JPH03145058A - Paste type nickel positive electrode - Google Patents

Paste type nickel positive electrode

Info

Publication number
JPH03145058A
JPH03145058A JP1281671A JP28167189A JPH03145058A JP H03145058 A JPH03145058 A JP H03145058A JP 1281671 A JP1281671 A JP 1281671A JP 28167189 A JP28167189 A JP 28167189A JP H03145058 A JPH03145058 A JP H03145058A
Authority
JP
Japan
Prior art keywords
paste
cobalt
positive electrode
nickel
nickel positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1281671A
Other languages
Japanese (ja)
Other versions
JP2930331B2 (en
Inventor
Katsuyuki Hata
秦 勝幸
Kazuhiro Yoshida
一博 吉田
Koji Isawa
浩次 石和
Hiroyuki Hasebe
裕之 長谷部
Kunihiko Sasaki
邦彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP1281671A priority Critical patent/JP2930331B2/en
Priority to DE69014183T priority patent/DE69014183T2/en
Priority to EP90310213A priority patent/EP0419220B1/en
Priority to US07/584,115 priority patent/US5032475A/en
Publication of JPH03145058A publication Critical patent/JPH03145058A/en
Application granted granted Critical
Publication of JP2930331B2 publication Critical patent/JP2930331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent sudden oxidation reaction in an atmosphere containing oxygen and to obtain good activity by using paste containing nickel hydroxide as a main active material and also containing cobalt monoxide whose surface is covered with a higher cobalt oxide layer. CONSTITUTION:Paste containing nickel hydroxide as a main active material and also containing cobalt monoxide whose surface is covered with a higher cobalt oxide layer is used. Even if the paste is exposed in the air, oxidation reaction progresses only gradually. Since an oxide other than higher oxide is rarely produced, the manufacture of an electrode in a specific atmosphere is made unnecessary and the electrode is manufactured in the normal atmosphere. In addition, the storage performance of cobalt monoxide is increased. Sudden oxidation reaction in an atmosphere containing oxygen is prevented and good activity is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ペースト式ニッケル正極に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a paste-type nickel positive electrode.

[従来の技術及び課題] 従来、アルカリ蓄電池用ニッケル正極としては例えばカ
ルボニルニッケルを所定形状に底形、焼結して得られる
多孔質基板に、ニッケル塩の水溶液を含浸させ、つづい
てアルカリ溶液中で化学含浸して前記ニッケル塩を水酸
化ニッケルに転化せしめて製造する、いわゆる焼結式ニ
ッケル正極が知られている。
[Prior Art and Problems] Conventionally, as a nickel positive electrode for an alkaline storage battery, a porous substrate obtained by shaping carbonyl nickel into a predetermined shape and sintering is impregnated with an aqueous solution of nickel salt, and then soaked in an alkaline solution. A so-called sintered nickel positive electrode is known, which is manufactured by chemically impregnating the nickel salt into nickel hydroxide.

一方、最近、電池の高容量化と低コスト化の要望から、
ペースト式ニッケル正極が開発されている。このペース
ト式ニッケル正極は、水酸化ニッケル粉末と水を適当な
結着剤によりペースト化し、各種の導電性基板に塗着、
充填した後、ブレス底形するすることにより得られ、前
述した焼結式ニッケル正極に比べて活物質の占める量が
多いために高容量化が可能となる。また、焼結式ニッケ
ル正也のように含浸工程や化成工程の複雑な工程を必要
としないため、量産化及び低コスト化が可能となる。
On the other hand, due to the recent demand for higher capacity and lower cost batteries,
A paste-type nickel positive electrode has been developed. This paste-type nickel positive electrode is made by making a paste of nickel hydroxide powder and water using an appropriate binder, and applying it to various conductive substrates.
After being filled, it is obtained by shaping the bottom of the press, and since the active material occupies a larger amount than the aforementioned sintered nickel positive electrode, it is possible to increase the capacity. In addition, unlike sintered nickel Masaya, it does not require complicated processes such as impregnation and chemical conversion, making mass production and cost reduction possible.

上述したペースト式ニッケル正極の製造においては、利
用率や充放電性能を向上させるためにコバルト化合物を
添加することが行われている。代表的なコバルト化合物
としては、金属コバルト、酸化コバルト、水酸化コバル
トが挙げられ、なかでも−酸化コバルトは非常に高い活
性を有し、少量の添加でニッケル正極の導電性や利用率
の向上に多大な効果を発揮できる。
In manufacturing the paste-type nickel positive electrode described above, a cobalt compound is added in order to improve the utilization rate and charge/discharge performance. Typical cobalt compounds include metallic cobalt, cobalt oxide, and cobalt hydroxide. Among them, cobalt oxide has extremely high activity, and adding a small amount can improve the conductivity and utilization rate of nickel positive electrodes. It can be very effective.

