JPS6336830A - Flue gas denitration catalyst - Google Patents

Flue gas denitration catalyst

Info

Publication number
JPS6336830A
JPS6336830A JP61178723A JP17872386A JPS6336830A JP S6336830 A JPS6336830 A JP S6336830A JP 61178723 A JP61178723 A JP 61178723A JP 17872386 A JP17872386 A JP 17872386A JP S6336830 A JPS6336830 A JP S6336830A
Authority
JP
Japan
Prior art keywords
catalyst
active
oxide
flue gas
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61178723A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
繁 野島
Kozo Iida
耕三 飯田
Yoshiaki Obayashi
良昭 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61178723A priority Critical patent/JPS6336830A/en
Publication of JPS6336830A publication Critical patent/JPS6336830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To prevent arsenic oxide from being deposited and to maintain the denitrating action at a long period by preparing both a catalytic active component and titania by means of a coprecipitating method in a catalyst for denitrating flue gas contg. nitrogen oxide. CONSTITUTION:A flue gas denitration catalyst is obtained by preparing both catalytic active components and titania by means of a coprecipitating method. In this case, as the catalytic active components, active metal such as Sn, Cu, Co, Fe, Cr and Ni having highly active denitration performance is used. The amount of oxide of the above-mentioned metal to be incorporated is preferably a value within the range of 0.2-40wt% for a TiO2 carrier. The obtained catalyst has an amorphous state wherein the active metal is uniformly dispersed in all parts of the catalyst and is stable. Further since the active metallic oxide forms a stable composite oxide together with titania, the join of both arsenic oxide incorporated in flue gas and dust, and the active metal is prevented thereby the nitrating action can be maintained a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒素酸化物含有排ガスの脱硝用触媒に関し、
詳細には、窒素酸化物の他に触媒被毒となりやすいヒ素
等の煤じんを多量に含んだ排ガスにアンモニアを添加し
、窒素酸化物を接触還元し、窒素と水に転化して無害化
除去するに当り、触媒被毒成分の影響?はとんど受けな
い排煙脱硝触媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a catalyst for denitrification of exhaust gas containing nitrogen oxides,
In detail, in addition to nitrogen oxides, ammonia is added to the exhaust gas, which contains a large amount of soot and dust such as arsenic that tends to poison the catalyst, and the nitrogen oxides are catalytically reduced and converted into nitrogen and water, making them harmless. In doing so, is there an effect of catalyst poisoning components? Regarding exhaust gas denitrification catalysts, which are rarely used.

〔従来の技術〕[Conventional technology]

重力用大型ボイラ、自家発用ボイラ等の燃焼炉、焼却炉
、化学プラント等からの廃ガス中に含まれるNOxによ
る大気汚染が社会問題となり、その防止策として、各種
の廃ガス脱硝装置の開発が進められた結果、現在では、
触媒の存在下でアンモニアを還元剤とした選択的接触還
元法が主流となっている。仁の脱硝装置に用いられる触
媒は、高活性であることはもちろん、その性能を長時間
安定に維持できることが要求される。
Air pollution caused by NOx contained in waste gas from combustion furnaces such as large gravity boilers and private boilers, incinerators, chemical plants, etc. has become a social problem, and as a preventive measure, various types of waste gas denitrification equipment have been developed. As a result of progress, currently,
Selective catalytic reduction using ammonia as a reducing agent in the presence of a catalyst has become mainstream. The catalyst used in Jin's denitrification equipment is required not only to be highly active but also to be able to maintain its performance stably for a long period of time.

従来排煙脱硝用に開発された触媒はアルミナ、チタニア
上の担体に鉄、バナジウム、タングステン、モリブデン
などの酸化物を含浸法で単独にあるいは組合せて担持し
た触媒でちる。
Catalysts that have been developed for exhaust gas denitrification are made by impregnating oxides such as iron, vanadium, tungsten, and molybdenum on alumina or titania carriers, either singly or in combination.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年、本発明者らは、実機触媒の解析や種々の実験室試
験によって、脱硝触媒は廃ガス中に含まれるアルカリ金
属成分であるNaやKの畜槓以外に、As 、 !3e
 、 Te等の被毒物質を蓄積することによって、性能
低下を大幅にきたし、触媒寿命が短くなることを見出し
た。
In recent years, the present inventors have discovered through analysis of actual catalysts and various laboratory tests that denitrification catalysts not only remove Na and K, which are alkali metal components contained in waste gas, but also contain As,! 3e
It has been found that the accumulation of poisonous substances such as Te, etc. significantly reduces the performance and shortens the catalyst life.

Naやに等のアルカリ金属は粒径は数μ〜数十μと比較
的大きいだめ、触媒の表面のみに蓄積するため、触媒活
性体への蓄積防止法として、活性金属を含まない固体酸
性物質を触媒表面に薄くコートシ、そのコート部分で廃
ガスダスト中のアルカリ金属を、固体酸性物質のイオン
交換能力を利用して捕集し、触媒活性体への被毒を抑制
する方法等が試みられており、種々の触媒活性低下防止
処理が検討されている。
Since the particle size of alkali metals such as Na is relatively large, ranging from several microns to several tens of microns, they accumulate only on the surface of the catalyst, so as a method to prevent accumulation on the catalyst active body, solid acidic substances that do not contain active metals are used. Attempts have been made to coat the catalyst surface thinly, and use the coated part to collect alkali metals in the exhaust gas dust using the ion exchange ability of the solid acidic substance, thereby suppressing the poisoning of the catalyst active body. Therefore, various treatments for preventing a decrease in catalyst activity are being considered.

一方、廃ガスダスト中に含まれるヒ素酸化物・As2O
,)は、分子状で触媒細孔内部にまで拡散侵入し、さら
に活性金属の酸化作用により蒸気圧の低いAs2O,に
変化するため、活性金属の表面にA e、O,が沈着し
触媒性能が急激に低下する。さらに、ヒ素酸化物は触媒
の活性金属と複合酸化物会形成しやすく、複合酸化物を
形成した触媒は活性点がf’Lとんど消失することが近
年明らかにされた。
On the other hand, arsenic oxide/As2O contained in exhaust gas dust
, ) diffuses into the catalyst pores in molecular form and further changes to As2O, which has a low vapor pressure due to the oxidation action of the active metal, resulting in the deposition of Ae, O, on the surface of the active metal, which impairs catalyst performance. decreases rapidly. Furthermore, it has recently been revealed that arsenic oxide tends to form a composite oxide association with the active metal of the catalyst, and that active sites in catalysts that have formed a composite oxide almost disappear f'L.

石炭等の原料中に多量のヒ素化合物を含んでいる場合、
ヒ素酸化物の沈着による脱硝触媒の劣化を防止する方法
として、 ■ 石炭等の原料を水洗前処理して、原料中からヒ素化
合物を除去する。
If raw materials such as coal contain large amounts of arsenic compounds,
As a method to prevent the denitrification catalyst from deteriorating due to the deposition of arsenic oxides, (1) Pre-processing raw materials such as coal with water to remove arsenic compounds from the raw materials.

■ 脱硝触媒の前段に、ヒ素化合物分選択的に吸着する
吸着剤を設置する。
■ Install an adsorbent that selectively adsorbs arsenic compounds before the denitrification catalyst.

■ 耐ヒ素性に優れた脱硝触媒を開発する。■ Develop a denitrification catalyst with excellent arsenic resistance.

等のヒ素化合物の被毒に対する対策が提案されている。Countermeasures against poisoning by arsenic compounds have been proposed.

ただし、■の原料の前処理は、原料の水洗、乾燥等の工
程追加により、多大な労力と費用を要し、■の吸着剤の
設置は、触媒層上に吸着剤を置くと、圧力損失が高くな
り、さらに、ヒ素化合物を完全に、長時間捕捉するには
高性能な吸着剤を多量に要することになる。上記理由に
より■、■の方法よりも■の耐ヒ素性に優れた触媒を開
発する法が好ましい脱硝触媒劣化防止方法と考えられる
However, the pretreatment of the raw material in (■) requires a great deal of labor and expense due to additional processes such as washing and drying the raw material, and the installation of the adsorbent (in) (2) requires pressure loss when the adsorbent is placed on the catalyst layer. Moreover, a large amount of high-performance adsorbent is required to completely capture arsenic compounds for a long time. For the above reasons, the method (2) of developing a catalyst with superior arsenic resistance is considered to be a preferable method for preventing deterioration of the denitrification catalyst than methods (2) and (2).

ところで、耐ヒ素性に優れた脱硝触媒とは、As、Ol
の酸化力が弱く、活性金属表面上に沈着することを防ぐ
触媒であり、また、ヒ素酸化物が触媒に吸着した場合は
、活性金属と複合酸化物を形成しない触媒である。さら
に、NOxの接触還元力は長時間高活性を維持したまま
である必要がある。
By the way, denitrification catalysts with excellent arsenic resistance include As, Ol
It is a catalyst that has a weak oxidizing power and prevents it from being deposited on the surface of the active metal, and also does not form a composite oxide with the active metal when arsenic oxide is adsorbed on the catalyst. Furthermore, the catalytic reducing power of NOx needs to remain highly active for a long period of time.

従来広のT i O,担体に含浸法により活性金属を担
持する脱硝触媒では、NOXの接触還元力を維持したま
までヒ素酸化物の沈着を防ぐことは困難でちる。それゆ
え、ヒ素酸化物を吸着せず、かつ脱硝活性が犬である脱
硝触媒及びその調製法の開発が望まれている。
With conventional denitrification catalysts in which active metals are supported on a TiO carrier by an impregnation method, it is difficult to prevent arsenic oxide deposition while maintaining the catalytic reducing power of NOX. Therefore, it is desired to develop a denitrification catalyst that does not adsorb arsenic oxides and has a high denitrification activity, and a method for preparing the same.

そこで、本発明者らは、上記問題を克服すべく脱硝触媒
及びその調製法の開発を鋭意検討した結果、本発明を完
成したものであり、したがって本発明は、ヒ素酸化物の
沈着を防ぎ、高性能の脱硝作用を長時間維持することが
できる排煙脱硝触媒を提供することを目的とする。
Therefore, the present inventors have completed the present invention as a result of intensive study on the development of a denitrification catalyst and its preparation method in order to overcome the above-mentioned problems.Therefore, the present invention has been developed to prevent the deposition of arsenic oxides, The purpose of the present invention is to provide a flue gas denitrification catalyst that can maintain high-performance denitrification effect for a long time.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

そして、本発明は、上記目的分達成するため、触媒活性
金属と基材であるチタニアを共沈法により調整する点に
ある。すなわち、本発明は、窒素酸化物を含有する廃ガ
スにアンモニアを添加して、該ガス中の窒素酸化物を還
元し無害化する触媒において、触媒活性成分とチタニア
を共沈法により調製してなることを特徴とする排煙脱硝
触媒である。
In order to achieve the above objectives, the present invention consists in adjusting the catalytically active metal and the base material titania by a coprecipitation method. That is, the present invention provides a catalyst that adds ammonia to waste gas containing nitrogen oxides to reduce and render the nitrogen oxides in the gas harmless, in which a catalyst active component and titania are prepared by a coprecipitation method. This is an exhaust gas denitrification catalyst characterized by:

本発明の共沈法により調製した脱硝触媒は、活性金属が
触媒全体に均一に分散しているだめ非晶質状態で安定で
あり、かつ活性金属酸化物がチタニアと安定な状態で複
合酸化物を形成しているため、廃ガスダスト中のヒ素酸
化物と活性金属とが結合して生成する複合酸化物の形成
を防ぐことができる。さらに、共沈法に調製した脱硝触
媒はSO,の酸化及びAs、03  の酸化を低減する
ため、硫酸塩の生成及びA s20.の生成を抑制する
ことがわかった。
The denitrification catalyst prepared by the coprecipitation method of the present invention is stable in an amorphous state because the active metal is uniformly dispersed throughout the catalyst, and the active metal oxide and titania are in a stable state and form a composite oxide. , it is possible to prevent the formation of complex oxides produced by the combination of arsenic oxides and active metals in exhaust gas dust. Furthermore, since the denitrification catalyst prepared by the coprecipitation method reduces the oxidation of SO, and the oxidation of As, 03, it reduces the generation of sulfate and As20. was found to inhibit the formation of

TiO2と共沈法で調製でき、さらに高活性な脱硝性能
を有す活性金属としては、従来からの触媒組成スクリー
ニングテストより、Eln 、 Ou 。
From conventional catalyst composition screening tests, active metals that can be prepared with TiO2 by coprecipitation and have even higher denitrification performance are Eln and Ou.

Co 、 F′e 、 Or 、 Ni等が挙げられ、
これらの活性金属ヲ本発明における触媒活性成分として
使用するものであり、そして本発明では、各金属酸化物
SnO、CuO、Coo 、 FeO、(!r103 
、 NiOの含有量はTlO2担体に対して112 w
t%〜40 wtチであることが望ましい。
Examples include Co, F'e, Or, Ni, etc.
These active metals are used as catalyst active components in the present invention, and in the present invention, each metal oxide SnO, CuO, Coo, FeO, (!r103
, the content of NiO is 112 w relative to the TlO2 support
It is desirable that the amount is between t% and 40 wt.

〔実施例1〕 四塩化チタン5001と塩化第1スズ20?を純水80
02に溶解させ、適当量の1M溶液炭酸ナトリウムを加
え、pHを9として共沈法により沈殿を生ぜしめた。こ
の沈殿を60℃にて一昼夜熟成し、陰イオンを完全に除
去するまでろ過、洗浄を繰返し、さらに乾燥を110℃
、−昼夜性ないTi(OT()4−5n(OH)tの粉
末を40of得た。この粉末を550℃、5hr焼成し
て複合酸化物触媒Tie、 −SnOを得た。この複合
酸化物にバインダー分添加してハニカム状に成型した触
媒(穴の形状;正方形、目開き60fi、壁厚1、55
 m ’)を触媒1とする。この触媒1の組成比(重量
比)はTiO2: SnO−96: Aである。
[Example 1] Titanium tetrachloride 5001 and stannous chloride 20? Pure water 80
02, an appropriate amount of 1M sodium carbonate solution was added, the pH was adjusted to 9, and a precipitate was produced by a coprecipitation method. This precipitate was aged at 60°C overnight, filtered and washed repeatedly until anions were completely removed, and then dried at 110°C.
, -40 of Ti(OT()4-5n(OH)t powder) which has no day/night property was obtained.This powder was fired at 550°C for 5 hours to obtain a composite oxide catalyst Tie, -SnO.This composite oxide A catalyst formed into a honeycomb shape by adding a binder to it (hole shape: square, opening 60fi, wall thickness 1.55
m') is catalyst 1. The composition ratio (weight ratio) of this catalyst 1 is TiO2:SnO-96:A.

〔実施例2〕 四塩化チタン5002と硝酸銅20り、四塩化チタン5
00?と硝酸クロム302.四塩化チタン500?と硝
酸コバルトAOf、四塩化チタン5002と硝酸鉄30
f、四塩化チタン500tと硝0ニッケル202.を用
いて実施例1の同様の共沈法により複合水酸化物の粉末
を得た。この粉末を550℃、5 hr焼成して複合酸
化物触媒TiO2−CuO、T102−Cr20g 、
 TiO,−f:!oo 。
[Example 2] Titanium tetrachloride 5002, copper nitrate 20, titanium tetrachloride 5
00? and chromium nitrate 302. Titanium tetrachloride 500? and cobalt nitrate AOf, titanium tetrachloride 5002 and iron nitrate 30
f, 500 tons of titanium tetrachloride and 202 tons of nickel. A powder of a composite hydroxide was obtained by the same coprecipitation method as in Example 1. This powder was calcined at 550°C for 5 hours to form a composite oxide catalyst TiO2-CuO, T102-Cr20g,
TiO,-f:! oo.

Ti02−Fe、03 、 TiO2−NiOを得、各
々ハニカム成型体にした触媒を触媒2.触媒5.触媒4
.触媒5、触媒6とする。これらの組成比(゛重量部)
で各々、TiO2:0uO= 96 : A 、 Ti
O,:0r203 =94 : 6 、 TiO2: 
Coo−92: 8 、 Tidy :Fe2O,+=
g94 : 6 、 TiO,:Ni0−96 : 4
である。
Catalysts 2. Ti02-Fe, 03, and TiO2-NiO were obtained and formed into honeycomb bodies. Catalyst 5. catalyst 4
.. Let them be catalyst 5 and catalyst 6. These composition ratios (parts by weight)
respectively, TiO2:0uO=96: A, Ti
O,:0r203 =94:6, TiO2:
Coo-92: 8, Tidy:Fe2O, +=
g94: 6, TiO,:Ni0-96: 4
It is.

〔実施例3〕 四塩化チタン5002と硝酸鉄202.硝酸銅109を
純水9002に溶解させ、実施例1と同様の共沈法によ
り複合水酸化物Ti(OH)、 −Fe(OH)、−C
u(OH)2の粉末を得た。この粉末を550℃、5h
r焼成して、複合酸化物触媒TiQ。
[Example 3] Titanium tetrachloride 5002 and iron nitrate 202. Copper nitrate 109 was dissolved in pure water 9002, and composite hydroxides Ti(OH), -Fe(OH), -C were prepared by the same coprecipitation method as in Example 1.
A powder of u(OH)2 was obtained. This powder was heated to 550℃ for 5 hours.
After firing, the composite oxide catalyst TiQ is prepared.

−F〜03−C!uo  を得、ざらにハニカム成型体
にしたこの触媒を触媒7とする。この触媒の組成比(重
量比)はTiel: Fe、03二〇uO19A:4:
2である。
-F~03-C! This catalyst, which was obtained and made into a rough honeycomb molded body, is designated as catalyst 7. The composition ratio (weight ratio) of this catalyst is Tiel: Fe, 0320uO19A:4:
It is 2.

〔比較例〕[Comparative example]

通常の含浸法による触媒の調製は下記のように行う。 The catalyst is prepared by a conventional impregnation method as follows.

四塩化チタンを500tを純水800fに溶解させ、適
当量の1M溶液炭酸ナトリウムの滴下(てよシチタン水
酸化物の沈殿を得た。この沈殿を60℃で熟成し、r過
、洗浄を行い陰イオンを除去した後、110℃−昼夜の
乾燥を行った。
500t of titanium tetrachloride was dissolved in 800f of pure water, and an appropriate amount of 1M sodium carbonate solution was added dropwise to obtain a precipitate of titanium hydroxide.This precipitate was aged at 60°C, filtered and washed. After removing anions, drying was performed at 110° C. day and night.

さらに、550 ’C、12hの焼成を行いT1へ担体
を調製した。このTie、担体に)(インダーを添加し
てハニカム状に成型した後(穴の形状;6.D甥、壁厚
、正方形、目開き瓜Om r壁厚1.55醪)、このハ
ニカムT1)担体を各々所定濃度の塩化第−スズ、硝酸
銅、硝酸クロム、硝酸コバルト、硝酸鉄、硝酸ニッケル
の水溶液中に1時間没潰し、110℃で一昼夜乾燥し、
550℃で3時間焼成した。本触媒TiO2−SnO、
Tie、 −0uO。
Furthermore, calcination was carried out at 550'C for 12 hours to prepare a T1 carrier. This Tie, to the carrier) (After adding inder and forming into a honeycomb shape (hole shape: 6.D, wall thickness, square, opening size, wall thickness: 1.55 mm), this honeycomb T1) The carrier was immersed in an aqueous solution of stannous chloride, copper nitrate, chromium nitrate, cobalt nitrate, iron nitrate, and nickel nitrate at predetermined concentrations for one hour, and dried at 110°C overnight.
It was baked at 550°C for 3 hours. This catalyst TiO2-SnO,
Tie, -0uO.

TiO2−Cr2O,、TiO2−Coo 、 TiO
2−Fe2O,、Ti01− NiOを各々触媒8.触
媒9.触媒10.触媒11.触媒12.触媒15とする
。尚、触媒8〜15の組成は触媒1〜6と同一組成のも
のをルーを製した。
TiO2-Cr2O, TiO2-Coo, TiO
2-Fe2O, Ti01-NiO as catalysts 8. Catalyst 9. Catalyst 10. Catalyst 11. Catalyst 12. Let it be catalyst 15. Note that catalysts 8 to 15 had the same composition as catalysts 1 to 6, and a roux was prepared.

〔脱硝活性試験〕[Denitration activity test]

触媒1〜触媒15の脱硝活性を調べるだめに、ヒ素酸化
物を含有したボイラー排ガスを使用して表1の試験条件
で脱硝性能を測定した結果(初期活性、5000hガス
供給後)を表2に示す。さらに、5000hr使用後の
触媒を脱硝装置よシ抜き取り、沈着したヒ素酸化物の含
有量を表2に記す。
In order to investigate the denitrification activity of Catalysts 1 to 15, the denitrification performance was measured under the test conditions in Table 1 using boiler exhaust gas containing arsenic oxide. The results (initial activity, after 5000 hours of gas supply) are shown in Table 2. show. Further, the catalyst after 5000 hours of use was removed from the denitrification device, and the content of deposited arsenic oxides is shown in Table 2.

(表1)〔脱硝反応試験条件〕 表2に示すように、共沈法にて調製した触媒1〜触喋7
は脱硝活性は5000h使用後でも初期活性と同様の高
脱硝率を有し、また、触媒上に沈着したヒ素酸化物の含
有量も少ないことがわかる。さらに、本発明による共沈
法により調製した触媒は低SO,酸化性能を有する脱硝
触媒であり、従来型触媒にない耐ヒ素性を具備した触媒
であることが判明した。
(Table 1) [Denitrification reaction test conditions] As shown in Table 2, catalysts 1 to 7 prepared by coprecipitation method
It can be seen that even after 5000 hours of use, the catalyst had a high denitrification rate similar to the initial activity, and the content of arsenic oxide deposited on the catalyst was small. Furthermore, it was found that the catalyst prepared by the coprecipitation method of the present invention is a denitrification catalyst with low SO and oxidation performance, and has arsenic resistance not found in conventional catalysts.

〔効果〕〔effect〕

本発明は、以上詳記したように、触媒活性成分と基材で
あるチタニアを共沈法により鉤整したものであり、この
本発明の触媒は、ヒ素酸化物の沈着を防ぎ、高性能、の
脱硝作用を長期間にわたって維持する効果を奏するもの
である。
As described in detail above, the present invention is a method in which a catalytic active component and titania as a base material are prepared by a coprecipitation method, and the catalyst of the present invention prevents the deposition of arsenic oxide, has high performance, It has the effect of maintaining the denitrification effect over a long period of time.

復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫Sub-agent: 1) Akira Sub-agent Ryo Hagi Hara - Sub-agent Atsuo Yasunishi

Claims (1)

【特許請求の範囲】[Claims] 窒素酸化物を含有する廃ガスにアンモニアを添加して、
該ガス中の窒素酸化物を還元し無害化する触媒において
、触媒活性成分とチタニアを共沈法により調製してなる
ことを特徴とする排煙脱硝触媒。
By adding ammonia to the waste gas containing nitrogen oxides,
A flue gas denitrification catalyst for reducing nitrogen oxides in the gas to render them harmless, characterized in that the catalyst active component and titania are prepared by a coprecipitation method.
JP61178723A 1986-07-31 1986-07-31 Flue gas denitration catalyst Pending JPS6336830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61178723A JPS6336830A (en) 1986-07-31 1986-07-31 Flue gas denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61178723A JPS6336830A (en) 1986-07-31 1986-07-31 Flue gas denitration catalyst

Publications (1)

Publication Number Publication Date
JPS6336830A true JPS6336830A (en) 1988-02-17

Family

ID=16053442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61178723A Pending JPS6336830A (en) 1986-07-31 1986-07-31 Flue gas denitration catalyst

Country Status (1)

Country Link
JP (1) JPS6336830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306684A (en) * 1991-06-18 1994-04-26 N. E. Chemcat Corporation Catalyst for purification of exhaust gases
US5336651A (en) * 1990-05-03 1994-08-09 Sakai Chemical Industry Co., Ltd. Catalysts and methods for denitrization
JP2006298797A (en) * 2005-04-18 2006-11-02 Nippon Shokubai Co Ltd Fixed bed reactor for vapor-phase catalytic oxidation and method for producing acrolein or acrylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336651A (en) * 1990-05-03 1994-08-09 Sakai Chemical Industry Co., Ltd. Catalysts and methods for denitrization
US5306684A (en) * 1991-06-18 1994-04-26 N. E. Chemcat Corporation Catalyst for purification of exhaust gases
JP2006298797A (en) * 2005-04-18 2006-11-02 Nippon Shokubai Co Ltd Fixed bed reactor for vapor-phase catalytic oxidation and method for producing acrolein or acrylic acid

Similar Documents

Publication Publication Date Title
US4466947A (en) Denitration catalyst and denitrating method
KR102126248B1 (en) Bimetallic catalysts for selective ammonia oxidation
US7968492B2 (en) Layered catalyst to improve selectivity or activity of manganese containing vanadium-free mobile catalyst
KR20030070827A (en) Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process
US5516741A (en) Reduced chlorine containing platinum catalysts
US5047378A (en) Exhaust gas-purifying catalyst and process for purifying exhaust gases
KR20090075787A (en) Catalyst for oxidation of metal mercury
JPH09507656A (en) Catalyst for reducing nitrogen oxides in fluidized medium and method for producing the same
EP1256382B1 (en) Exhaust gas purification catalyst and exhaust gas purification material
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
EP0317293A2 (en) A process for removing nitrogen oxides and a catalyst used for the process
JP6171255B2 (en) NOx selective reduction catalyst, method for producing the same, and NOx purification method using the same
JP4346706B2 (en) Catalyst carrier, production method thereof, denitration catalyst and denitration method
JPS6336830A (en) Flue gas denitration catalyst
JP5360834B2 (en) Exhaust gas purification catalyst that suppresses the influence of iron compounds
JP2022527615A (en) Selective ammonia oxidation catalyst
JP4088357B2 (en) Exhaust gas purification method
JPH01142208A (en) Filter for collecting diesel particulate
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05138026A (en) Catalyst for purifying exhaust gas of diesel engine
JP2002295241A (en) Purification method of marine structure exhaust gas and purifying device
JPS63294950A (en) Catalyst for reducing nitrogen oxide
JPH04210241A (en) Catalyst for cleaning exhaust gas
JPS5915018B2 (en) Manufacturing method of ceramic catalyst
JPH02184342A (en) Catalyst for denitrification of stack gas