrier 100
The catalyst consists of 10-75 parts by weight of cobalt and one or more promoters selected from zinc, magnesium, thorium, zirconium and chromium in an amount of 1-50% of the cobalt present on the catalyst. - Practical for hydrocarbon synthesis by tropsch, and the catalyst is prepared by soaking a porous support in an aqueous solution of one or more salts of cobalt and a promoter, followed by drying and calcination of the composition. Prepared by. It has been found that the selectivity of these catalysts, which can be prepared in a simple manner and with good reproducibility, is highly dependent on the quotient of the average pore size (p) and the average particle diameter (d) of the catalyst.
Further information on p and d as well as methods of measuring them can be found in Dutch Patent Application No. 7214397,
-44795), where these catalyst data are discussed in detail. Studies on the above-mentioned catalysts prepared by immersion have shown that these catalysts with p of at most 10,000 nm and d of at most 5 mm have a quotient p/d of less than 2.0 when used in Fischyer-Tropsch hydrocarbon synthesis. It has been found that a large value (p in nm and d in mm) indicates not only excellent activity but also excellent selectivity. The present patent application therefore relates to a process for producing hydrocarbons by the catalytic reaction of carbon monoxide and hydrogen using a catalyst with the above-mentioned properties prepared by immersion. Comparing the selectivity of the present catalyst prepared by immersion with that of the above-mentioned catalyst prepared by melting, the latter is generally lower for hydrocarbon synthesis where selectivity is primarily important, as in the present patent application. It was found that the selection rate was so low that not only was there no interest, but there was no need for further discussion. Comparing the activity of the present catalyst prepared by immersion with that of the above-mentioned catalyst prepared by precipitation, the former not only shows a considerably larger increase in activity per increase in reaction temperature, but also has a considerably higher selectivity. It has also been found that the maximum temperature at which these catalysts can still be used is shown, keeping in mind that The ability to use the present catalysts prepared by soaking at higher temperatures than catalysts prepared by precipitation allows for increased activity and also allows the waste heat of the process to be transferred to catalysts prepared by precipitation, for example. The advantage is thus provided that it can be better utilized for the production of steam with higher temperatures and pressures than would otherwise be possible. In the process of the invention, the starting material must be a mixture of hydrogen and carbon monoxide. Such mixtures can be very advantageously prepared by partial combustion of materials containing carbon and hydrogen. Examples of such materials are lignite, anthracite, coke, crude oil and its fractions, and oils produced from tar sands and bituminous shales. During partial combustion, the charge material in a finely dispersed state is converted, if desired by oxygen or oxygen-enriched air, into a gas mixture consisting in particular of hydrogen, carbon monoxide, carbon dioxide, nitrogen and water. be done. Preferably, water is used as temperature regulator in partial combustion. Partial combustion is preferably carried out at a temperature of 900 to 1500°C and
It is carried out at a pressure of 50 bar. Ash from the gas obtained in partial combustion with a temperature of 1000 ° C or more,
This gas must first be cooled to a temperature of 100 to 200°C in order to be able to remove impurities such as carbonaceous substances and hydrogen sulfide. This cooling is very suitably carried out in a boiler in which steam is generated by waste heat. The cooled gas is liberated from virtually all solid materials by the water wash. After this cleaning, when the temperature of the gas has dropped to 20-80°C, the gas is further purified by removing hydrogen sulfide and carbon dioxide. This is the ADIP process or
This is accomplished very well by the SULFINOL process. In the process according to the invention the starting material is preferably 0.5
It is a mixture of hydrogen and carbon monoxide with a molar ratio of 3 to 3. Particular preference is given to using a mixture of hydrogen and carbon monoxide with a molar ratio of 1.2 to 2.5 mol. If the mixture of hydrogen and carbon monoxide obtained does not have the required molar ratio, this may be adjusted by adding hydrogen or carbon monoxide. Increasing the hydrogen content of the mixture with respect to the carbon monoxide content is also very advantageously achieved by subjecting the mixture to the well-known water gas conversion reactions. The method of the invention is preferably carried out at a temperature of 200-350°C.
-70 bar pressure and 500-5000 and especially 500
- carried out at a space velocity of 2500 Nl gas 1 catalyst/h. Reaction temperature of 220-300℃ and 10-35
A reaction pressure of bar is particularly chosen. The catalyst used in the method of the present invention is
Each part by weight contains 10-75 parts by weight of cobalt, as well as one or more promoters in an amount of 1-50% of the amount of cobalt present on the catalyst. Regarding cobalt, preference is given to using catalysts containing 15-50 and especially 20-40 parts by weight per 100 parts by weight of support. Regarding promoters, the cobalt 5 present on the catalyst
-40% and especially the use of catalysts containing one or more promoters in an amount of 10-20% is chosen. An example of a highly suitable cobalt catalyst of the invention is a catalyst consisting of cobalt, magnesium and thorium supported on a silica support. Other highly preferred cobalt catalysts of the invention are supported on silica supports.
A catalyst consisting of Co/Cr, Co/Zr, Co/Zn or Co/Mg. In the method of the invention, a catalyst is prepared by soaking a porous support in an aqueous solution of one or more of a salt of cobalt and a salt of a promoter, followed by drying and calcination of the composition. use.
The support used to prepare the catalyst of the invention may be amorphous or crystalline. Examples of suitable supports are silica, alumina, zirconia, thoria, magnesia, boron oxide and combinations thereof such as silica-alumina and silica-magnesia. Other suitable carriers are zeolites such as mordenite, houjiasite and zeolite-omega. Zinc oxide was also found to be a suitable support for the present catalyst. The salt can be incorporated into the support in one or more steps in the preparation of the catalyst. The material is dried between the individual dipping steps. For the preparation of catalysts with high metal contents it may be necessary to apply multi-stage dipping methods. The cobalt salt and the promoter salt may be incorporated into the carrier separately or together starting from one solution. An attractive method of incorporating cobalt and promoter into the carrier is the dry immersion method, in which the carrier is contacted with an aqueous solution of the salt having a volume substantially equal to the pore volume of the carrier. Absorption of the aqueous solution may be facilitated by gently heating the mixture. If this preparation method is chosen for the preparation of catalysts with a high metal content, it is necessary to carry out more than one drying soak and to dry the material between the individual soaking steps. The catalyst used in the process of the invention is at most
It should have an average pore size (p) of 10000 nm and an average particle diameter of at most 5 mm. High in terms of p
Catalysts with a p of 1000 nm and especially a p of at most 500 nm are selected. The choice of d depends on how the process is performed. A highly preferred embodiment of the process of the invention is one in which the feedstock is passed upwardly or downwardly through a vertically arranged reactor containing a fixed or moving bed of catalyst particles. Hydrocarbon synthesis may be accomplished, for example, by passing a charge upwardly through a vertically placed catalyst bed and flowing gas at a rate that causes expansion of the catalyst bed. If desired, hydrocarbon synthesis may also be accomplished with the catalyst suspended in a hydrocarbon oil. Depending on whether the synthesis of hydrocarbons is carried out using fixed catalyst beds, expanded catalyst beds or catalyst suspensions, the use of catalyst particles with d of 1 to 5 mm, 0.5 to 2.5 mm and 20 to 150 μm, respectively, is preferred. selected. When hydrocarbon synthesis is carried out using a fixed catalyst bed, waxy hydrocarbons are deposited on the catalyst, reducing its activity. To avoid this difficulty, the catalyst is periodically
For example, for every 1000 hours of operation, several hours may be washed with the solvents for the heavy hydrocarbons mentioned above. Suitable solvents for this purpose are e.g. methyl ethyl
It is a mixture of ketone and toluene. Deactivation of the catalyst mentioned above is preferably prevented by continuously washing the catalyst with a fraction of the products produced in the hydrocarbon synthesis. 200 for this purpose
A distillate with an initial boiling point of ≧°C and a final boiling point of ≦550°C is selected. An additional benefit of the continuous cleaning of the catalyst described above is that temperature control during highly exothermic hydrocarbon synthesis reactions is simplified. The reaction products leaving the reactor in the process of the invention contain, in addition to hydrocarbons and oxygen-containing hydrocarbons with a wide range of molecular weights, inter alia water, nitrogen, carbon dioxide and unconverted carbon monoxide and hydrogen. When the process of the invention is carried out in what is known as a "once-through" operation, the C 3+ fraction is separated from the reaction products as the final product. If the process of the invention is carried out in what is known as a "recycle" operation, the C 3+ fraction is likewise separated from the reaction products as the final product, where the remainder of the reaction products is removed. is recycled to the reactor, after reducing the carbon dioxide content if necessary, and in particular is supplied with a bleed stream to avoid nitrogen build-up.
stream). The invention will now be illustrated by the following examples. EXAMPLE Twelve catalysts (catalysts A-D and 11-16,
18, 19) were tested. The catalyst was prepared as follows. Catalyst A 2886g of Fe(NO 3 ) tri -9 hydrate and Cu in 10% of water
(NO 3 ) A boiling solution containing 76 g of 2 -trihydrate salt is mixed with 10.5 g of water.
It was added to a boiling solution containing 1000 g of anhydrous Na 2 CO 3 with stirring. The mixture thus obtained is anhydrous
130 g of Na 2 CO 3 and 14.4 g of clay were added sequentially.
After filtering the mixture, the filter cake was washed with hot water until the liquor was free of sodium and then with 10 g of an aqueous solution containing 10 g of ammonium nitrate each. The filter cake was kneaded with 240 g of soda water glass, dried for 24 hours at 110° C. and ground. Catalyst A thus produced by the precipitation method contained 3.6 parts by weight of Cu, 4.1 parts by weight of Na and 23 parts by weight of SiO 2 per 100 parts by weight of Fe. Catalyst B Catalyst B was prepared in the same manner as in the production of catalyst A above, containing 4.43 parts by weight of Cu per 100 parts by weight of Fe,
It contained 3.95 parts by weight of Na and 20.5 parts by weight of SiO2 . Catalyst C Fe(NO 3 ) aqueous solution containing 225 g of 3.9 hydrate, Cu
(NO 3 ) Aqueous solution containing 5.9 g of di - trihydrate and
An aqueous solution containing 3.2 g of KNO 3 was mixed and the volume of the mixed solution was diluted with water to 150 ml. The above solution was mixed into 125 g of SiO 2 with a total pore volume of 150 ml. After some time the composition was dried at 120°C, calcined at 500°C for 1 hour, ground and sieved. Catalyst C prepared by the immersion method had 25 parts by weight of Fe per 100 parts by weight of SiO 2 .
It contained 1.25 parts by weight of Cu and 1 part by weight of K. Catalysts D and 11-16, 18, 19 Catalysts D and 11-16, 18, 19 were prepared by the dipping method in the same manner as the preparation of catalyst C above. In the preparation of catalysts containing Th, Mg, Cr and/or Zn as promoters, aqueous solutions of nitrates of these elements were used. An aqueous solution of zirconyl chloride was used in the preparation of catalysts containing Zr as a promoter. The composition of the catalysts and their average pore and particle diameters are shown in Table A. The values given for p and d in the table were determined by nitrogen adsorption/desorption, mercury penetration and sieve analysis as described in Dutch Patent Application No. 7214397.

【表】 容量を25ないし75mlに変化させた触媒A―Dお
よび11―16,18,19の固定触媒床を含む250ml反
応器において、これらの触媒をフイツシヤー・ト
ロプシユによる炭化水素の合成について試験し
た。炭化水素の合成のために使用する前にすべて
の触媒をまず最初に大気圧、280℃および空塔ガ
ス速度1.6m/秒において水素と窒素の混合物
(モル比3:1)で2時間還元した。 炭化水素を製造するために一酸化炭素と水素と
の混合物を昇温昇圧下で触媒に通した。反応混合
物を反応圧力において最初に重質の液体相の分離
をひき起こす150℃まで、次いで軽質の液体相と
ガス相の分離をひき起こす15℃まで、2段階で冷
却することによつて処理した。反応生成物の組成
はTBP―GLC分析によつて測定した。 実験において使用した反応条件並びに得られた
結果をB表に示す。 実験はすべて1回通過操作によつて実施した。
ここに掲げた活性と選択率は運転時間500時間に
おける時点に関する。
Table: Catalysts A-D and 250-ml reactors containing fixed catalyst beds of 11-16, 18, 19 with varying volumes from 25 to 75 ml were tested for the synthesis of hydrocarbons by Fischer-Tropsch. . All catalysts were first reduced with a mixture of hydrogen and nitrogen (molar ratio 3:1) for 2 h at atmospheric pressure, 280 °C and superficial gas velocity 1.6 m/s before being used for the synthesis of hydrocarbons. . To produce hydrocarbons, a mixture of carbon monoxide and hydrogen was passed through a catalyst at elevated temperature and pressure. The reaction mixture was treated by cooling in two steps at the reaction pressure, first to 150°C, which caused separation of the heavier liquid phase, and then to 15°C, which caused separation of the lighter liquid and gas phases. . The composition of the reaction product was determined by TBP-GLC analysis. The reaction conditions used in the experiment and the results obtained are shown in Table B. All experiments were performed in a single pass operation.
The activities and selectivities listed here relate to a point in time at 500 hours of operation.

【表】 B表に示された8回の実験のうち、実験32―42
が本発明による実験である。これらの実験におい
ては浸漬によつて調製され、かつp<10000nm、
d<5mmおよびp/d>2という条件を満たす触
媒を使用した。実験1―8は本発明の範囲外にあ
つて、比較のために本特許出願に含ませている。
実験1―4は沈殿によつて調製した触媒を使用し
て実施した。実験5―8は浸漬によつて調製した
けれども条件p/d>2を満たさない触媒を使用
して実施した。 B表に示された実験結果によつて以下の所見が
生じる。 1 実験1と実験2との比較および実験3と実験
4との比較によつて、沈殿法で調製した触媒で
は高温を使用したための活性の向上は選択率の
急激な低下を伴なうことがわかる。実験1で観
察された活性と選択率は良好触媒で期待された
ものと実質的に一致している。観察された活性
と選択率はルルギヘミー(Lurgie Chemie)法
の商業的な適用においてザゾール(Sasol)に
よつて得られたものに匹敵する。 2 実験7と実験33との比較によると、浸漬によ
つて調製されかつ条件p/d>2を満たす触媒
は浸漬によつて調製されかつこの条件を満たさ
ない触媒よりも活性と選択率が高いことがわか
る。 3 沈殿によつて調製されたCo浸漬を使用する
最高温度と最高圧力はそれぞれ約215℃および
15バールであると大体推定される。高温およ
び/又は高圧を使用すると触媒の極めて急速な
脱活性を招く。この実験によつて本発明のCo
触媒がかなり高い温度および圧力において使用
されることが証明された。 4 実験35,36,37,38,39および41を互いに比
較すると、沈殿によつて調製されたCo触媒に
おいて屡々使用された促進剤の組合せTh/Mg
の他に、これらの元素の各々は個々に、並びに
元素Cr,ZnおよびZrは同様に本発明のCo触媒
の促進剤として使用するのに極めて適している
ことがわかる。これらの促進剤はこれを適用す
る魅力が増大する順序により、Zn,Th/Mg,
Mg,Th,CrおよびZrのように等級が付けら
れる。 5 実験41と42との比較により、本発明の触媒に
おいてはSiO2だけでなくAl2O3も極めて好適な
担体であることがわかる。 6 本発明のCo触媒は従来のコバルト系フイツ
シヤー・トロプツシユ触媒よりかなり高い活性
を示す。例えばCatalysis,Vol.IV,
“Hydrocarbon Synthesis,Hydrgenation
and Cyclization”(P.H.Emmett編)、
(Reinhold出版社、New York,1961年)には
通常のコバルト系フイツシヤー・トロプツシユ
触媒で最大収率を与える最適圧力範囲は5―20
気圧であり、また触媒の選択性は5―15気圧で
最大となりそれより圧力が大きくなると低下す
ることが示されていが、本発明のCo触媒は、
B表からわかるように、それよりもかなり高い
圧力および上記文献に示されているよりもかな
り高い温度で使用し得、上記文献に示されてい
るよりもかなり高い収率を与える。また上記文
献の表41によれば空間速度100/時で合成ガス
(2H2+Co)m2当り100―130gの炭化水素が得
られている。この収量はB表のそれに相当する
が、B表の対応する実験(32)における空間速
度は1000/時である。即ち本発明のCo触媒は
従来のものの10倍の量の合成ガスを炭化水素に
転化しうる。更に、上記文献に記載されている
ように、従来のコバルト触媒ではより高い圧力
および温度での操業はコバルトカルボニルの生
成を生じ、触媒活性を急速に低下させるが、本
発明の触媒はこの型の失活を示さない。
[Table] Of the 8 experiments shown in Table B, experiments 32-42
is an experiment according to the present invention. In these experiments prepared by immersion and p<10000nm,
A catalyst satisfying the conditions of d<5 mm and p/d>2 was used. Experiments 1-8 are outside the scope of the present invention and are included in this patent application for comparison.
Experiments 1-4 were carried out using catalysts prepared by precipitation. Experiments 5-8 were conducted using catalysts prepared by immersion but not satisfying the condition p/d>2. The experimental results shown in Table B lead to the following observations. 1 Comparison of Experiments 1 and 2 and Experiments 3 and 4 reveals that for catalysts prepared by precipitation, the improvement in activity due to the use of high temperatures is accompanied by a sharp decrease in selectivity. Recognize. The activity and selectivity observed in Run 1 are in substantial agreement with what would be expected for a good catalyst. The observed activities and selectivities are comparable to those obtained by Sasol in commercial applications of the Lurgie Chemie process. 2 Comparison of Experiments 7 and 33 shows that catalysts prepared by immersion and satisfying the condition p/d > 2 have higher activity and selectivity than catalysts prepared by immersion and not meeting this condition. I understand that. 3 The maximum temperature and pressure using Co dips prepared by precipitation are approximately 215 °C and 215 °C, respectively.
It is roughly estimated to be 15 bar. The use of high temperatures and/or pressures leads to very rapid deactivation of the catalyst. This experiment revealed that the Co of the present invention
It has been demonstrated that the catalyst can be used at fairly high temperatures and pressures. 4 Comparing experiments 35, 36, 37, 38, 39 and 41 with each other shows that the promoter combination Th/Mg often used in Co catalysts prepared by precipitation
In addition, each of these elements individually, as well as the elements Cr, Zn and Zr, prove to be highly suitable for use as promoters of the Co catalysts of the invention. These promoters are Zn, Th/Mg,
It is graded as Mg, Th, Cr and Zr. 5 Comparison of experiments 41 and 42 shows that not only SiO 2 but also Al 2 O 3 is a very suitable support for the catalyst of the invention. 6 The Co catalyst of the present invention exhibits significantly higher activity than conventional cobalt-based Fisher-Tropsch catalysts. For example, Catalysis, Vol.IV,
“Hydrocarbon Synthesis, Hydrogenation
and Cyclization” (edited by PHEmmett),
(Reinhold Publishers, New York, 1961) states that the optimum pressure range for maximum yield for conventional cobalt-based Fischer-Tropsch catalysts is 5-20.
Although it has been shown that the selectivity of the catalyst reaches its maximum at 5-15 atm and decreases as the pressure increases, the Co catalyst of the present invention
As can be seen from Table B, significantly higher pressures and temperatures can be used than those indicated in the above literature, giving yields that are significantly higher than those indicated in the above literature. According to Table 41 of the above-mentioned document, 100-130 g of hydrocarbons are obtained per m 2 of synthesis gas (2H 2 +Co) at a space velocity of 100/hour. This yield corresponds to that in Table B, but the space velocity in the corresponding experiment (32) in Table B is 1000/h. That is, the Co catalyst of the present invention can convert ten times the amount of synthesis gas into hydrocarbons than conventional catalysts. Moreover, as described in the above literature, in conventional cobalt catalysts, operation at higher pressures and temperatures results in the formation of cobalt carbonyl, which rapidly reduces the catalyst activity, whereas the catalyst of the present invention is of this type. Does not show deactivation.

Claims (1)

【特許請求の範囲】 1 担体100重量部当りコバルト10―75重量部と
ともに触媒上に存在するコバルトの量の1―50%
の量の、亜鉛、マグネシウム、トリウム、ジルコ
ニウムおよびクロムからなる群から選ばれた1種
又はそれ以上の促進剤を含む触媒であつてコバル
トおよび該促進剤の塩の1種又はそれ以上の水溶
液で多孔質担体を浸漬し、つづいてその組成物を
乾燥しそして〓焼することによつて調製された触
媒を使用する、一酸化炭素と水素との接触反応に
よる炭化水素の製造方法において、該触媒はp/
d(pはnmそしてdはmmで表わす)の商が2より
も大きいような高々10000nmの平均孔径(p)と
高々5mmの平均粒子直径(d)を有することを特徴と
する、上記製造方法。 2 挿入原料中の水素対一酸化炭素モル比が0.5
ないし3の間にあることを特徴とする、特許請求
の範囲1記載の方法。 3 該製造方法を200〜350℃の温度、10―70バー
ルの圧力、および500―5000そして好ましくは500
―2500Nlガス/触媒l/時の空間速度で遂行す
ることを特徴とする、特許請求の範囲1又は2項
記載の方法。 4 担体100重量部当り15―50そして好ましくは
20―40重量部のコバルトを含む触媒を使用するこ
とを特徴とする、特許請求の範囲1―3のいずれ
かに記載の方法。 5 1種又はそれ以上の促進剤を5―40%の量含
む触媒を使用することを特徴とする、特許請求の
範囲1―4のいずれかに記載の方法。 6 乾燥浸漬法によつて調製した触媒を使用する
ことを特徴とする、特許請求の範囲1―5のいず
れかに記載の方法。 7 高々1000nmのpを有する触媒を使用するこ
とを特徴とする、特許請求の範囲1―6のいずれ
かに記載の方法。 8 固定触媒床、膨脹触媒床(expanded
catalyst bed)又は触媒懸濁物(catalyst
suspension)を使用し、かつそれぞれ1ないし5
mm、0.5ないし2.5mmおよび20ないし150μのdを有
する触媒粒子を使用して該製造方法を遂行するこ
とを特徴とする、特許請求の範囲1―7のいずれ
かに記載の方法。 9 該製造方法を固定触媒床を使用して遂行し、
かつ触媒を重質炭化水素のための溶媒で周期的又
は連続的に洗浄することを特徴とする、特許請求
の範囲1―8のいずれかに記載の方法。 10 炭化水素の合成において製造された生成物
の留分で触媒を連続的に洗浄することを特徴とす
る、特許請求の範囲9項記載の方法。 11 装入原料中の水素対一酸化炭素モル比が
0.5ないし1.5であることを特徴とする、特許請求
の範囲1―10のいずれかに記載の方法。 12 該製造方法を250―325℃の温度および20―
50バールの圧力で遂行することを特徴とする、特
許請求の範囲1―11のいずれかに記載の方法。 13 装入原料中の水素対一酸化炭素のモル比が
1.2ないし2.5であることを特徴とする、特許請求
の範囲1―10のいずれかに記載の方法。 14 該製造方法を220―300℃の温度および10―
35バールの圧力で遂行することを特徴とする、特
許請求の範囲1―10および13のいずれかに記
載の方法。 15 シリカ担体上にコバルト、マグネシウムお
よびトリウムを含む触媒を使用することを特徴と
する、特許請求の範囲1―10,13および14
のいずれかに記載の方法。
[Claims] 1. 1-50% of the amount of cobalt present on the catalyst with 10-75 parts by weight of cobalt per 100 parts by weight of support.
of one or more promoters selected from the group consisting of zinc, magnesium, thorium, zirconium and chromium in an aqueous solution of cobalt and one or more salts of said promoters. A method for producing hydrocarbons by the catalytic reaction of carbon monoxide and hydrogen using a catalyst prepared by soaking a porous support, followed by drying and calcination of the composition, comprising: is p/
A process as described above, characterized in that it has an average pore diameter (p) of at most 10 000 nm and an average particle diameter (d) of at most 5 mm such that the quotient of d (p in nm and d in mm) is greater than 2. . 2 The molar ratio of hydrogen to carbon monoxide in the inserted feedstock is 0.5
3. The method according to claim 1, wherein the method is between . 3 The manufacturing method is carried out at a temperature of 200-350°C, a pressure of 10-70 bar and a temperature of 500-5000 and preferably 500
3. Process according to claim 1, characterized in that it is carried out at a space velocity of -2500 Nl gas/l catalyst/h. 4 15-50 per 100 parts by weight of carrier and preferably
4. Process according to claim 1, characterized in that a catalyst containing 20-40 parts by weight of cobalt is used. 5. Process according to any one of claims 1 to 4, characterized in that a catalyst containing one or more promoters in an amount of 5 to 40% is used. 6. The method according to any one of claims 1 to 5, characterized in that a catalyst prepared by a dry soaking method is used. 7. Process according to any one of claims 1 to 6, characterized in that a catalyst with p of at most 1000 nm is used. 8 Fixed catalyst bed, expanded catalyst bed
catalyst bed) or catalyst suspension
suspension), and 1 to 5 each
8. Process according to any of claims 1 to 7, characterized in that the production process is carried out using catalyst particles having d of 0.5 to 2.5 mm and 20 to 150 μ. 9 carrying out the process using a fixed catalyst bed;
9. Process according to claim 1, characterized in that the catalyst is washed periodically or continuously with a solvent for heavy hydrocarbons. 10. Process according to claim 9, characterized in that the catalyst is washed continuously with a fraction of the products produced in the synthesis of hydrocarbons. 11 The molar ratio of hydrogen to carbon monoxide in the charging material is
11. The method according to any one of claims 1 to 10, characterized in that it is between 0.5 and 1.5. 12 The manufacturing method is carried out at a temperature of 250-325℃ and 20-
12. Process according to any of claims 1 to 11, characterized in that it is carried out at a pressure of 50 bar. 13 If the molar ratio of hydrogen to carbon monoxide in the charging material is
1.2 to 2.5, the method according to any one of claims 1 to 10. 14 The manufacturing method is carried out at a temperature of 220-300℃ and 10-
14. A method according to any of claims 1-10 and 13, characterized in that it is carried out at a pressure of 35 bar. 15 Claims 1-10, 13 and 14, characterized in that a catalyst containing cobalt, magnesium and thorium is used on a silica support.
The method described in any of the above.
JP13314877A 1976-11-10 1977-11-08 Process for preparing hydrocarbon Granted JPS5359604A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL7612460A NL7612460A (en) 1976-11-10 1976-11-10 PROCESS FOR THE PREPARATION OF HYDROCARBONS.

Publications (2)

Publication Number Publication Date
JPS5359604A JPS5359604A (en) 1978-05-29
JPS6337090B2 true JPS6337090B2 (en) 1988-07-22

Family

ID=19827203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13314877A Granted JPS5359604A (en) 1976-11-10 1977-11-08 Process for preparing hydrocarbon

Country Status (11)

Country Link
JP (1) JPS5359604A (en)
AU (1) AU513157B2 (en)
BE (1) BE860395A (en)
CA (1) CA1089495A (en)
DE (1) DE2750007A1 (en)
FR (1) FR2370712B1 (en)
GB (1) GB1548468A (en)
IN (1) IN147159B (en)
IT (1) IT1087492B (en)
NL (1) NL7612460A (en)
ZA (1) ZA776649B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL190603C (en) * 1979-07-13 1994-05-16 Shell Int Research Process for the preparation of iron-chromium catalysts and their use for the preparation of hydrocarbons.
NL190574C (en) * 1979-07-13 1994-05-02 Shell Int Research Process for the preparation of iron magnesium catalysts and their use in the preparation of hydrocarbons.
DK144602C (en) * 1979-12-18 1982-09-27 Haldor Topsoe As PROCEDURE FOR PREPARING A GAS MIXTURE WITH HIGH CONTENT OF C2 CARBON
NL8003313A (en) * 1980-06-06 1982-01-04 Shell Int Research METHOD FOR PREPARING MIDDLE DISTILLATES.
US4605679A (en) * 1981-10-13 1986-08-12 Chevron Research Company Activated cobalt catalyst and synthesis gas conversion using same
US4605676A (en) * 1981-10-13 1986-08-12 Chevron Research Company Synthesis gas conversion using ROR-activated catalyst
US4613624A (en) * 1981-10-13 1986-09-23 Chevron Research Company Conversion of synthesis gas to diesel fuel and catalyst therefor
DE3365337D1 (en) * 1982-11-22 1986-09-18 Shell Int Research Process for the preparation of a fischer-tropsch catalyst, a catalyst so prepared and use of this catalyst in the preparation of hydrocarbons
JPS6023330A (en) * 1983-07-15 1985-02-05 Daido Sanso Kk Production of hydrocarbon
CA1240708A (en) * 1983-11-15 1988-08-16 Johannes K. Minderhoud Process for the preparation of hydrocarbons
CA1234158A (en) * 1983-11-15 1988-03-15 Johannes K. Minderhoud Process for the preparation of hydrocarbons
GB2169614A (en) * 1984-12-31 1986-07-16 Mobil Oil Corp Producing alpha-olefins and their conversion into lubricants
IN166813B (en) * 1985-01-18 1990-07-21 Shell Int Research
US4717702A (en) * 1985-04-26 1988-01-05 Shell Internationale Research Maatschappij Bv Catalyst for conversion of synthesis gas to diesel fuel and process for preparation of such catalyst
GB8515222D0 (en) * 1985-06-15 1985-07-17 British Nuclear Fuels Plc Synthesis gas conversion catalyst
GB8623233D0 (en) * 1986-09-26 1986-10-29 British Petroleum Co Plc Syngas conversion catalyst
GB9010076D0 (en) * 1990-05-04 1990-06-27 Shell Int Research Process for the conversion of methanol into liquid hydrocarbons
FR2694013B1 (en) * 1992-07-27 1994-09-30 Inst Francais Du Petrole Cobalt-based catalyst and process for converting synthesis gas to hydrocarbons.
JP2007181755A (en) * 2006-01-05 2007-07-19 Nippon Gas Gosei Kk Catalyst for producing liquefied petroleum gas and method for producing liquefied petroleum gas by using the same
JP2010116328A (en) * 2008-11-11 2010-05-27 Nippon Oil Corp Method for producing unsaturated hydrocarbon and oxygen-containing compound, catalyst and method for producing the same
TWI473652B (en) 2008-12-26 2015-02-21 Nippon Oil Corp Hydrogenated isomerization catalyst, method for producing the same, dewaxing method for hydrocarbon oil and method for producing lubricating base oil
CN103949262A (en) * 2014-04-21 2014-07-30 武汉凯迪工程技术研究总院有限公司 Structured iron-based catalyst for preparing alpha-alkene by synthesis gas as well as preparation method and application of structured iron-based catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE919288C (en) * 1949-09-13 1954-10-18 Ruhrchemie Ag Process for the production of iron catalysts which are suitable for the catalytic hydrogenation of carbons, which is carried out in particular under high gas loads
DE881497C (en) * 1951-10-09 1953-06-29 Ruhrchemie Ag Iron catalyst for the hydrogenation of carbohydrates with a high content of petrol-like hydrocarbons

Also Published As

Publication number Publication date
DE2750007C2 (en) 1987-08-27
DE2750007A1 (en) 1978-05-18
NL7612460A (en) 1978-05-12
IT1087492B (en) 1985-06-04
AU2970877A (en) 1979-04-26
ZA776649B (en) 1978-08-30
FR2370712A1 (en) 1978-06-09
GB1548468A (en) 1979-07-18
FR2370712B1 (en) 1980-10-10
JPS5359604A (en) 1978-05-29
BE860395A (en) 1978-05-03
IN147159B (en) 1979-12-01
CA1089495A (en) 1980-11-11
AU513157B2 (en) 1980-11-20

Similar Documents

Publication Publication Date Title
JPS6337090B2 (en)
US4279830A (en) Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
DK172976B1 (en) Process for converting synthesis gas consisting of hydrogen and carbon monoxide to hydrocarbons and catalyst to d
CA2274688C (en) Process for the preparation of hydrocarbons
AU590208B2 (en) Enhanced conversion of syngas to liquid motor fuels
RU2450044C2 (en) Method of activating fischer-tropsch synthesis catalyst
US4423155A (en) Dimethyl ether synthesis catalyst
JPS5839131B2 (en) gouseigasuotankasuisokongobutsuhetenkasurhouhou
JPH0534056B2 (en)
JPH0257593B2 (en)
WO2003089388A1 (en) Process for upgrading fischer-tropsch syncrude using thermal cracking and oligomerization
JPH0581635B2 (en)
ZA200505106B (en) Process for the preparation of linear alpha-olefins from synthesis gas over a cobalt catalyst
JP4518726B2 (en) Increased liquid sensitivity during Fischer-Tropsch synthesis by olefin incorporation
CA1143713A (en) Process for the preparation of fischer-tropsch catalysts
Baird et al. Fischer-Tropsch Processes Investigated at the Pittsburgh Energy Technology Center since 1944
GB2093365A (en) Catalyst and method for synthesis of dimethyl ether
AU2002337372B2 (en) Olefins production process
JPH0618792B2 (en) Hydrocarbon production method
GB2097382A (en) Conversion of syngas into dimethyl ether
US20040267071A1 (en) Process for the oligomerization of olefins in Fischer-Tropsch derived feeds
JPS631297B2 (en)
CN106391019B (en) Process for preparing a catalyst intended to be used in the fischer-tropsch reaction
CA1117883A (en) Process for preparing liquid hydrocarbons
AU616700B2 (en) A catalyst and process for production of hydrocarbons