しかしながら、−酸化コバルトは空気中の酸素と容易に
反応し、−酸化コバルト分子の奥深くまで酸化して本来
持つ効果を発揮できなくなる。また、急激に一酸化コバ
ルトの酸化反応が進行すると、−酸化コバルトが発火す
る等の危険性があるため、窒素やアルゴン等の不活性雰
囲気中でペースト式ニッケル正極を作製する必要があり
、量産性の点で問題があった。
However, -cobalt oxide easily reacts with oxygen in the air, and -cobalt oxide molecules are oxidized deep into the cobalt oxide molecules, making them unable to exhibit their original effects. Additionally, if the oxidation reaction of cobalt monoxide progresses rapidly, there is a risk that the cobalt oxide may catch fire, so paste-type nickel positive electrodes must be manufactured in an inert atmosphere such as nitrogen or argon, and mass production is required. There was a problem with sexuality.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、酸素を含む雰囲気中での急激な酸化反応を坐じず
、良好な活性を有する一酸化コバルトが添加されたペー
ストを備えたペースト式ニッケル正極を堤供しようとす
るものである。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems. It is intended to provide a paste-type nickel positive electrode with a paste doped with cobalt.

[発明の構成] (課題を解決するための手段) 本発明は、導電性基板に水酸化ニッケルを生活物質とし
、表面が高次コバルト酸化物層で覆われた一酸化コバル
トを含む組成のペーストを充填したことを特徴とするペ
ースト式ニッケル正極である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a paste having a composition containing cobalt monoxide, the surface of which is covered with a layer of higher-order cobalt oxide, using nickel hydroxide as a living material on a conductive substrate. This is a paste-type nickel positive electrode characterized by being filled with.

上記導電性基板としては、例えばパンチトメタル、ラス
メタル等の二次元構造のもの、発泡メタル、ニッケル焼
結繊維基板、金属メツキ繊維基板等の三次元構造のもの
を挙げることができる。
Examples of the conductive substrate include those with a two-dimensional structure such as punched metal and lath metal, and those with a three-dimensional structure such as foamed metal, nickel sintered fiber substrates, and metal-plated fiber substrates.

上記ペーストに用いられる一酸化コバルトの表面を覆う
高次コバルト酸化物としては、例えばCo 203 、
Co s Oa等を挙げることができる。
Examples of higher-order cobalt oxides that cover the surface of cobalt monoxide used in the paste include Co 203 ,
Examples include CosOa and the like.

かかる高次コバルト酸化物層を形成する方法としては、
例えば不活性雰囲気中で焼成してCooを形成後表面の
みを酸化する方法や造粒する方法等を採用し得る。また
、高次コバルト酸化物層の量は一酸化コバルトに対して
0.1〜20重量%とすることが望ましい。この理由は
、0.111nffi%未満にすると酸化反応の抑制化
を十分に遠戚できず、−方20ffi ffi%を越え
ると活性低下を招く恐れがある。
The method for forming such a high-order cobalt oxide layer is as follows:
For example, a method of oxidizing only the surface after forming Coo by firing in an inert atmosphere, a method of granulating, etc. may be adopted. Further, the amount of the higher-order cobalt oxide layer is preferably 0.1 to 20% by weight based on cobalt monoxide. The reason for this is that if the content is less than 0.111nffi%, the oxidation reaction cannot be suppressed sufficiently, and if it exceeds 20nffi%, there is a risk of a decrease in activity.

上記ペーストは、水酸化ニッケル、表面が高次コバルト
酸化物層で覆われた一酸化コバルトの他に、カルボニル
ニッケルなどの導電材、カルボニルメチルセルロース(
CMC)などの結着剤の組成から構成される。
The above paste contains nickel hydroxide, cobalt monoxide whose surface is covered with a layer of higher cobalt oxide, conductive materials such as carbonyl nickel, carbonyl methyl cellulose (
It is composed of a binder such as CMC).

(作用) 本発明によれば、ペースト中に配合される一酸化コバル
トとして表面が高次コバルト酸化物層で覆われたものを
使用することによって、空気中に放置しても酸化反応は
徐々にしか進行しないため、急激な酸化反応の進行に伴
う爆発の危険性を回避でき、−酸化コバルト本来の効果
を持続できる。また、高次酸化物以外の酸化物を生成す
ることが少なくなるため、特殊な雰囲気下で電極を作製
する必要がなく、通常の大気下で電極を作製することが
可能となる。更に、−酸化コバルトの貯蔵特性を向上で
きるため、特性が安定した電極を作製することができる
(Function) According to the present invention, by using a cobalt monoxide compounded in the paste whose surface is covered with a layer of higher-order cobalt oxide, the oxidation reaction will gradually occur even if left in the air. Since the oxidation reaction only progresses, the danger of explosion due to the rapid progress of the oxidation reaction can be avoided, and the original effects of cobalt oxide can be maintained. Furthermore, since oxides other than higher-order oxides are less likely to be produced, it is not necessary to produce electrodes under a special atmosphere, and it becomes possible to produce electrodes under normal atmosphere. Furthermore, since the storage characteristics of -cobalt oxide can be improved, an electrode with stable characteristics can be produced.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1 まず、水酸化ニッケル85重量部表面に10重量%のC
o114の高次酸化物で覆われた一酸化コパルI−LO
ffim部、導電材としてカルボニルニッケル5重量部
をCMCと共にドライ混合を行った後、純水を加えて混
練してペーストを調製した。つづいて、このペーストを
ニッケル焼結繊維基板に充填し、乾燥、プレスを行って
所定形状のペースト式ニッケル正極を作製した。次いで
、このペースト式ニッケル正極をセパレータを介してカ
ドミウム負極と共に捲回して電極群を作製した後、7規
定のKOHの電解液を定量注液し、外装缶に収納、密閉
してAAサイズのニッケル・カドミウム蓄電池を組み立
てた。
Example 1 First, 85 parts by weight of nickel hydroxide was coated with 10% by weight of C.
Copal monoxide I-LO covered with higher oxide of o114
After dry mixing ffim part and 5 parts by weight of carbonyl nickel as a conductive material with CMC, pure water was added and kneaded to prepare a paste. Subsequently, this paste was filled into a nickel sintered fiber substrate, dried, and pressed to produce a paste-type nickel positive electrode of a predetermined shape. Next, this paste-type nickel positive electrode was wound together with a cadmium negative electrode through a separator to create an electrode group, and then a fixed amount of 7-N KOH electrolyte was injected into the can, which was then stored in an outer can and sealed to form an AA-sized nickel electrode.・Assembled a cadmium storage battery.

比較例1 表面に高次酸化物で被覆された一酸化コバルトの代わり
にCo、O,を用いた以外、実施例1と同様なペースト
式ニッケル正極を作製し、これを用いてAAサイズのニ
ッケル金カドミウム蓄電池を組み立てた。
Comparative Example 1 A paste-type nickel positive electrode similar to that of Example 1 was produced except that Co, O, was used instead of cobalt monoxide whose surface was coated with a higher order oxide, and this was used to make an AA size nickel positive electrode. Assembled gold cadmium storage battery.

比較例2 表面に高次酸化物で被覆された一酸化コバルトの代わり
に活性な酸化コバルトを用いた以外、実施例1と同様な
ペースト式ニッケル正極を作製し、これを用いてAAサ
イズのニッケル・カドミウム蓄電池を組み立てた。比較
例3 表面に高次酸化物で被覆された一酸化コバルトの代わり
に水酸化コバルトを用いた以外、実施例1と同様なペー
スト式ニッケル正極を作製し、これを用いてAAサイズ
のニッケル・カドミウム蓄電池を組み立てた。
Comparative Example 2 A paste-type nickel positive electrode similar to that of Example 1 was produced except that active cobalt oxide was used instead of cobalt monoxide whose surface was coated with a higher order oxide, and this was used to make an AA-sized nickel electrode.・Assembled a cadmium storage battery. Comparative Example 3 A paste-type nickel positive electrode similar to that of Example 1 was produced except that cobalt hydroxide was used instead of cobalt monoxide whose surface was coated with a higher order oxide, and this was used to make an AA-sized nickel electrode. Assembled a cadmium storage battery.

褥られた実施例1及び比較例1〜3の蓄電池について、
電解液が十分に浸透するに必要な時間として24時間室
温で放置し、ニッケル正極の理論容量に対して0.2C
m Aで150%の充電を行い、0.2Cm Aで完全
放電を行うサイクルを10回行った後の利用率を測定し
た。その結果を第1図に示した。
Regarding the lying storage batteries of Example 1 and Comparative Examples 1 to 3,
It was left at room temperature for 24 hours to allow the electrolyte to fully penetrate, and the temperature was 0.2C relative to the theoretical capacity of the nickel positive electrode.
The utilization rate was measured after performing 10 cycles of charging to 150% at mA and completely discharging at 0.2CmA. The results are shown in Figure 1.

第1図から明らかなように、表面が高次酸化物で覆われ
た一酸化コバルトを配合したペーストから作製したペー
スト式ニッケル正極を備えた本実施例1の蓄電池は、利
用率が95%であるのに対し、該−酸化コバルトの代わ
りにCo30.、活性な酸化コバルト、水酸化コバルト
配合し5たペーストから作製したペースト式ニッケル正
極を備えた比較例1〜3の蓄電池はそれぞれ60%、7
0%、40%と極めて低利用率になることがわかる。特
に、活性な一酸化コバルトを添加したペースト式ニッケ
ル正極を備えた比較例2の蓄電池の利用率が70%と低
くなるのは、前記−酸化コバルトが急激に空気中の酸素
と反応して一酸化コバルト分子の奥深くまで酸化し、−
酸化コバルト本来の作用を発揮できなかったためである
と考えられる。
As is clear from FIG. 1, the storage battery of Example 1, which was equipped with a paste-type nickel positive electrode made from a paste containing cobalt monoxide whose surface was covered with a higher-order oxide, had a utilization rate of 95%. However, instead of the cobalt oxide, Co30. The storage batteries of Comparative Examples 1 to 3, each having a paste-type nickel positive electrode made from a paste containing active cobalt oxide and cobalt hydroxide, had a concentration of 60% and 7%, respectively.
It can be seen that the usage rate is extremely low at 0% and 40%. In particular, the reason why the utilization rate of the storage battery of Comparative Example 2, which is equipped with a paste-type nickel positive electrode to which active cobalt monoxide is added, is as low as 70% is because the cobalt oxide rapidly reacts with oxygen in the air. Oxidizes deep into cobalt oxide molecules, −
This is thought to be because cobalt oxide was unable to exert its original effect.

実施例2 表面にCO3O4の高次酸化物が0.1重量%、10重
量%、20玉量%及び40重量%覆われた一酸化コバル
トを用いた以外、実施例1と同様な48のペースト式ニ
ッケル正極を作製し、これら正極を用いてAAサイズの
ニッケル・カドミウム蓄電池を組み立てた。
Example 2 48 pastes similar to Example 1 except that cobalt monoxide whose surface was covered with 0.1%, 10%, 20% and 40% by weight of a higher oxide of CO3O4 was used. nickel-cadmium storage batteries of AA size were assembled using these positive electrodes.

得られた実施例2における 4種の蓄電池について、電
解液が十分に浸透するに必要な時間として24時間室温
では放置し、ニッケル正極の理論容量に対して0.2C
m Aで150%の充電を行い、0.2CmAで完全放
電を行うサイクルを1o回行った後の利用率を測定した
。その結果を第2図に示した。
The four types of storage batteries obtained in Example 2 were left at room temperature for 24 hours, which is the time required for the electrolyte to fully penetrate, and the battery was heated to a temperature of 0.2C relative to the theoretical capacity of the nickel positive electrode.
The utilization rate was measured after 10 cycles of 150% charging at mA and complete discharging at 0.2 CmA. The results are shown in Figure 2.

第2図から明らかなように表面にCO3O4の高次酸化
物が20重量%を越えた量覆われた一酸化コバルトを含
むペーストからなる正極を用いた蓄電池では利用率が徐
々に低下することから、高次酸化物の表面波ff1mは
20重皿%を上限とすることが利用率の観点から望まし
いことがわかる。
As is clear from Figure 2, in a storage battery using a positive electrode made of a paste containing cobalt monoxide whose surface is covered with more than 20% by weight of higher-order oxides of CO3O4, the utilization rate gradually decreases. , it can be seen that it is desirable from the viewpoint of the utilization rate that the upper limit of the surface wave ff1m of the higher order oxide is 20%.

なお、上記実施例では負極としてカドミウム電極を用い
たニッケル・カドミウム蓄電池について説明したが、水
素吸蔵合金電極を負極とするニッケル・水素蓄電池にも
同様に適用できる。
In the above embodiments, a nickel-cadmium storage battery using a cadmium electrode as the negative electrode was described, but the present invention can be similarly applied to a nickel-hydrogen storage battery using a hydrogen storage alloy electrode as the negative electrode.

[発明の効果コ 以上詳述した如く、本発明によれば酸素を含む雰囲気中
での急激な酸化反応を生じず、良好な活性を有する一酸
化コバルトが添加されたペーストを備え、蓄電池こして
組み込んだ場合の利用率の向上化を達成し得るペースト
式ニッケル正極を撮供できる。
[Effects of the Invention] As detailed above, according to the present invention, a paste containing cobalt monoxide which does not cause rapid oxidation reaction in an oxygen-containing atmosphere and has good activity, A paste-type nickel positive electrode that can improve the utilization rate when incorporated can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例1及び比較例1〜3のニッケル・カド
ミウム蓄電池における所定回数の充放電サイクル後の利
用率を示す特性図、第2図は高次酸化物被覆量の異なる
一酸化コバルトを含むペーストからなる正極を用いた蓄
電池における利用率示す特性図である。
Fig. 1 is a characteristic diagram showing the utilization rate after a predetermined number of charge/discharge cycles for the nickel-cadmium storage batteries of Example 1 and Comparative Examples 1 to 3, and Fig. 2 is a characteristic diagram showing the utilization rate after a predetermined number of charge/discharge cycles for the nickel-cadmium storage batteries of Example 1 and Comparative Examples 1 to 3. It is a characteristic diagram showing the utilization rate in a storage battery using a positive electrode made of a paste containing.

Claims (1)

【特許請求の範囲】[Claims] 導電性基板に水酸化ニッケルを主活物質とし、表面が高
次コバルト酸化物層で覆われた一酸化コバルトを含む組
成のペーストを充填したことを特徴とするペースト式ニ
ッケル正極。
A paste-type nickel positive electrode characterized in that a conductive substrate is filled with a paste having a composition containing cobalt monoxide, the main active material of which is nickel hydroxide, and the surface of which is covered with a high-order cobalt oxide layer.
JP1281671A 1989-09-18 1989-10-31 Paste nickel positive electrode and alkaline storage battery Expired - Fee Related JP2930331B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1281671A JP2930331B2 (en) 1989-10-31 1989-10-31 Paste nickel positive electrode and alkaline storage battery
DE69014183T DE69014183T2 (en) 1989-09-18 1990-09-18 Nickel-metal hydride secondary cell.
EP90310213A EP0419220B1 (en) 1989-09-18 1990-09-18 Nickel-metal hydride secondary cell
US07/584,115 US5032475A (en) 1989-09-18 1990-09-18 Nickel-metal hydride secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281671A JP2930331B2 (en) 1989-10-31 1989-10-31 Paste nickel positive electrode and alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH03145058A true JPH03145058A (en) 1991-06-20
JP2930331B2 JP2930331B2 (en) 1999-08-03

Family

ID=17642357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281671A Expired - Fee Related JP2930331B2 (en) 1989-09-18 1989-10-31 Paste nickel positive electrode and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2930331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0721229A1 (en) 1994-12-19 1996-07-10 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method of producing Ni/Co hydroxide active mass for positive electrode
EP0853346A1 (en) * 1997-01-10 1998-07-15 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage batteries and method for producing the same
WO2024053979A1 (en) * 2022-09-05 2024-03-14 주식회사 엘지에너지솔루션 Secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0721229A1 (en) 1994-12-19 1996-07-10 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method of producing Ni/Co hydroxide active mass for positive electrode
US5759718A (en) * 1994-12-19 1998-06-02 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method for making same
EP0853346A1 (en) * 1997-01-10 1998-07-15 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage batteries and method for producing the same
US6287726B1 (en) 1997-01-10 2001-09-11 Matsushita Electric Industrial Co., L.T.D. Method for producing nickel positive electrode for alkaline storage batteries
US6562516B2 (en) 1997-01-10 2003-05-13 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage batteries
WO2024053979A1 (en) * 2022-09-05 2024-03-14 주식회사 엘지에너지솔루션 Secondary battery

Also Published As

Publication number Publication date
JP2930331B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP2575840B2 (en) Dry manufacturing method of hydrogen storage alloy electrode
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JPH03145058A (en) Paste type nickel positive electrode
JP2001266867A (en) Alkaline battery and positive electrode for use in alkaline battery
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
KR100412751B1 (en) Non-sintered Nickel Electrode for Alkaline Battery and Alkaline Battery Comprising the Same
JP2989877B2 (en) Nickel hydride rechargeable battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3624508B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JP3011386B2 (en) Paste type electrode for alkaline secondary battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JP2553902B2 (en) Alkaline secondary battery
JP3069767B2 (en) Hydrogen storage alloy electrode
JP2792913B2 (en) Non-sintered cadmium negative electrode plate for alkaline storage batteries
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPH11144724A (en) Non-sintering nickel hydroxide electrode for alkaline storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH04196057A (en) Metal hydride sealed secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees