JP4164780B2 - Consumable electrode type remelting method of super heat-resistant alloy - Google Patents

Consumable electrode type remelting method of super heat-resistant alloy Download PDF

Info

Publication number
JP4164780B2
JP4164780B2 JP12565599A JP12565599A JP4164780B2 JP 4164780 B2 JP4164780 B2 JP 4164780B2 JP 12565599 A JP12565599 A JP 12565599A JP 12565599 A JP12565599 A JP 12565599A JP 4164780 B2 JP4164780 B2 JP 4164780B2
Authority
JP
Japan
Prior art keywords
consumable electrode
resistant alloy
super heat
temperature
remelting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12565599A
Other languages
Japanese (ja)
Other versions
JP2000144273A (en
Inventor
衛司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12565599A priority Critical patent/JP4164780B2/en
Publication of JP2000144273A publication Critical patent/JP2000144273A/en
Application granted granted Critical
Publication of JP4164780B2 publication Critical patent/JP4164780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、析出硬化型などの超耐熱合金の消耗電極式再溶解法に関する。
【0002】
【従来の技術】
析出硬化型などの超耐熱合金は、真空誘導炉などで溶解、鋳造して製造したものを消耗電極とし、エレクトロスラグ再溶解法(以下、「ESR」という。)、真空アーク再溶解法(以下、「VAR」という。)などの消耗電極式再溶解法で溶解、凝固して製造している。この製造方法で超耐熱合金、特に析出硬化型のものを製造すると、鋳塊にスポット状の偏析が発生したり、場合によっては大きな非金属介在物が含まれることがある。このスポット状の偏析または大きな非金属介在物が含まれている鋳塊を鍛造すると、このスポット状の偏析、非金属介在物を起点とする割れが発生することがあるという問題があった。
【0003】
このスポット状の偏析は、消耗電極内部に割れ(鋳造時および再溶解中に生成)があるため、再溶解の際に溶解速度(M/R)が不均一になること(割れにより熱伝導が悪くなるため、割れより溶解する側の部分は溶解速度が早くなり、また割れより裏側にある部分は溶解速度が遅くなるためである。)によって生成すると推定されている。
また非金属介在物は、ESR溶解の際に消耗電極が割れて破片が欠け落ち、この破片がスラグを巻き込んだ状態で凝固されるためのものであると推定されている。
【0004】
上記スポット状の偏析が再溶解の際の溶解速度の不均一によるものであることは、溶解速度が不均一になった部分の鋳塊を切断すると、その断面にスポット状の偏析が存在することから確認されている。
また、ESRにおいて非金属介在物を巻き込む原因となっている消耗電極の割れは、再溶解中に消耗電極が破裂する破裂音、消耗電極の時間当たりの溶解量、すなわち溶解速度(M/R)、電気抵抗、電流などを観察していると、M/Rが急に大きくなった後非常に小さくなるとともに、電気抵抗および電流などが変化することからも消耗電極が割れて欠け落ちていることなどで確認されている。
【0005】
この非金属介在物を巻き込む原因となっている消耗電極の割れを防止し、異常組織のない鋳塊を安定して製造する方法として、再溶解する前に予め消耗電極を均熱処理して脆いラーベス相を基地に溶解しておく方法が特開平9─241767号公報に開示されている。
しかし、予め消耗電極を均熱処理したものを使用して再溶解しても、割れを十分防止することができず、また均熱処理は消耗電極を高温に長時間保持する必要があるという欠点がある。また、均熱処理しても均熱処理する前の鋳造時に生成していた割れを無くすことができないので、割れが原因となるスポット状の偏析も防止することができなかった。
【0006】
【発明が解決しようとする課題】
本発明は、析出硬化型などの超耐熱合金の消耗電極式再溶解法において、スポット状の偏析の生成を防止するとともに、非金属介在物を巻き込む原因となる消耗電極の割れを防止し、スポット状の偏析および非金属介在物のない鋳塊を安定して製造する方法を提供することを課題とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明者は、超耐熱合金の消耗電極を作製する際の鋳造に着目し、鋳造後の冷却速度について研究していたところ、溶解した消耗電極材を鋳造し、半凝固状態から加熱した炉の中に入れて一定時間保持した後炉冷すると、通常の放冷材に比較してラーベス相が減少するとの知見を得るともに、このようにして作製した消耗電極が再溶解の際のM/Rが均一になり、スポット状の偏析が発生しないとの知見を得て本発明をなしたものである。
【0008】
すなわち、本発明の析出硬化型などの超耐熱合金の消耗電極式再溶解法においては、超耐熱合金の消耗電極式再溶解法において、溶解した消耗電極材を円柱状または円錐状鋳塊用鋳型に鋳造し、外周から径の1/3まで凝固(外周から中心方向に径の1/3まで凝固すること、周辺全体から凝固するので、両側では径の2/3凝固すること)する以前に型抜きを実施し、この消耗電極材の固相温度と固相温度より500℃低い温度との間の温度に予め加熱しておいた炉に装入し、1時間以上保持した後、冷却して作製したものを消耗電極として使用することである。
【0009】
【発明の実施の形態】
次に、本発明を詳細に説明する。
本発明を図1を参照して説明すると、析出硬化型などの超耐熱合金を真空高周波炉などで溶解し、真空中で円柱状または円錐状鋳塊用鋳型に鋳造し、外周から径の1/3が凝固する以前(鋳込完了後約15〜30分後)に型抜きを実施し、この消耗電極材の固相温度と固相温度より500℃低い温度との間の温度(例えば、810〜900℃)保持された炉において1時間以上、例えば約6〜9時間保持した後、その後炉の電源をオフにして炉冷(例えば、約4〜10℃/hrの冷却速度)でそのまま常温まで冷却するか、約400〜600℃まで冷却したところで炉から取り出して放冷するなどして冷却して作製したものを消耗電極として使用する超耐熱合金の消耗電極式再溶解法である。
【0010】
本発明の消耗電極式再溶解法における、超耐熱合金は、重量%で(以下同じ)、C:0.10%以下、Si:1.00%以下、Mn:1.50%以下、Ni:25.0〜78.0%、Cr:12.00〜25.0%、必要に応じて、Al+Ti:1.3%以上、Nb+Ta:5.8%以下およびB:0.01%以下の1種または2種以上を含み、更に必要に応じてMo:3.5%以下、W:3.5%以下の1種または2種を含み、残部がFeおよび不可避不純物である析出硬化型などのFe−Ni−Cr基合金、Cr:18.0〜21.0%、Co:2.0%以下、Fe:5.0%以下、Ti:1.8〜2.7%、AI:0.5〜1.8%、残部がNiおよび不可避不純物である析出硬化型のNi−Cr基合金、C:0.030%以下、Ni:53.6〜54.9%、Cr:15.0〜19.0%、Co:12.0〜18.5%、Mo:3.0〜6.0%、Al:2.0〜4.3%、Ti:2.9〜5.0%、B:0.005〜0.030%、W:1.5%以下、Zr:0.05%以下からなる析出硬化型のNi−Cr─Co基合金、Co基合金などである。
【0011】
具体的には、JIS NCF718、NCF750、NCF751およびNCF80A、A−286、Discaioy、V−57、Incoloy901、Nimonic80、InconelX750、Udimet500〜710、Nivcoなどである。
【0012】
本発明の析出硬化型などの超耐熱合金の消耗電極式再溶解法における消耗電極式再溶解法は、上記ESRおよびVAR、プラズマアーク再溶解法などである。さらに、上記材料の固相温度は、その成分組成によって異なるが、約1250〜1400℃程度であり、固相温度より500℃低い温度とは、約800〜900℃程度である。
【0013】
また、本発明は、外周から径の1/3まで凝固する以前に鋳型から型抜きを実施し、その後固相温度と固相温度より500℃低い温度との間の温度に予め加熱しておいた炉に装入しているが、径の1/3が凝固する以前に鋳型から型抜きを実施するのは、鋳造後放冷したものと徐冷処理したものの各部位のラーベス相の面積率を測定すると、図2に示すようになり、徐冷処理したもののラーベス相の面積率は放冷したものと比較すると全体的に小さくなっており、径の1/3が凝固する以前に型抜きし、その後徐冷すれば、ラーベス相の面積率を小さくすることができる効果があるからである。この鋳型から型抜きを実施する時期は、図2に示すように早ければ早いほど好ましいが、型抜きを実施するには強度が必要であるので、具体的には、周囲が50mm程度凝固した状態になってからである。
【0014】
【作用】
本発明は、外周から径の1/3まで凝固(両側で径の2/3まで凝固)する以前に鋳型から型抜きを実施し、その消耗電極をその固相温度と固相温度より500℃低い温度との間の温度、例えば810〜900℃に保持された炉において1時間以上、好ましくは4時間以上、さらに好ましくは6時間以上保持した後、冷却することにより、再溶解中の溶解速度の変動、電極の欠落ちを抑制または防止することができる。
この理由は、上記のように処理をすると、▲1▼脆化相であるラーベス相の晶出の低減、▲2▼消耗電極凝固時の収縮に伴う割れの軽減および▲3▼熱応力の緩和がなされるので、再溶解中の割れの起点となる消耗電極凝固時の熱応力および再溶解時の熱応力による消耗電極内部の割れが発生せず、また割れが発生しても、割れの進展が抑制(粒界に脆化相がないため)されるためであると推測される。
【0015】
【実施例】
次に、本発明の超耐熱合金の消耗電極式再溶解法の実施例を説明する。
実施例
下記表1に示す成分組成の消耗電極材料(固相温度1260℃)を真空高周波誘導炉で溶製し、この溶湯を寸法が約φ380mm×長さ2400mmの鋳型に真空中で注入し、鋳込完了から約1.8分後に真空容器から鋳型を取り出した。この時の消耗電極のトップの温度は1270℃であった。その後外周から径の約1/7が凝固(鋳込完了から約15分後、周囲が約50mm凝固)後に鋳型から消耗電極を突き上げて取り出し(消耗電極のトップの表面温度は980℃、ボトムの表面温度900℃)、その6分後に843℃に加熱されていた炉に着床した(消耗電極のトップの温度は975℃、ボトムの温度997℃)。
【0016】
【表1】

Figure 0004164780
【0017】
炉の温度は、消耗電極が高温であったため、最高873℃まで上昇したが、4.3時間後に843℃になり、8.3時間後に炉の電源をオフにして炉冷(6.5℃/hr)し、62.05時間後に496℃になったところで炉外に搬出し、放冷した。
この消耗電極をVAR法により溶解・凝固させて直径440mmの鋳塊を得た。この再溶解中、約5%の溶解速度の変動が1回あった。この鋳塊のM/R変動があった部分を切断してその断面を観察したが、スポット状の偏析は観察できなかった。
【0018】
比較例
比較例として上記実施例と同じ成分組成の消耗電極材料を同じ炉で溶製し、この溶湯を同じ温度から同じ鋳型に真空中で注入し、鋳込完了から約1.8分後に真空容器から鋳型を取り出し、鋳込完了から90分後に鋳型から消耗電極を突き上げて取り出し、そのまま常温まで放冷した。
【0019】
この消耗電極を上記実施例と同じ条件でVAR法により上記実施例のものとほぼ同じ大きさの鋳塊を得た。
この再溶解中、20%以上の溶解速度の変動が6回あった。この鋳塊のM/R変動があった部分の1か所を切断してその断面を観察したところ、スポット状の偏析があることが観察された。
【0020】
【発明の効果】
本発明の超耐熱合金の消耗電極式再溶解法は、上記構成にしたことにより、再溶解中に消耗電極が割れることがなく、またスポット状の偏析がない鋳塊を安定して製造することができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の超耐熱合金の消耗電極式再溶解法に使用する消耗電極の鋳込み後の冷却の温度と時間の関係を説明するための図である。
【図2】超耐熱合金製消耗電極の鋳造後放冷したものと徐冷処理したものの各部位とラーベス相の面積率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a consumable electrode type remelting method for a superheat-resistant alloy such as a precipitation hardening type.
[0002]
[Prior art]
Super heat-resistant alloys such as precipitation hardened alloys are made by melting and casting in a vacuum induction furnace or the like as consumable electrodes, and electroslag remelting (hereinafter referred to as “ESR”), vacuum arc remelting (hereinafter referred to as “ESR”) , "VAR")) and the like, and dissolved and solidified by a consumable electrode type remelting method. When a super heat-resistant alloy, particularly a precipitation hardening type, is produced by this production method, spot-like segregation may occur in the ingot, and in some cases, large non-metallic inclusions may be included. When an ingot containing this spot-like segregation or large non-metallic inclusions is forged, there is a problem that the spot-like segregation and cracks originating from the non-metallic inclusions may occur.
[0003]
This spot-like segregation has cracks (generated during casting and during remelting) inside the consumable electrode, so that the dissolution rate (M / R) becomes nonuniform during remelting (heat conduction is caused by cracking). It is presumed that the portion that is dissolved from the crack has a higher dissolution rate, and the portion that is behind the crack has a lower dissolution rate.
In addition, it is presumed that the nonmetallic inclusions are due to the consumable electrode cracking and chipping off during ESR melting, and solidifying in a state where the chip entrains slag.
[0004]
The fact that the spot-like segregation is due to the non-uniform dissolution rate at the time of remelting means that when the ingot at the part where the dissolution rate becomes non-uniform is cut, spot-like segregation exists in the cross section. It has been confirmed from.
In addition, cracks in the consumable electrode that cause non-metallic inclusions in the ESR include a bursting sound that explodes the consumable electrode during remelting, a dissolution amount of the consumable electrode per hour, that is, a dissolution rate (M / R). When observing the electrical resistance, current, etc., the M / R suddenly increases and then becomes very small, and the consumable electrode is cracked and missing due to changes in electrical resistance, current, etc. Etc. have been confirmed.
[0005]
As a method of preventing the cracking of the consumable electrode that causes the inclusion of the non-metallic inclusions and stably producing an ingot having no abnormal structure, the consumable electrode is soaked in advance before remelting, and a brittle Laves A method of dissolving the phase in the base is disclosed in JP-A-9-241767.
However, even if reconstituted using a consumable electrode that has been preheated, cracking cannot be sufficiently prevented, and soaking has the disadvantage that the consumable electrode must be kept at a high temperature for a long time. . Further, even if soaking, it is impossible to eliminate cracks generated during casting before soaking, so that spot-like segregation caused by cracks cannot be prevented.
[0006]
[Problems to be solved by the invention]
In the consumable electrode type remelting method of a super heat-resistant alloy such as a precipitation hardening type, the present invention prevents the generation of spot-like segregation and prevents cracking of the consumable electrode that causes the inclusion of nonmetallic inclusions. It is an object of the present invention to provide a method for stably producing an ingot free from segregation of a shape and non-metallic inclusions.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor paid attention to casting when producing a consumable electrode of a super heat-resistant alloy and was studying a cooling rate after casting. In addition to the knowledge that the Laves phase is reduced when the furnace is cooled for a certain period of time after being placed in a furnace heated from the solidified state as compared with a normal cooling material, the consumable electrode produced in this way is re-applied. The present invention has been made by obtaining the knowledge that the M / R at the time of dissolution is uniform and spot-like segregation does not occur.
[0008]
That is, in the consumable electrode type remelting method of the superheat-resistant alloy such as the precipitation hardening type of the present invention, in the consumable electrode type remelting method of the superheatable alloy, the melted consumable electrode material is cast into a cylindrical or conical ingot mold. Before solidifying from the outer periphery to 1/3 of the diameter (solidifying from the outer periphery to 1/3 of the diameter, solidifying from the entire periphery, solidifying from the outer periphery to 2/3 of the diameter) Die-cutting is performed, and the consumable electrode material is charged into a furnace preheated to a temperature between the solid phase temperature and 500 ° C. lower than the solid phase temperature, held for 1 hour or more, and then cooled. This is used as a consumable electrode.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail.
The present invention will be described with reference to FIG. 1. A superheat resistant alloy such as a precipitation hardening type is melted in a vacuum high-frequency furnace or the like and cast into a cylindrical or conical ingot mold in a vacuum. / 3 is solidified before solidification (about 15 to 30 minutes after casting is completed), and a temperature between the solid phase temperature of this consumable electrode material and a temperature lower than the solid phase temperature by 500 ° C. (for example, 810 to 900 ° C.) held in the furnace for 1 hour or longer, for example, about 6 to 9 hours, and then the furnace power is turned off and the furnace is cooled (for example, a cooling rate of about 4 to 10 ° C./hr). This is a consumable electrode type remelting method of a super heat-resistant alloy that is used as a consumable electrode by cooling to room temperature or cooling to about 400-600 ° C. and taking it out of the furnace and allowing it to cool.
[0010]
In the consumable electrode type remelting method of the present invention, the super heat-resistant alloy is in weight% (hereinafter the same), C: 0.10% or less, Si: 1.00% or less, Mn: 1.50% or less, Ni: 25.0 to 78.0%, Cr: 12.00 to 25.0%, Al + Ti: 1.3% or more, Nb + Ta: 5.8% or less, and B: 0.01% or less as required Precipitation hardening type etc. which contain seeds or two kinds or more, and further contain one or two kinds of Mo: 3.5% or less, W: 3.5% or less as required, with the balance being Fe and inevitable impurities Fe—Ni—Cr base alloy, Cr: 18.0 to 21.0%, Co: 2.0% or less, Fe: 5.0% or less, Ti: 1.8 to 2.7%, AI: 0.8. Precipitation hardening type Ni—Cr base alloy with 5 to 1.8%, the balance being Ni and inevitable impurities, C: 0.030% or less, Ni 53.6 to 54.9%, Cr: 15.0 to 19.0%, Co: 12.0 to 18.5%, Mo: 3.0 to 6.0%, Al: 2.0 to 4. 3%, Ti: 2.9 to 5.0%, B: 0.005 to 0.030%, W: 1.5% or less, Zr: 0.05% or less, precipitation hardening type Ni—Cr— Co-based alloys, Co-based alloys, and the like.
[0011]
Specifically, JIS NCF718, NCF750, NCF751 and NCF80A, A-286, Discaioy, V-57, Incoloy901, Nimonic80, InconelX750, Udimet 500 to 710, Nivco, and the like.
[0012]
The consumable electrode type remelting method in the consumable electrode type remelting method of the superheat-resistant alloy such as the precipitation hardening type of the present invention includes the above ESR and VAR, the plasma arc remelting method and the like. Furthermore, although the solid-phase temperature of the said material changes with the component composition, it is about 1250-1400 degreeC, and the temperature lower than the solid-phase temperature is about 800-900 degreeC.
[0013]
In the present invention, the mold is removed from the mold before solidification from the outer periphery to 1/3 of the diameter, and then preheated to a temperature between the solid phase temperature and a temperature lower than the solid phase temperature by 500 ° C. The mold was removed from the mold before 1/3 of the diameter solidified, but the area ratio of the Laves phase of each part of the one that was allowed to cool after casting and the one that was slowly cooled. As shown in FIG. 2, the area ratio of the Laves phase of the slow-cooled one was smaller than that of the one that was allowed to cool, and the mold was removed before 1/3 of the diameter solidified. And if it anneals after that, it is because there exists an effect which can make the area ratio of a Laves phase small. As shown in FIG. 2, it is preferable that the time for performing die cutting from the mold is as early as possible. However, since strength is necessary for performing die cutting, specifically, the periphery is solidified by about 50 mm. It is after becoming.
[0014]
[Action]
In the present invention, the mold is removed from the mold before solidification from the outer periphery to 1/3 of the diameter (solidification to 2/3 of the diameter on both sides), and the consumable electrode is 500 ° C. from the solid phase temperature and the solid phase temperature. Dissolution rate during remelting by holding for 1 hour or more, preferably 4 hours or more, more preferably 6 hours or more in a furnace held at a temperature between low temperatures, for example, 810 to 900 ° C., and then cooling. Fluctuations and missing electrodes can be suppressed or prevented.
The reasons for this are as follows: (1) Reduction of Laves phase crystallization, which is an embrittlement phase, (2) Reduction of cracks due to shrinkage during consumable electrode solidification, and (3) Reduction of thermal stress. Therefore, cracks inside the consumable electrode due to thermal stress during consumable electrode solidification and thermal stress during remelting, which are the starting point of cracking during remelting, do not occur, and even if cracking occurs, the crack progresses Is presumed to be suppressed (because there is no embrittlement phase at the grain boundaries).
[0015]
【Example】
Next, examples of the consumable electrode type remelting method of the super heat-resistant alloy of the present invention will be described.
Example A consumable electrode material (solid phase temperature 1260 ° C.) having the composition shown in Table 1 below was melted in a vacuum high-frequency induction furnace, and this molten metal was poured into a mold having a size of about φ380 mm × length 2400 mm in a vacuum, About 1.8 minutes after the completion of casting, the mold was taken out from the vacuum vessel. The temperature of the top of the consumable electrode at this time was 1270 ° C. After that, about 1/7 of the diameter from the outer periphery is solidified (after about 15 minutes from the completion of casting, the circumference is solidified by about 50 mm), and then the consumable electrode is pushed out from the mold and taken out (the surface temperature of the top of the consumable electrode is 980 ° C. Surface temperature 900 ° C.), and 6 minutes later, the furnace was heated to 843 ° C. (the top temperature of the consumable electrode was 975 ° C., the bottom temperature was 997 ° C.).
[0016]
[Table 1]
Figure 0004164780
[0017]
The temperature of the furnace rose to a maximum of 873 ° C. due to the high temperature of the consumable electrode, but it reached 843 ° C. after 4.3 hours, and after 8.3 hours the furnace was turned off and cooled to 6.5 ° C. / Hr), and when it reached 496 ° C. after 62.05 hours, it was taken out of the furnace and allowed to cool.
This consumable electrode was melted and solidified by the VAR method to obtain an ingot having a diameter of 440 mm. During this re-dissolution, there was one variation in dissolution rate of about 5%. The section of the ingot that had M / R fluctuation was cut and the cross section was observed, but spot-like segregation could not be observed.
[0018]
Comparative Example As a comparative example, a consumable electrode material having the same component composition as the above example was melted in the same furnace, and this molten metal was poured into the same mold from the same temperature in a vacuum, and the vacuum was applied about 1.8 minutes after the completion of casting. The mold was taken out from the container, and after 90 minutes from the completion of casting, the consumable electrode was pushed up from the mold and taken out, and allowed to cool to room temperature.
[0019]
With this consumable electrode, an ingot having approximately the same size as that of the above example was obtained by the VAR method under the same conditions as in the above example.
During this re-dissolution, there were 6 fluctuations in dissolution rate of 20% or more. When one portion of the ingot where the M / R was varied was cut and the cross section was observed, it was observed that there was spot-like segregation.
[0020]
【The invention's effect】
The consumable electrode type remelting method of the super heat-resistant alloy of the present invention can stably produce an ingot that does not crack the consumable electrode during remelting and does not have spot-like segregation. There is an excellent effect of being able to.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the relationship between cooling temperature and time after casting of a consumable electrode used in a consumable electrode type remelting method of a super heat-resistant alloy of the present invention.
FIG. 2 is a graph showing the relationship between the area ratio of Laves phase and each part of a superheat-resistant alloy consumable electrode that has been allowed to cool after casting and one that has been annealed.

Claims (2)

超耐熱合金の消耗電極式再溶解法において、溶解した消耗電極材を鋳型に鋳造し、外周から径の1/3まで凝固する以前に型抜きを実施し、この消耗電極材の固相温度と固相温度より500℃低い温度との間の温度に予め加熱しておいた炉に装入し、1時間以上保持して作製したものを消耗電極として使用することを特徴とする超耐熱合金の消耗電極式再溶解法。In the consumable electrode type remelting method for super heat-resistant alloys, the molten consumable electrode material is cast into a mold, and die-cut before solidification from the outer periphery to 1/3 of the diameter. A super heat-resistant alloy characterized by using a consumable electrode that is charged in a furnace preheated to a temperature between 500 ° C. lower than the solid phase temperature and kept for 1 hour or more. Consumable electrode type remelting method. 上記超耐熱合金が析出硬化型の超耐熱合金であることを特徴とする請求項1記載の超耐熱合金の消耗電極式再溶解法。The consumable electrode type remelting method for a super heat resistant alloy according to claim 1, wherein the super heat resistant alloy is a precipitation hardening type super heat resistant alloy.
JP12565599A 1998-08-28 1999-05-06 Consumable electrode type remelting method of super heat-resistant alloy Expired - Fee Related JP4164780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12565599A JP4164780B2 (en) 1998-08-28 1999-05-06 Consumable electrode type remelting method of super heat-resistant alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24380898 1998-08-28
JP10-243808 1998-08-28
JP12565599A JP4164780B2 (en) 1998-08-28 1999-05-06 Consumable electrode type remelting method of super heat-resistant alloy

Publications (2)

Publication Number Publication Date
JP2000144273A JP2000144273A (en) 2000-05-26
JP4164780B2 true JP4164780B2 (en) 2008-10-15

Family

ID=26462021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12565599A Expired - Fee Related JP4164780B2 (en) 1998-08-28 1999-05-06 Consumable electrode type remelting method of super heat-resistant alloy

Country Status (1)

Country Link
JP (1) JP4164780B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5549795B2 (en) * 2007-09-26 2014-07-16 大同特殊鋼株式会社 Manufacturing method of consumable electrode for remelting
JP6048814B2 (en) * 2012-12-20 2016-12-21 日立金属株式会社 Consumable electrode for remelting
JP6048813B2 (en) * 2012-12-20 2016-12-21 日立金属株式会社 Consumable electrode for remelting
JP6358503B2 (en) * 2014-05-28 2018-07-18 大同特殊鋼株式会社 Consumable electrode manufacturing method
JP6620924B2 (en) * 2014-09-29 2019-12-18 日立金属株式会社 Method for producing Fe-Ni base superalloy
CN111172403A (en) * 2020-01-07 2020-05-19 北京钢研高纳科技股份有限公司 Pre-melted slag for smelting electroslag remelting continuous directional solidification high-temperature alloy ingot and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3072199B2 (en) * 1992-10-22 2000-07-31 株式会社日本製鋼所 Method for producing Ni-Fe-based super heat-resistant alloy ingot
JP2622796B2 (en) * 1992-06-11 1997-06-18 株式会社日本製鋼所 Electroslag for remelting electroslag and method for producing alloy using the electrode
JP3606404B2 (en) * 1996-03-08 2005-01-05 日立金属株式会社 Consumable electrode type remelting method of super heat-resistant alloy

Also Published As

Publication number Publication date
JP2000144273A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
CA2771264C (en) Method for producing large diameter ingots of nickel base alloys
JP5492982B2 (en) Method for producing β-γ-TiAl based alloy
JP5299610B2 (en) Method for producing Ni-Cr-Fe ternary alloy material
JP2004527377A5 (en)
AU2002242239A1 (en) Method for producing large diameter ingots of nickel base alloys
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
JP6358503B2 (en) Consumable electrode manufacturing method
JP6620924B2 (en) Method for producing Fe-Ni base superalloy
JP4164780B2 (en) Consumable electrode type remelting method of super heat-resistant alloy
JP2007009279A (en) Ni-Fe-BASE ALLOY, AND METHOD FOR MANUFACTURING Ni-Fe-BASE ALLOY MATERIAL
JPH06287661A (en) Production of smelted material of refractory metal
JP2003247033A (en) Copper based alloy and method of producing high strength, high thermal conductivity forging using the same
JPS6220847A (en) Metallic material having fine crystal grain and its production
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
JPS6333563A (en) Production of pt-ni alloy for sputtering
JP2989053B2 (en) Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy
CN113322422A (en) Hybrid phase reinforced zirconium-based amorphous composite material and preparation method thereof
JPS6334206B2 (en)
JP2003306736A (en) Niobium silicide based composite material and production method thereof
JPH06279894A (en) Copper alloy excellent in strength and electrical conductivity
JP2004332114A (en) Nickel-based superalloy and single crystal cast
KR950003051B1 (en) Heat-resistant nickel forging alloy
Kubisch et al. The processing and properties of heavily cold worked directionally solidified Ni-W eutectic alloys
JP2000109940A (en) CONSUMABLE ELECTRODE TYPE REMELTING METHOD FOR Al AND Ti-CONTAINING SUPER HEAT-RESISTANT ALLOY
JP4276853B2 (en) Niobium-based composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees