JPS6333563A - Production of pt-ni alloy for sputtering - Google Patents

Production of pt-ni alloy for sputtering

Info

Publication number
JPS6333563A
JPS6333563A JP17494586A JP17494586A JPS6333563A JP S6333563 A JPS6333563 A JP S6333563A JP 17494586 A JP17494586 A JP 17494586A JP 17494586 A JP17494586 A JP 17494586A JP S6333563 A JPS6333563 A JP S6333563A
Authority
JP
Japan
Prior art keywords
alloy
mold
ingot
water
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17494586A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kezuka
毛塚 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP17494586A priority Critical patent/JPS6333563A/en
Publication of JPS6333563A publication Critical patent/JPS6333563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a Pt-Ni alloy target for sputtering having no cracks by melting a Pt-Ni alloy, casting it in a casting mold having large heat capacity or a water-cooled casting mold and plastically working the resulting ingot to a required shape. CONSTITUTION:A Pt-Ni alloy is melted and cast in a split Cu casting mold 1 having large heat capacity or a water-cooled casting mold (not shown) to obtain a Pt-Ni alloy ingot 2 without excessively raising the temp. of the mold 1. The volume of the mold 1 is preferably made >=about 10 times the volume of the ingot 2 so as to regulate the rise of the temp. during the casting to <=about 150 deg.C. The resulting ingot 2 has a fine and uniform crystal structure and does not cause intercrystalline cracking when it is plastically worked to a required shape. The worked ingot is heat treated by rapid cooling in water. During the cooling, heat cracking is not caused. Thus, a Pt-Ni alloy target of high quality is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、スパッタリング用Pt−Ni合金ターゲット
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a Pt--Ni alloy target for sputtering.

(従来の技術) Pt−Ni合金は、非常に硬く、脆い材料である為、従
来、半導体用スパッタリングターゲット材料として使用
するものは、Pt−Ni合金又はpt粉末とNi粉末を
使用した粉末冶金法による焼結材料で作られていた。
(Prior art) Since Pt-Ni alloy is a very hard and brittle material, conventionally used as sputtering target material for semiconductors is Pt-Ni alloy or powder metallurgy method using PT powder and Ni powder. Made of sintered material.

(発明が解決しようとする問題点) 然し乍ら、前記焼結材料では緻密度が100%のものは
作りにくい為、材料中に吸蔵する不純ガスが問題となる
。その場合、材料の純度の低下のみならず、スパッタリ
ング中の異常放電などの現象が起こり、形成される膜の
特性に多大な影響を与えていた。
(Problems to be Solved by the Invention) However, since it is difficult to make the sintered material with 100% density, impurity gas occluded in the material becomes a problem. In this case, not only the purity of the material decreases, but also phenomena such as abnormal discharge during sputtering occur, which greatly affects the characteristics of the formed film.

その為、吸蔵する不純ガスの少ない真空溶解及び塑性加
工によるP t −N i合金ターゲットが要求されて
いた。
Therefore, there has been a demand for a Pt-Ni alloy target that is subjected to vacuum melting and plastic working with less occluded impurity gas.

ところでPt−Ni合金は、Nilの増加に伴い硬さが
大きく変化し、第7図に示す如<30wt%付近で最大
となる。Pt−Ni合金で15〜40w t%のNiを
含む合金の溶湯を鋳型に鋳造すると、鋳型の温度上昇に
より結晶粒が粗大化しく特に湯口付近)、脆い材料とな
る為、塑性加工を行うと粒界割れが発生し、しかも熱処
理時ヒートクラック等が発生し、従ってPt−Ni合金
ターゲットを作ることができなかった。
By the way, the hardness of the Pt-Ni alloy changes greatly as the Ni content increases, and reaches its maximum at around <30 wt% as shown in FIG. When a molten Pt-Ni alloy containing 15 to 40 wt% Ni is cast into a mold, the temperature of the mold increases and the crystal grains become coarse (especially near the sprue), resulting in a brittle material. Grain boundary cracking occurred, and heat cracks etc. occurred during heat treatment, and therefore a Pt--Ni alloy target could not be produced.

(発明の目的) 本発明は、上記問題点を解決すべくなされたものであり
、塑性加工時粒界割れを抑止でき、しかも熱処理時ヒー
トクラック等の発生を防止できるスパッタリング用P 
t −N i合金ターゲ、7トの製造方法を提供するこ
とを目的とするものである。
(Object of the Invention) The present invention has been made to solve the above problems, and provides a P for sputtering that can suppress grain boundary cracking during plastic working and also prevent the occurrence of heat cracks during heat treatment.
It is an object of the present invention to provide a method for manufacturing a t-Ni alloy target.

(問題点を解決するだめの手段) 上記問題点を解決するための本発明のスパッタリング用
P t −N i合金ターゲットの製造方法は、Pt−
Ni合金を溶解し、これを熱容量の大きな鋳造鋳型又は
水冷鋳型にて鋳造し、鋳型の温度上昇を抑えてPt−N
i合金インゴットを作り、然る後所要の形状に塑性加工
することを特徴とするものである。
(Means for Solving the Problems) The method for manufacturing a Pt-Ni alloy target for sputtering of the present invention to solve the above-mentioned problems is as follows:
Pt-N is melted by melting the Ni alloy and casting it in a casting mold with a large heat capacity or a water-cooled mold to suppress the rise in temperature of the mold.
This method is characterized by producing an i-alloy ingot and then plastically working it into a desired shape.

(作用) 上記の如く本発明の製造方法では、溶解したPt−Ni
合金を熱容量の大きな鋳造鋳型又は水冷鋳型にて鋳造し
、鋳型の温度上昇を抑えてPt−Ni合金インゴットを
作るので、この作られたPt−Ni合金インゴットの結
晶粒は均一化され且つ微細化されている。従って、塑性
加工での粒界割れの発生が防止され、Pt−Ni合金イ
ンゴットを強加工することができ、熱処理時のヒートク
ラックの発生も防止することができる。
(Function) As described above, in the production method of the present invention, dissolved Pt-Ni
The alloy is cast in a casting mold with a large heat capacity or a water-cooled mold, and the temperature rise of the mold is suppressed to produce a Pt-Ni alloy ingot, so the crystal grains of the produced Pt-Ni alloy ingot are made uniform and fine. has been done. Therefore, the occurrence of intergranular cracks during plastic working is prevented, the Pt-Ni alloy ingot can be strongly worked, and the occurrence of heat cracks during heat treatment can also be prevented.

(実施例) 本発明のスパッタリング用P t −N i合金ターゲ
ットの製造方法の一実施例を従来例と共に説明する。
(Example) An example of the method for manufacturing a Pt-Ni alloy target for sputtering according to the present invention will be described together with a conventional example.

先ず本発明の一実施例について説明する。pt−N i
 39.2wt%合金を溶解し、これを熱容量の大きな
鋳造鋳型、本例では第1図に示す寸法の二分割のCu鋳
型1に鋳造し、鋳型1の温度上昇を150度迄抑えて第
2図に示すP t −N i 39.2wt%合金のイ
ンゴット2を作った。このインゴット2は一部破断して
示したように結晶粒が均一化され且つ微細化されていた
。然してこのインゴット2をクロス圧延し、幅295 
n、長さ180fl、厚さ6.f)mnのプレートに成
形した処、粒界割れが極めて小さかった。尚、前記鋳型
1の体積はインゴット2の体積の10.6倍で、鋳型1
の熱容量は著しく大きいものである。
First, one embodiment of the present invention will be described. pt-Ni
39.2wt% alloy is melted and cast into a casting mold with a large heat capacity, in this example, a two-part Cu mold 1 having the dimensions shown in Fig. 1. An ingot 2 of a Pt-Ni 39.2wt% alloy shown in the figure was made. As shown in the partially broken ingot 2, the crystal grains were uniform and fine. This ingot 2 was then cross-rolled to a width of 295 mm.
n, length 180fl, thickness 6. f) When molded into a mn plate, grain boundary cracking was extremely small. The volume of the mold 1 is 10.6 times the volume of the ingot 2, and the volume of the mold 1 is 10.6 times that of the ingot 2.
The heat capacity of is extremely large.

また前記インゴット2を加工率65%で厚さ17.0鶴
から6 、 Omnまで圧延加工した処、中心部まで完
全に塑性変形していた。これをNz  Hz雰囲気中で
800℃、40分間熱処理した後、水中急冷したがヒー
トクラックの発生は無かった。
Further, when the ingot 2 was rolled at a processing rate of 65% from a thickness of 17.0 mm to a thickness of 6.0 mm, the center part was completely plastically deformed. This was heat-treated at 800° C. for 40 minutes in a Nz Hz atmosphere and then rapidly cooled in water, but no heat cracks occurred.

次に従来例について説明する。P t −N i32.
9%合金を溶解し、これを第5図に示す寸法の二分割の
Cu鋳型3に鋳造し、鋳型3の温度上昇を抑えずに第6
図に示すP t −N i32.9%合金のインゴット
4を作った。このインゴット4は一部破断して示したよ
うに特に湯口付近の部分が結晶粒の粗大化が見られた。
Next, a conventional example will be explained. Pt-Ni32.
A 9% alloy was melted and cast into a two-part Cu mold 3 having the dimensions shown in FIG.
An ingot 4 of a Pt-Ni 32.9% alloy shown in the figure was made. As shown in the partially broken ingot 4, coarsening of crystal grains was observed especially in the area near the sprue.

然してこのインゴット4をクロス圧延し、幅200鶴、
長さ20ON、厚さ8.Onのプレートに成形した処、
粒界割れが極めて大きかった。尚、前記鋳型3の体積は
インゴット2の体積の3.2倍で、鋳型3の熱容量は小
さいものである。
This ingot 4 was then cross-rolled to a width of 200 mm.
Length 20ON, thickness 8. The part formed on the On plate,
Grain boundary cracking was extremely large. The volume of the mold 3 is 3.2 times the volume of the ingot 2, and the heat capacity of the mold 3 is small.

また前記インゴット4を加工率30%で厚さ170から
12鰭まで圧延加工した処、厚さ方向の中間部の塑性変
形は小さかった。これをNz  Hg雰囲気中で800
℃、40分間熱処理した後、水中急冷した処ヒートクラ
ックが著しく発生した。
Further, when the ingot 4 was rolled to a thickness of 170 to 12 fins at a processing rate of 30%, plastic deformation in the intermediate portion in the thickness direction was small. This was heated to 800°C in a Nz Hg atmosphere.
After heat treatment at ℃ for 40 minutes, significant heat cracking occurred during quenching in water.

このように従来の製造方法ではインゴット4に結晶粒の
粗大化が見られ、クロス圧延した際粒界割れが極めて大
きいのに対し、本発明の製造方法ではインゴット1の結
晶粒が均一微細化され、クロス圧延した際粒界割れが極
めて小さいので、インゴットの塑性加工性が優れている
ことが判る。
In this way, in the conventional manufacturing method, coarsening of the crystal grains is observed in the ingot 4, and extremely large grain boundary cracks occur when cross-rolled, whereas in the manufacturing method of the present invention, the crystal grains in the ingot 1 are uniformly refined. It can be seen that the ingot has excellent plastic workability because intergranular cracks are extremely small when cross-rolled.

また従来の製造方法では圧延加工後の熱処理でヒートク
ラックが生じたが、本発明の製造方法では加工率の高い
圧延加工後の熱処理でもヒートクランクの発生が無く、
耐熱性に優れたP t −N i合金ターゲットが得ら
れることが判る。
In addition, in the conventional manufacturing method, heat cracks occurred during the heat treatment after rolling, but in the manufacturing method of the present invention, no heat cracks occur even during the heat treatment after rolling, which has a high processing rate.
It can be seen that a Pt-Ni alloy target with excellent heat resistance can be obtained.

尚、本発明の製造方法で使用する熱容量の大きな鋳型1
の変形例としては第3図aに示す如く湯口付近のボリュ
ームを大きくした鋳型5や第3図すに示す如く下端より
上端に向かって次第に太くなるようにテーパを付した鋳
型6がある。また熱容量の大きな鋳型の代わりに、第4
図aに示す如(上部外面に波形の水冷管7.7′を配管
した水冷鋳型8や第4図すに示す如く上部に上下に平行
な折り返し水冷管9.9′を挿通配管した水冷鋳型10
を用いても良いものである。
In addition, mold 1 with a large heat capacity used in the manufacturing method of the present invention
As a modification, there is a mold 5 which has a larger volume near the sprue as shown in FIG. 3a, and a mold 6 which is tapered so that it gradually becomes thicker from the lower end toward the upper end as shown in FIG. Also, instead of a mold with a large heat capacity, a fourth mold is used.
As shown in Figure a (a water-cooled mold 8 with corrugated water-cooled pipes 7, 7' installed on the outer surface of the upper part, and a water-cooled mold 8 with vertically parallel folded water-cooled pipes 9,9' inserted in the upper part as shown in Figure 4). 10
It is also possible to use

(発明の効果) 以上の説明で判るように本発明のスパッタリング用Pt
−Ni合金ターゲットの製造方法によれば、結晶粒の均
一微細なインゴットを鋳造できて、塑性加工時粒界割れ
を抑止でき、しかも熱処理時ヒートクラック等の発生の
無い品質の良好なPt−Ni合金ターゲットが得られる
という効果がある。
(Effect of the invention) As can be seen from the above explanation, the Pt for sputtering of the present invention
- According to the method for manufacturing a Ni alloy target, it is possible to cast an ingot with uniform and fine crystal grains, suppress intergranular cracking during plastic working, and produce high-quality Pt-Ni that does not cause heat cracks during heat treatment. This has the effect that an alloy target can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法で用いた熱容量の大きな鋳型
を示す斜視図、第2図は第1図の鋳型により作られたイ
ンゴットの断面マクル組織を示す図、第3図a、bは夫
々熱容量の大きな鋳型の変形例を示す斜視図、第4図a
、bは夫々水冷鋳型の例を示す斜視図、第5図は従来の
製造方法で用いた鋳型を示す斜視図、第6図は第5図の
鋳型により作られたインゴットの断面マクロMi織を示
す図、第7図はPt−Ni合金の硬さを示すグラフであ
る。 出願人  田中貴金属工業株式会社 5.6・・・俯を 第5図    第6図 第7図 Pt  重! ’/。  NL
Figure 1 is a perspective view showing a mold with a large heat capacity used in the manufacturing method of the present invention, Figure 2 is a diagram showing the cross-sectional macrostructure of the ingot made by the mold of Figure 1, and Figures 3a and b are A perspective view showing a modified example of a mold with a large heat capacity, FIG. 4a
, b are perspective views showing examples of water-cooled molds, FIG. 5 is a perspective view showing a mold used in the conventional manufacturing method, and FIG. The figure shown in FIG. 7 is a graph showing the hardness of Pt-Ni alloy. Applicant: Tanaka Kikinzoku Kogyo Co., Ltd. 5.6...Downward view Fig. 5 Fig. 6 Fig. 7 Pt Heavy! '/. N.L.

Claims (1)

【特許請求の範囲】[Claims]  Pt−Ni合金を溶解し、これを熱容量の大きな鋳造
鋳型又は水冷鋳型にて鋳造し、鋳型の温度上昇を抑えて
Pt−Ni合金インゴットを作り、然る後所要の形状に
塑性加工することを特徴とするスパッタリング用Pt−
Ni合金ターゲットの製造方法。
Pt-Ni alloy is melted and cast in a casting mold with a large heat capacity or a water-cooled mold, a Pt-Ni alloy ingot is produced by suppressing the rise in temperature of the mold, and then plastically worked into the desired shape. Features of Pt- for sputtering
A method for manufacturing a Ni alloy target.
JP17494586A 1986-07-25 1986-07-25 Production of pt-ni alloy for sputtering Pending JPS6333563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17494586A JPS6333563A (en) 1986-07-25 1986-07-25 Production of pt-ni alloy for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17494586A JPS6333563A (en) 1986-07-25 1986-07-25 Production of pt-ni alloy for sputtering

Publications (1)

Publication Number Publication Date
JPS6333563A true JPS6333563A (en) 1988-02-13

Family

ID=15987478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17494586A Pending JPS6333563A (en) 1986-07-25 1986-07-25 Production of pt-ni alloy for sputtering

Country Status (1)

Country Link
JP (1) JPS6333563A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544024A (en) * 1991-03-19 1993-02-23 Mitsubishi Materials Corp Production of thin cylindrical stock for vapor deposition
WO2002077306A1 (en) * 2001-03-21 2002-10-03 Vishay Intertechnology, Inc. Method of suppressing the oxidation characteristics of nickel
US6723280B2 (en) 2001-04-02 2004-04-20 Vishay Vitramon Incorporated Method of suppressing the oxidation characteristics of nickel
EP1721997A1 (en) * 2004-03-01 2006-11-15 Nippon Mining & Metals Co., Ltd. Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
CN104018128A (en) * 2014-05-29 2014-09-03 贵研铂业股份有限公司 Nickel-platinum alloy sputtering target material and preparation method thereof
JP2015025176A (en) * 2013-07-26 2015-02-05 三菱マテリアル株式会社 Ni OR Ni ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME
CN104726829A (en) * 2013-12-18 2015-06-24 有研亿金新材料股份有限公司 High purity NiPt alloy target material and preparation method thereof
US9249497B2 (en) 2010-03-19 2016-02-02 Jx Nippon Mining & Metals Corporation Ni alloy sputtering target, Ni alloy thin film and Ni silicide film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124566A (en) * 1984-11-19 1986-06-12 Mitsubishi Metal Corp Production of al-si alloy target plate material for sputtering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124566A (en) * 1984-11-19 1986-06-12 Mitsubishi Metal Corp Production of al-si alloy target plate material for sputtering

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544024A (en) * 1991-03-19 1993-02-23 Mitsubishi Materials Corp Production of thin cylindrical stock for vapor deposition
WO2002077306A1 (en) * 2001-03-21 2002-10-03 Vishay Intertechnology, Inc. Method of suppressing the oxidation characteristics of nickel
US7208218B2 (en) 2001-03-21 2007-04-24 Vishay Vitramon Incorporated Method of suppressing the oxidation characteristics of nickel
US6723280B2 (en) 2001-04-02 2004-04-20 Vishay Vitramon Incorporated Method of suppressing the oxidation characteristics of nickel
EP1721997A1 (en) * 2004-03-01 2006-11-15 Nippon Mining & Metals Co., Ltd. Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
EP1721997A4 (en) * 2004-03-01 2009-11-11 Nippon Mining Co Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
US7959782B2 (en) 2004-03-01 2011-06-14 Jx Nippon Mining & Metals Corporation Method of manufacturing a Ni-Pt alloy
EP2468906A1 (en) 2004-03-01 2012-06-27 JX Nippon Mining & Metals Corporation Method of manufacturing a Ni-Pt alloy
US9249497B2 (en) 2010-03-19 2016-02-02 Jx Nippon Mining & Metals Corporation Ni alloy sputtering target, Ni alloy thin film and Ni silicide film
JP2015025176A (en) * 2013-07-26 2015-02-05 三菱マテリアル株式会社 Ni OR Ni ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME
CN104726829A (en) * 2013-12-18 2015-06-24 有研亿金新材料股份有限公司 High purity NiPt alloy target material and preparation method thereof
CN104018128A (en) * 2014-05-29 2014-09-03 贵研铂业股份有限公司 Nickel-platinum alloy sputtering target material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP7052036B2 (en) Manufacturing method of nickel-based alloy
KR101021488B1 (en) Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
CN113122763B (en) Preparation method of high-strength high-toughness high-entropy alloy
KR20020028890A (en) Copper sputtering target assembly and method of making same
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
EP3124136B1 (en) Metal wire rod composed of iridium or iridium alloy
JP4313135B2 (en) High strength copper alloy with excellent bending workability
JPS6333563A (en) Production of pt-ni alloy for sputtering
JP5354906B2 (en) Nickel-based semi-finished product having a cubic texture and its manufacturing method
JP5925936B1 (en) Copper alloy
JP3909406B2 (en) Method for producing Ni-based alloy material
JPS6132386B2 (en)
JPH1136055A (en) Production of copper alloy material for electronic equipment
JP6563831B2 (en) Copper alloy and manufacturing method thereof
JP2012136746A (en) Copper alloy for electric and electronic parts, and method for manufacturing the same
KR101231936B1 (en) Nickel-based semifinished product having a cube recrystallization texture, corresponding method of production and use
JP2009242867A (en) Method for producing ultrahigh-purity aluminum high pressure-rolled material
JP2007136467A (en) Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy
JPH06264233A (en) Sputtering target for producing tft
JP4164780B2 (en) Consumable electrode type remelting method of super heat-resistant alloy
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP3049567B2 (en) Manufacturing method of Ni-base heat-resistant alloy material
JP2691713B2 (en) Method for producing Cr-Ni-based stainless steel having excellent hot workability
JP3073734B1 (en) Method of manufacturing Fe-Ni alloy material for shadow mask
JP4175823B2 (en) Manufacturing method of special steel for molds