JPS6333449A - Ethylenic copolymer composition - Google Patents

Ethylenic copolymer composition

Info

Publication number
JPS6333449A
JPS6333449A JP17739086A JP17739086A JPS6333449A JP S6333449 A JPS6333449 A JP S6333449A JP 17739086 A JP17739086 A JP 17739086A JP 17739086 A JP17739086 A JP 17739086A JP S6333449 A JPS6333449 A JP S6333449A
Authority
JP
Japan
Prior art keywords
copolymer
ethylene
molecular weight
weight
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17739086A
Other languages
Japanese (ja)
Other versions
JPH0645731B2 (en
Inventor
Satoshi Yamashita
敏 山下
Fumio Morikawa
森川 文男
Toru Shibata
徹 柴田
Sadahide Yamazaki
山崎 禎英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP61177390A priority Critical patent/JPH0645731B2/en
Publication of JPS6333449A publication Critical patent/JPS6333449A/en
Publication of JPH0645731B2 publication Critical patent/JPH0645731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:The titled composition suitable as automobile bumpers, etc., having improved transparency, processing properties, impact resistance and mechanical strength, containing a specific amount of a specified ethylenic copolymer containing etylene and 1-butene as main polymerization units. CONSTITUTION:Ethylene is copolymerized with 1-butene to give an ethylenic copolymer which has 85-95mol% ethylene content, 30,000-200,000 weight- average molecular weight, single peak in molecular weight distribution measured by GPC, a ratio of weight-average molecular weight/number-average molecular weight of 2-5, two melting points of 115-125 deg.C high-temperature side melting point and 40-90 deg.C low melting side melting point obtained by differential scan ning calorimeter and a ratio of crystal heat of fusion at >=115 deg.C/total crystal heat of fusion of 0.015-0.15 obtained by differential scanning calorimeter. The aimed composition containing >=5wt% of the ethylenic copolymer (preferably crystalline polypropylene containing 5-50wt% ethylenic copolymer).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエチレン系共重合体組成物に関し、さらに詳し
くは高エチレン含量のエチレン・1−ブテン共重合体に
エチレンの長連鎖に基づく結晶性を付与することにより
、透明性、加工性および耐(h撃性に加えて機械的強度
をも向上させたエチレン系共重合体組成物(特にポリプ
ロピレン樹脂組成物)に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ethylene copolymer composition, and more particularly, to an ethylene-1-butene copolymer with a high ethylene content, crystallinity based on long chains of ethylene is added. This invention relates to an ethylene copolymer composition (particularly a polypropylene resin composition) that has improved transparency, processability, and mechanical strength (in addition to impact resistance) by imparting the following properties.

(従来の技術) エチレンと1−ブテンとの共重合体は、単体でまたは他
の重合体と混合されてフィルム、テープ、シート、中空
成形品、射出成形品等に成形加工されて使用され、また
樹脂改質剤としても優れており、該共重合体を配合した
樹脂は自動車部品、電線等に広く使用されている。
(Prior Art) A copolymer of ethylene and 1-butene is used alone or mixed with other polymers and molded into films, tapes, sheets, blow molded products, injection molded products, etc. It is also excellent as a resin modifier, and resins containing this copolymer are widely used in automobile parts, electric wires, etc.

従来エチレン・ブテン共重合体として種々の共重合体が
提案されてきたが、いずれも透明性および加工性を向上
させると機械的強度等が不足し、これらの性能を要求す
る分野での使用がかなり制限されている。そのため機械
的強度を改良する試みもなされてきたが、機械的強度を
改良すると逆に耐衝撃性、加工性および透明性を悪化さ
せることになり、そこで前記各特性をバランスよく兼ね
備えたエチレン系共重合体の開発が各分野から要望され
てきた。
Various copolymers have been proposed as ethylene-butene copolymers, but all of them lack mechanical strength, etc. when improving transparency and processability, making them difficult to use in fields that require these performances. quite limited. Therefore, attempts have been made to improve the mechanical strength, but improving the mechanical strength results in deterioration of impact resistance, processability, and transparency. The development of polymers has been requested from various fields.

またポリオレフィン樹脂改質剤として用ム)る場合には
、樹脂中での共重合体の分散性および樹脂との結合性が
樹脂改質の重要な要因になるが、結晶性の小さいエチレ
ン系共重合体を用いると、樹脂との結合性が弱いため、
充分に耐衝撃性を向上させることができなかった。その
ためポリオレフィン樹脂との結合性がよく、耐衝撃性を
向上せしめる樹脂改質剤の出現が望まれていた。
Furthermore, when used as a polyolefin resin modifier, the dispersibility of the copolymer in the resin and its bonding properties with the resin are important factors for resin modification. When using a polymer, the bond with the resin is weak, so
Impact resistance could not be improved sufficiently. Therefore, there has been a desire for a resin modifier that has good bonding properties with polyolefin resins and improves impact resistance.

この要望を実現するため、例えば特開昭60−8801
6号公報には、広い組成分布を持ち、DSC(示差走査
型熱量計)で求められる融点を複数個有するエチレン共
重合体が透明性、耐衝撃性、耐熱性および低温ヒートシ
ール性をバランスよ(兼持していることが述べられてい
る。しかしながら、本発明者らの検討によれば、該共重
合体は耐熱性、機械的強度および低温ヒートシール性を
バランスよく兼持させようとして、かえって従来のエチ
レン共重合体よりも透明性および耐衝撃性が悪化してお
り、さらにポリオレフィン樹脂改質剤として使用した場
合にも樹脂との結合性は改良されても耐衝撃性の向上の
点では不満足なものであった。
In order to realize this request, for example, JP-A-60-8801
Publication No. 6 states that an ethylene copolymer with a wide compositional distribution and multiple melting points determined by DSC (differential scanning calorimetry) balances transparency, impact resistance, heat resistance, and low-temperature heat sealability. However, according to the studies of the present inventors, the copolymer was designed to have heat resistance, mechanical strength, and low-temperature heat sealability in a well-balanced manner. On the contrary, the transparency and impact resistance are worse than conventional ethylene copolymers, and even when used as a polyolefin resin modifier, even though the bondability with the resin is improved, there is no improvement in impact resistance. It was unsatisfactory.

(発明が解決しようとする問題点) 本発明の目的は、前記従来技術の欠点を除去し、透明性
、加工性、耐衝撃性および機械的強度をバランスよく兼
備したエチレン系共重合体組成物を提供することにある
(Problems to be Solved by the Invention) An object of the present invention is to eliminate the drawbacks of the prior art and to provide an ethylene copolymer composition that has transparency, processability, impact resistance, and mechanical strength in a well-balanced manner. Our goal is to provide the following.

(問題点を解決するための手段) 本発明者らは鋭意検討した結果、高エチレン含有量の共
重合体中に特定のエチレンの長連鎖を含有させることに
より、透明性、加工性、耐衝撃性および機械的強度をバ
ランスよく兼備できること、さらにこの共重合体を5〜
50重量%含有する樹脂組成物が、樹脂と共重合体との
結合性を有し、耐衝撃性を向上させることができること
を見出して本発明に到達した。
(Means for Solving the Problem) As a result of intensive studies, the present inventors found that by incorporating long chains of specific ethylene into a copolymer with a high ethylene content, transparency, processability, impact resistance, etc. In addition, this copolymer can have a good balance of properties and mechanical strength.
The present invention was achieved by discovering that a resin composition containing 50% by weight has binding properties between the resin and the copolymer and can improve impact resistance.

本発明は、エチレンと1−ブテンを主重合単位とし、下
記(A)〜(E)の要件を満足する、実質上線状構造を
有するエチレン系共重合体を5重量%以上含有するエチ
レン系共重合体組成物である。
The present invention is an ethylene copolymer containing 5% by weight or more of an ethylene copolymer having a substantially linear structure, which has ethylene and 1-butene as main polymer units and satisfies the following requirements (A) to (E). It is a polymer composition.

(A)共重合体中のエチレン含量が85〜95モル%で
あること、 (B)重量平均分子量が3万〜20万であること、(C
)GPC(Gel  PermeationChrom
atograph)で測定した分子量分布が単一のピー
クで、かつ重量平均分子量(Mw)と数平均分子量(M
n)との比M w / M nが2〜5であること、 (D)示差走査型熱量計で求められる融点が高温側と低
温側の2個存在し、高温側融点(Th)が115〜12
5℃、低温側融点(Tl)が40〜90℃に存在するこ
と、 (E)示差走査型熱量計で求められる115℃以上の温
度における結晶融解熱量(Hh)の全結晶融解熱量(H
t)に対する割合が0.015≦Hh/Ht≦0.15
であること。
(A) The ethylene content in the copolymer is 85 to 95 mol%, (B) The weight average molecular weight is 30,000 to 200,000, (C
)GPC(Gel PermeationChrom)
The molecular weight distribution measured by atograph has a single peak, and the weight average molecular weight (Mw) and number average molecular weight (M
(D) There are two melting points, a high temperature side and a low temperature side, determined by a differential scanning calorimeter, and the high temperature side melting point (Th) is 115. ~12
5℃, and the low-temperature side melting point (Tl) exists in the range of 40 to 90℃.
t) is 0.015≦Hh/Ht≦0.15
To be.

前記条件(A)〜(E)を欠(共重合体を用いる樹脂組
成物の場合には、充分な耐衝撃性の向上は得られない。
In the case of a resin composition using a copolymer lacking the above conditions (A) to (E), sufficient improvement in impact resistance cannot be obtained.

本発明のエチレン系共重合体は、エチレンと1−ブテン
を主重合単位とするが、エチレンおよび1−ブテンと他
のα−オレフィンとの混合成分であってもよい。他のα
−オレフィンとしては、例えばプロピレン、1−ペンテ
ン、1−ヘキセン、4−メチル−1−ペンテン、1−ペ
ンテン、l−オクテン、1−デセン等が挙げられる。
The ethylene copolymer of the present invention has ethylene and 1-butene as main polymerized units, but may be a mixed component of ethylene, 1-butene, and other α-olefins. other α
Examples of the -olefin include propylene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-pentene, 1-octene, and 1-decene.

本発明のエチレン系共重合体中のエチレン含量は85〜
95モル%である。95モル%を越える場合には共重合
体のランダム特性および透明性が著しく損なわれ、樹脂
組成物とした場合の耐衝撃性を得ることができない、一
方、85モル%未満の場合には本発明の特徴とするDS
C融点が示すエチレンの長連鎖に基づ(結晶部分が見出
せず、目的とする機械的強度の改良を達成することがで
ない。また樹脂(例えばポリプロピレン)と共重合体と
の結晶同士の相互作用が得られず、組成物の耐衝撃性を
従来以上に向上させることができないことがある。
The ethylene content in the ethylene copolymer of the present invention is 85 to
It is 95 mol%. If it exceeds 95 mol%, the random properties and transparency of the copolymer will be significantly impaired, making it impossible to obtain the impact resistance when made into a resin composition. On the other hand, if it is less than 85 mol%, the present invention DS characterized by
Based on the long chains of ethylene indicated by the C melting point (crystalline parts cannot be found and it is not possible to achieve the desired mechanical strength improvement). may not be obtained, and it may not be possible to improve the impact resistance of the composition more than before.

本発明のエチレン系共重合体の重量平均分子量は3〜2
0万であり、GPC(Gel Permeation 
 Chromatograph)で測定した分子量分布
は単一ピークで、重量平均分子量(Mw)と数平均分子
量(Mn)とのM w /Mnは2〜5である。Mw/
Mnが2未満の共重合体は製造が困難であり、また5を
越えると、ポリマ表面のベタ付き等を生じる。
The weight average molecular weight of the ethylene copolymer of the present invention is 3 to 2.
00,000, and GPC (Gel Permeation
The molecular weight distribution measured by chromatography has a single peak, and M w /Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2 to 5. Mw/
Copolymers with Mn less than 2 are difficult to manufacture, and when Mn exceeds 5, the polymer surface becomes sticky.

さらに本発明のエチレン系共重合体の特徴を最も表わす
ものとして、共重合体のエチレン連鎖による部分結晶性
の尺度であるDSC融点および結晶融解熱量がある。す
なわち本発明のエチレン系共重合体では、示差走査型熱
量計(D S C)で求められる融点(DSC融点)が
高温側と低温側の2個存在する。かつ高温側融点(Th
)は115〜125℃に存在し、この融点を示す吸熱ピ
ークはエチレンの長連鎖による結晶部分に基づくもので
ある。また低温側融点(T1)は40〜90℃に存在し
、この融点を示す吸熱ピークはエチレン・α−オレフィ
ン共重合体の微結晶に基づくものである。さらに示差走
査型熱量計で求められる100℃以上の結晶融解熱It
(Hh)の全結晶融解熱量(Ht)に対する割合が0.
015≦Hh/Ht≦0.15である。低温側融点(T
jりが存在しなかったり、またTl>90℃の場合には
共重合体のランダム性は極めて乏しく、ランダム共重合
体としての特性が失なわれ、結晶性が高く耐衝撃性が著
しく劣化する。Tl<40℃では共重合体の結晶性が低
すぎて、強度が著しく低下してしまう、また高温側融点
(Th)が存在しない場合には、本発明の目的のひとつ
である機械的強度の改良は達成されない。Th< 11
5℃では結晶化しているエチレン連鎖が短いために共重
合体の強度は不満足であり、また共重合体と樹脂成分と
の結合性も弱く、樹脂改質効果も不十分である。またT
h>125℃のエチレン・1−ブテンランダム共重合体
は製造困難である。またHh/Ht<0゜015の場合
にはポリエチレンの部分結晶性が少なすぎて機械的強度
を充分に改良することはできず、一方Hh/Ht>0.
15の場合には逆に結晶性が高すぎて透明性、耐衝撃性
および加工性を悪化させてしまう、このようにHh/H
tが上記の条件を満足しない共重合体を用いて得られる
ポリプロピレン樹脂組成物では、充分な耐衝撃性は得ら
れない。
Further, the most characteristic characteristics of the ethylene copolymer of the present invention are the DSC melting point and the heat of crystal fusion, which are measures of the partial crystallinity of the copolymer due to ethylene chains. That is, the ethylene copolymer of the present invention has two melting points determined by a differential scanning calorimeter (DSC) (DSC melting point): a high temperature side and a low temperature side. and high temperature side melting point (Th
) exists at 115 to 125° C., and the endothermic peak indicating this melting point is based on the crystalline portion of long chains of ethylene. Further, the low temperature side melting point (T1) exists at 40 to 90°C, and the endothermic peak indicating this melting point is based on the microcrystals of the ethylene/α-olefin copolymer. Furthermore, the heat of crystal fusion It, which is determined by a differential scanning calorimeter, is 100°C or more.
The ratio of (Hh) to the total heat of fusion of crystals (Ht) is 0.
015≦Hh/Ht≦0.15. Low-temperature melting point (T
If the copolymer does not exist or Tl>90°C, the randomness of the copolymer is extremely poor, the properties as a random copolymer are lost, the crystallinity is high, and the impact resistance is significantly deteriorated. . If Tl < 40°C, the crystallinity of the copolymer will be too low and the strength will drop significantly, and if there is no high-temperature melting point (Th), the mechanical strength, which is one of the objectives of the present invention, will deteriorate. No improvement is achieved. Th< 11
At 5°C, the strength of the copolymer is unsatisfactory because the crystallized ethylene chains are short, and the bond between the copolymer and the resin component is also weak, resulting in insufficient resin modification effect. Also T
It is difficult to produce an ethylene/1-butene random copolymer with h>125°C. Further, when Hh/Ht<0°015, the partial crystallinity of polyethylene is too low to sufficiently improve mechanical strength, while on the other hand, when Hh/Ht>0.
Conversely, in the case of Hh/H
A polypropylene resin composition obtained using a copolymer in which t does not satisfy the above conditions will not have sufficient impact resistance.

このように前記(A)〜(E)の要件を満足する本発明
のエチレン系共重合体は従来知られていない新規な共重
合体であり、従来公知のエチレン系共重合体とは異なる
0例えば特開昭60−88016号公報に記載されたエ
チレン共重合体は、低温融点の値が高く、非常に結晶性
の高い共重合体である点で本発明の共重合体とは異なる
。このため、本発明の共重合体は、透明性、加工性、耐
衝撃性および機械的強度をバランスよく兼備したものと
なる。さらに本発明は、この共重合体を結合性のポリオ
レフィンに含有させることにより、後述の耐衝撃性に優
れた樹脂組成物が得られる。
As described above, the ethylene copolymer of the present invention that satisfies the requirements (A) to (E) above is a novel copolymer that has not been previously known, and is different from conventionally known ethylene copolymers. For example, the ethylene copolymer described in JP-A-60-88016 differs from the copolymer of the present invention in that it has a high low-temperature melting point and is a very highly crystalline copolymer. Therefore, the copolymer of the present invention has a good balance of transparency, processability, impact resistance, and mechanical strength. Furthermore, in the present invention, by incorporating this copolymer into a binding polyolefin, a resin composition having excellent impact resistance, which will be described later, can be obtained.

本発明のエチレン系共重合体は、例えば重合触媒として
、可溶性バナジウム化合物および有機アルミニウム化合
物の、組成比(モル比)10/1〜200/1の割合か
らなる触媒を用い、エチレンと1−ブテン(他のα−オ
レフィンとの混合成分でもよい)とを、重合温度−20
〜80℃で共重合させることにより製造される。
The ethylene copolymer of the present invention can be produced by using, for example, a catalyst consisting of a soluble vanadium compound and an organoaluminum compound in a composition ratio (mole ratio) of 10/1 to 200/1 as a polymerization catalyst, and ethylene and 1-butene. (may be a mixed component with other α-olefins) at a polymerization temperature of -20
Manufactured by copolymerization at ~80°C.

上記可溶性バナジウム化合物としては、例えばオキシ三
塩化バナジウム、四塩化バナジウム、アルキルバナデー
ト、オキシ三塩化バナジウムとアルコールとの反応混合
物、オキシ塩化バナジウムとアルコール以外の電子供与
体(アミン類、ケトン類、エーテル類等)との反応混合
物等が挙げられ、好ましくはオキシ三塩化バナジウム、
四塩化バナジウム、アルキルバナデート(例えばエチル
アルコール、n−プロビルバナデート、イソプロビルバ
ナデート、n−プチルバナデート、5ec−ブチルアル
コール、2−エチルへキシルバナデート等)、オキシ三
塩化バナジウムとアルコール(例えばエチルアルコール
、n−プロピルアルコール、イソプロピルアルコール、
n  7”チルアルコール、5eC−ブチルアルコール
、t−ブチルアルコール、2−エチルヘキシルアルコー
ル等)とのROM/V=1/1〜3/1 (モル比)の
反応混合物が用いられる。
Examples of the above-mentioned soluble vanadium compounds include vanadium oxytrichloride, vanadium tetrachloride, alkylvanadates, reaction mixtures of vanadium oxytrichloride and alcohols, vanadium oxychloride and electron donors other than alcohols (amines, ketones, ethers, etc.). etc.), preferably vanadium oxytrichloride,
Vanadium tetrachloride, alkylvanadate (e.g. ethyl alcohol, n-probylvanadate, isoprobylvanadate, n-butylvanadate, 5ec-butyl alcohol, 2-ethylhexylvanadate, etc.), vanadium oxytrichloride and Alcohol (e.g. ethyl alcohol, n-propyl alcohol, isopropyl alcohol,
A reaction mixture of ROM/V=1/1 to 3/1 (molar ratio) with n7'' methyl alcohol, 5eC-butyl alcohol, t-butyl alcohol, 2-ethylhexyl alcohol, etc. is used.

有機アルミニウム化合物としては、例えば一般式RnA
fX3−n(式中Rはアルキル基、Xはハロゲン原子、
nは1≦n≦3の整数を意味する)で表わされるハロゲ
ン化有機アルミニウム化合物、例えばエチルアルミニウ
ムジクロリド、ジエチルアルミニウムクロリド、エチル
セスキアルミニウムクロリド、イソブチルセスキアルミ
ニウムクロリド等、好ましくはエチルセスキアルミニウ
ムクロリドが用いられる。またこれらの2種以上を組合
わせた混合物を用いることもできる。
As the organoaluminum compound, for example, the general formula RnA
fX3-n (in the formula, R is an alkyl group, X is a halogen atom,
n means an integer of 1≦n≦3), such as ethylaluminum dichloride, diethylaluminum chloride, ethylsesquialuminum chloride, isobutylsesquialuminum chloride, etc., preferably ethylsesquialuminum chloride is used. It will be done. Moreover, a mixture of two or more of these can also be used.

バナジウム化合物と有機アルミニウム化合物との組成比
(モル比)は、Al/V=10/1〜200/1、好ま
しくは10/1〜150/1である。本発明のエチレン
系共重合体は、幅広いAN/■の範囲で製造可能である
が、Al/Vが10/1より小さい場合には分子量分布
(GPC測定におけるM w / M nで示される)
がブロードになり、成形物の表面ベタ付き性が悪化し、
また触媒活性の低下のために多量のバナジウム化合物を
使用する必要があり、共重合体中にバナジウム金属の酸
化物が多く残り、最終製品の色相を悪化させる。一方A
ll/■が200/1より大きい場合には、バナジウム
化合物の還元が進みすぎるため重合活性が低下し、さら
にα−オレフィンの共重合性も低下してしまい、目的と
する共重合体が得られない。
The composition ratio (molar ratio) of the vanadium compound and the organic aluminum compound is Al/V=10/1 to 200/1, preferably 10/1 to 150/1. The ethylene copolymer of the present invention can be produced in a wide range of AN/■, but when Al/V is smaller than 10/1, the molecular weight distribution (indicated by M w / M n in GPC measurement)
becomes broad, the surface stickiness of the molded product worsens,
Furthermore, it is necessary to use a large amount of vanadium compound to reduce the catalyst activity, and a large amount of vanadium metal oxide remains in the copolymer, which deteriorates the hue of the final product. On the other hand, A
If ll/■ is larger than 200/1, the reduction of the vanadium compound will proceed too much, resulting in a decrease in polymerization activity, and in addition, copolymerizability of α-olefin will also decrease, making it impossible to obtain the desired copolymer. do not have.

本発明に用いられる触媒系にはさらに必要に応じて活性
向上剤を添加することもできる。活性向上剤としては、
例えばトリクロロ酢酸エステル、2.3,4.4−テト
ラクロルブテン酸エステル等の多ハロゲン化合物が用い
られる。その他必要に応じてアルコール類、ケトン類、
アミン類等の電子供与体を、前記バナジウム化合物また
は前記アルミニウム化合物と予め混合してまたは同時に
添加して使用することもできる。
If necessary, an activity enhancer may be added to the catalyst system used in the present invention. As an activity enhancer,
For example, polyhalogen compounds such as trichloroacetic acid ester and 2,3,4,4-tetrachlorobutenoic acid ester are used. Other alcohols, ketones, etc. as necessary.
An electron donor such as amines can also be used by being mixed in advance with the vanadium compound or the aluminum compound or by being added at the same time.

本発明において重合に際し用いられる重合溶媒としては
、炭素数3〜1oの脂肪族炭化水素化合物、炭素数1〜
5のハロゲン化脂肪族炭化水素化合物が挙げられ、例え
ばプロパン、ブタン、ペンタン、ヘキサン、ヘプタン、
オクタン、デカン、プロピレン、1−ブテン、ヘキセン
、塩化メチル、塩化エチル、塩化メチレン、塩化エチレ
ン等、好ましくはn−ヘキサン、n−へブタンが用いら
れる。
The polymerization solvent used in the polymerization in the present invention includes aliphatic hydrocarbon compounds having 3 to 1 carbon atoms, and 1 to 1 carbon atoms.
5 halogenated aliphatic hydrocarbon compounds, such as propane, butane, pentane, hexane, heptane,
Octane, decane, propylene, 1-butene, hexene, methyl chloride, ethyl chloride, methylene chloride, ethylene chloride, etc., preferably n-hexane and n-hebutane are used.

重合温度は一20〜80℃、好ましくは10〜60℃で
ある。−20℃より低い場合には冷却に多量のエネルギ
ーが必要となる等経済的な面で不利益となる。一方、8
0℃より高い場合には重合活性が低下し、さらにα−オ
レフィンの共重合性が低下してしまい、目的とする共重
合体が得られない。
The polymerization temperature is -20 to 80°C, preferably 10 to 60°C. If the temperature is lower than -20° C., a large amount of energy is required for cooling, which is disadvantageous from an economic point of view. On the other hand, 8
If the temperature is higher than 0°C, the polymerization activity decreases, and the copolymerizability of α-olefin also decreases, making it impossible to obtain the desired copolymer.

重合の際の単位バナジウム触媒光たり、ブテン−lモノ
マー量は1500〜20000 (モル比)の範囲であ
ることが好ましい。1500未満ではブテン−1濃度が
低すぎ、組成コントロールが困難であり、また2000
0をこえると液相中のブテン−1濃度が高く目的とする
エチレン長連鎖を得ることはできない。
The amount of butene-1 monomer and vanadium catalyst unit during polymerization is preferably in the range of 1,500 to 20,000 (molar ratio). If it is less than 1500, the butene-1 concentration is too low and composition control is difficult;
If it exceeds 0, the concentration of butene-1 in the liquid phase will be high, making it impossible to obtain the desired long ethylene chain.

本発明の共重合体製造において重合形態は、スラリ重合
、均一溶液重合のいずれでもよいが、好ましくはスラリ
重合が行なわれる。均一溶液重合では該共重合体がポリ
エチレンの結晶を持つことから重合温度をかなり上昇さ
せなければならない。
In producing the copolymer of the present invention, the polymerization form may be either slurry polymerization or homogeneous solution polymerization, but slurry polymerization is preferably carried out. In homogeneous solution polymerization, since the copolymer has polyethylene crystals, the polymerization temperature must be raised considerably.

また重合は回分式または連続式のいずれでもよい。Moreover, the polymerization may be carried out either batchwise or continuously.

反応器は単一または複数個を直列または並列に連結し、
原料オレフィンを別にまたは予め混合して導入する。反
応温度の維持は外部冷却法、溶媒・七ツマ−の蒸発潜熱
の利用等により行なわれる。
A single reactor or multiple reactors connected in series or parallel,
The raw olefins are introduced separately or premixed. The reaction temperature is maintained by an external cooling method, by utilizing the latent heat of vaporization of the solvent, or the like.

圧力は減圧下(100mmHg)ないし加圧下(50気
圧程度)に保持される。分子量の制御は先に述べた触媒
組成比、触媒量、触媒種、重合温度等によってもある程
度可能であるが、さらに水素等の分子量制御剤を用いて
行なうこともできる。生成した共重合体の反応媒体およ
び未反応モノマーからの分離、使用触媒の活性停止、触
媒残渣の除去、共重合体の乾燥、造粒等の成形などは、
公知方法により行なわれる。
The pressure is maintained at reduced pressure (100 mmHg) or increased pressure (about 50 atm). The molecular weight can be controlled to some extent by the above-mentioned catalyst composition ratio, catalyst amount, catalyst type, polymerization temperature, etc., but it can also be controlled by using a molecular weight controlling agent such as hydrogen. Separation of the produced copolymer from the reaction medium and unreacted monomers, termination of the activity of the catalyst used, removal of catalyst residue, drying of the copolymer, and shaping such as granulation, etc.
This is done by a known method.

このようにして得られる本発明のエチレン系共重合体は
、単独でまたは他の樹脂に5重量%以上混合して本発明
のエチレン系共重合体組成物とされる。前記エチレン系
共重合体が5重量%未満では本願の効果が得られない。
The ethylene copolymer of the present invention thus obtained is used alone or mixed with 5% by weight or more of another resin to form the ethylene copolymer composition of the present invention. If the amount of the ethylene copolymer is less than 5% by weight, the effects of the present application cannot be obtained.

さらに目的に応じて他のオレフィン(共)重合体ゴム、
カルボン酸類のグラフト等で変性された変性オレフィン
(共)重合体類等と、さらに場合により有機系、無機系
のフィラー、繊維等の補強剤と混合し、積石等の手段を
施してフィルム、テープ、シート、中空成形品、射出成
形品等として使用される。
Furthermore, depending on the purpose, other olefin (co)polymer rubbers,
Modified olefin (co)polymers modified with grafts of carboxylic acids, etc. are mixed with reinforcing agents such as organic or inorganic fillers and fibers, and then processed by means such as stacking stones to form a film. Used as tapes, sheets, hollow molded products, injection molded products, etc.

特に本発明の好適な組成物は、前記の新規エチレン系共
重合体(イ)と、結晶性ポリプロピレン(ロ)とを含み
、(イ)と(ロ)との重量比((イ)/(ロ))が50
150〜5/95であるエチレン系共重合体樹脂組成物
が好ましい。
In particular, a preferred composition of the present invention comprises the above-mentioned novel ethylene copolymer (a) and crystalline polypropylene (b), and the weight ratio of (a) and (b) is ((i)/( b)) is 50
Preferably, the ethylene copolymer resin composition has a molecular weight of 150 to 5/95.

本発明に用いる結晶性ポリプロピレン(ロ)には結晶性
のポリプロピレンホモポリマーのほか、エチレンおよび
/またはプロピレン以外のα−オレフィン20重量%以
下を含有する結晶性プロピレン共重合体も含まれる。
The crystalline polypropylene (b) used in the present invention includes not only crystalline polypropylene homopolymers but also crystalline propylene copolymers containing 20% by weight or less of α-olefin other than ethylene and/or propylene.

このエチレン系共重合体樹脂組成物中のエチレン系共重
合体(イ)の含有割合は、5重量%以上、特に5〜50
M量%、好ましくは10〜40重量%である。エチレン
系共重合体(イ)の含有割合が5重量%より少ない場合
には、低温での耐衝撃性が低く、一方50重量%を越え
る場合には、剛性および機械的強度が低下する。
The content of the ethylene copolymer (a) in this ethylene copolymer resin composition is 5% by weight or more, particularly 5 to 50% by weight.
The amount of M is %, preferably 10 to 40% by weight. If the content of the ethylene copolymer (a) is less than 5% by weight, the impact resistance at low temperatures will be low, while if it exceeds 50% by weight, the rigidity and mechanical strength will decrease.

本発明のエチレン系共重合体組成物は、例えばポリプロ
ピレン樹脂と共重合体とを混合することにより製造され
る。例えば本発明の新規エチレン系共重合体とポリプロ
ピレンとを押出機、ニーダープレンダー、バンバリーミ
キサ−等を用いて混合するか、または前記エチレン系共
重合体に任意量のポリプロピレンをバンバリーミキサ−
、ニーダーブレンダーを用いて混合し、常法によりペレ
ット状とし、最終的に共重合体とポリプロピレンとの割
合が目的とする値となるように該ベレットとポリプロピ
レンとを投入し、成形物を得るなどの方法がある。また
特願昭58−181377号に開示された方法によって
も目的とする本発明の樹脂組成物を得ることができる。
The ethylene copolymer composition of the present invention is produced, for example, by mixing a polypropylene resin and a copolymer. For example, the novel ethylene copolymer of the present invention and polypropylene are mixed using an extruder, kneader blender, Banbury mixer, etc., or an arbitrary amount of polypropylene is added to the ethylene copolymer using a Banbury mixer.
, mixed using a kneader blender, made into pellets by a conventional method, and finally added the pellets and polypropylene so that the ratio of copolymer and polypropylene becomes the desired value to obtain a molded product. There is a method. The desired resin composition of the present invention can also be obtained by the method disclosed in Japanese Patent Application No. 58-181377.

本発明の樹脂組成物には、さらに必要に応じて酸化止剤
、熱安定剤、紫外線吸収剤、着色剤等の補助添加成分を
添加することもできる。また本発明の樹脂組成物には、
例えば炭酸カルシウム、カオリン、タルク、アスベスト
、ガラス繊維等の充填剤、本発明で用いられている共重
合体以外のオし・フィン系共重合体(例えばEPR等)
、ポリエチレン樹脂、ポリスチレン樹脂、アクリロニト
リル・ブタジェン・スチレン共重合樹脂、エチレン−酢
酸ビニル共重合樹脂、ポリブタジェン樹脂等のゴム、樹
脂などを配合することもでき、その添加量は本発明の樹
脂組成物100重量部に対して0〜30重量部が好まし
い。
The resin composition of the present invention may further contain auxiliary additive components such as antioxidants, heat stabilizers, ultraviolet absorbers, and colorants, if necessary. Further, the resin composition of the present invention includes:
For example, fillers such as calcium carbonate, kaolin, talc, asbestos, glass fiber, etc., oxide-fin type copolymers other than the copolymers used in the present invention (e.g., EPR, etc.)
Rubbers and resins such as polyethylene resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, ethylene-vinyl acetate copolymer resin, polybutadiene resin, etc. can also be blended, and the amount added is 100% of the resin composition of the present invention. It is preferably 0 to 30 parts by weight.

(発明の効果) 本発明によるエチレン系共重合体は、従来のエチレン共
重合体と異なり、透明性、耐衝撃性および機械的強度を
バランスよく兼備しており、このためフィルム、シート
等の用途に好適である。また本発明のエチレン系共重合
体は加工性も良好であるため各種成形加工品材料等とし
ても使用することができる。
(Effects of the Invention) Unlike conventional ethylene copolymers, the ethylene copolymer of the present invention has transparency, impact resistance, and mechanical strength in a well-balanced manner, and is therefore used for films, sheets, etc. suitable for Furthermore, since the ethylene copolymer of the present invention has good processability, it can be used as a material for various molded products.

また本発明のエチレン系共重合体を含有する本発明の樹
脂組成物、例えばポリプロピレン樹脂組成物は耐衝撃性
に優れたものであり、自動車バンパー、各種自動車部品
、電線、電気機器等に使用することができる。
Furthermore, the resin composition of the present invention containing the ethylene copolymer of the present invention, such as a polypropylene resin composition, has excellent impact resistance and can be used for automobile bumpers, various automobile parts, electric wires, electrical equipment, etc. be able to.

(実施例) 以下、実施例により本発明を詳説する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

なお本発明のエチレン系共重合体を特定するために次に
示す分析手段および物性評価方法が用いられた。
In order to specify the ethylene copolymer of the present invention, the following analysis means and physical property evaluation method were used.

(エチレン含量) エチレン・α−オレフィン共重合体をI H−NMRお
よび13 C−N M Rを用いてエチレン/α−オレ
フィン組成比を求め、赤外分析で検量線を作成した。こ
の検量線をもとにして各実施例で得られる共重合体の組
成を求めた。
(Ethylene Content) The ethylene/α-olefin composition ratio of the ethylene/α-olefin copolymer was determined using I H-NMR and 13 C-NMR, and a calibration curve was created using infrared analysis. Based on this calibration curve, the composition of the copolymer obtained in each example was determined.

(Mw/Mn) 行内=v rゲルパーミェーションクロマトグラフJ 
(丸蓋(株)刊)に準じて次のようにして測定した。
(Mw/Mn) In the row = v r gel permeation chromatograph J
(published by Marugata Co., Ltd.), and was measured as follows.

(1)分子量既知の標準ポリスチレン(東洋ソーダ(株
)製、単分散ポリスチレン)を使用し、分子量Mとその
GPC(Geffi  Permeat ion  q
hromatograph)カウントを測定し、分子量
MとEV(Ejtution  V。
(1) Using standard polystyrene with a known molecular weight (manufactured by Toyo Soda Co., Ltd., monodisperse polystyrene), the molecular weight M and its GPC (Geffi Permeation Q
chromatography) counts, molecular weight M and EV (Ejtition V).

fume)との相関図更正曲線を作図する。このときの
濃度は0.02fi量%とする。標準ポリスチレンによ
る更正曲線をユニバーサル法によりEBMの更正曲線に
補正する。
Plot a correlation diagram correction curve with fume). The concentration at this time is 0.02 fi amount %. The standard polystyrene calibration curve is corrected to the EBM calibration curve using the universal method.

(2)GPC測定法により試料のGPCパターンをとり
、前記(1)によりMを求める。その際のサンプル調製
条件およびGPC測定条件は以下のとおりである。
(2) Obtain a GPC pattern of the sample using the GPC measurement method, and obtain M using the above (1). The sample preparation conditions and GPC measurement conditions at that time are as follows.

(サンプル調製条件) (a)0−ジクロルベンゼン溶媒に老化防止剤として2
,6−ジーt−ブチル−クレゾールを0.08%添加し
、溶解する。
(Sample preparation conditions) (a) 2 as an anti-aging agent in 0-dichlorobenzene solvent
, 0.08% of 6-di-t-butyl-cresol is added and dissolved.

(b)試料を0.1%になるように0−ジクロルベンゼ
ンとともに三角フラスコに分取する。
(b) Separate the sample into an Erlenmeyer flask together with 0-dichlorobenzene to a concentration of 0.1%.

(C)三角フラスコを120℃に加温し、約60分間攪
拌して溶解させる。
(C) Heat the Erlenmeyer flask to 120°C and stir for about 60 minutes to dissolve.

(d)(C)で得られた溶媒をGPCにかける。(d) The solvent obtained in (C) is subjected to GPC.

なおGPC装置内で自動的に0.5ミクロンの焼結フィ
ルタで濾過させる。
Note that the sample is automatically filtered using a 0.5 micron sintered filter within the GPC device.

(GPC測定条件) (a)装置   :Waters社製150C型(b)
カラム  :東洋ソーダ(株)製Hタイプ(c)サンプ
ル量二500マイクロ2 (d)温度   :120℃ (e)流速   :1mj!/分 (f)カラム総理論段数:1*10 2*10(アセト
ンによる測定値) (示差走査型熱量計による融点および結晶融解熱量の測
定方法) 示差走査型熱量計はDupont社製 910型Def
erentiaj! ScanningCan!off
iimeter (以下、DSCと略称する)を用い、
記録針はDupOnt社製 990型 Thermal
  Anaj!yzerを用いた。サンプル量は10±
0.1■、Referenceとしてはα−アルミナを
用いた。測定はサンプルおよびReferenceをD
SCに装置し、180℃まで加温し、その後1分間に1
0℃の一定速度で一100℃まで冷却する。次いで1分
間に20℃の一定昇温速度で分析する。得られる代表的
なりSCパターンを第1図に示す。
(GPC measurement conditions) (a) Apparatus: Waters 150C type (b)
Column: H type manufactured by Toyo Soda Co., Ltd. (c) Sample amount: 2500 microns (d) Temperature: 120°C (e) Flow rate: 1mj! /min (f) Column total theoretical plate number: 1 * 10 2 * 10 (measured value with acetone) (Method of measuring melting point and heat of crystal fusion using differential scanning calorimeter) Differential scanning calorimeter is Dupont 910 type Def.
erentiaj! Scanning Can! off
Using iimeter (hereinafter abbreviated as DSC),
The recording needle is DupOnt 990 type Thermal.
Anaj! yzer was used. Sample amount is 10±
0.1■, α-alumina was used as the reference. Measurements are made using the sample and Reference
Place the device in an SC, heat it to 180℃, and then heat it at 1 minute per minute.
Cool to -100°C at a constant rate of 0°C. The analysis is then performed at a constant heating rate of 20° C. per minute. A typical SC pattern obtained is shown in FIG.

第1図においてTjlおよびThをDSC融点と称し、
本発明のエチレン系共重合体の有する高温側融点はTh
を、また低温側融点はTfを指し、これらのDSC融点
は各々の点における温度座標軸より読み取られる。
In FIG. 1, Tjl and Th are referred to as DSC melting points,
The high temperature side melting point of the ethylene copolymer of the present invention is Th
, and the melting point on the low temperature side refers to Tf, and these DSC melting points are read from the temperature coordinate axis at each point.

(結晶の吸熱量の計算) 第1図における低温側ベースラインA−Bの接線(a)
を求める。次いでTg部分と考えられる吸熱ピークB−
Cの接線(b)を求める。接線(a)と(b)の交点を
(ア)とし、(ア)より垂線(c)を描く0次いで次式
(1)に従ってhを求める。
(Calculation of endothermic amount of crystal) Tangent line (a) of low temperature side baseline A-B in Fig. 1
seek. Next, there is an endothermic peak B- which is considered to be the Tg portion.
Find the tangent line (b) of C. Let the intersection of tangents (a) and (b) be (a), draw a perpendicular line (c) from (a), then calculate h according to the following equation (1).

h(鶴)=2.25xs(■)     (1)(ただ
し、hはDSCチャート原寸における(ア)からの距離
(鶴)、Sはサンプル量(■))(ア)からの垂線(C
)に沿って距離りの位置に水平線(d)を描く。水平線
(d)と吸熱カーブとの交点(イ)を求める。
h (crane) = 2.25xs (■) (1) (where h is the distance from (a) in the original size of the DSC chart (crane), S is the sample amount (■)) the perpendicular line from (a) (C
), draw a horizontal line (d) at a distance. Find the intersection point (a) between the horizontal line (d) and the endothermic curve.

交点(イ)より高温側ベースラインD−E部との接線(
e)を描く。接線(e)とベースラインとの接点(つ)
を求める。接線(e)と吸熱カーブで囲まれた斜線部分
が全結晶融解熱量に相当する。続いて110℃の位置で
吸熱部分を分割し、110℃以上の吸熱部分を高温側吸
熱量として取扱った。全結晶融解熱量および高温側結晶
融解熱量は各々の面積(第1図の斜線部分)を求め、イ
ンジウム(Dupont社DSC用標準試料)を基準に
して算出した。
Tangent line (
Draw e). Point of contact between tangent line (e) and baseline
seek. The shaded area surrounded by the tangent line (e) and the endothermic curve corresponds to the total heat of fusion of the crystals. Subsequently, the endothermic portion was divided at the 110° C. position, and the endothermic portion above 110° C. was treated as the endothermic amount on the high temperature side. The total crystal fusion heat amount and the high temperature side crystal fusion heat amount were calculated by determining the area (shaded area in FIG. 1) of each crystal and using indium (Dupont DSC standard sample) as a reference.

(その他の物性の測定方法) (1)メルトフローインデックス JIS  K  6758に従った。(Methods for measuring other physical properties) (1) Melt flow index According to JIS K 6758.

(2)破断点強度および伸び JIS  K  6301の引張り試験法に基づき、温
度25℃、引張り速度500mmZ分で測定された。
(2) Strength at break and elongation Measured based on the tensile test method of JIS K 6301 at a temperature of 25° C. and a tensile speed of 500 mmZ.

(3)アイゾツト衝撃強度 JIS  K  7110に従った。(3) Izotsu impact strength In accordance with JIS K 7110.

(4)成形物の表面ベタ付き性 前記(2)で用いた引張り試験用成形シートの表面肌の
感触より下記基準で示した。
(4) Surface stickiness of molded product The texture of the surface of the molded sheet for tensile test used in (2) above was evaluated based on the following criteria.

ベタ付きが全く感じられない試料:◎ ベタ付きがほとんど感じられない試料二〇ベタ付きがや
や感じられる試料:Δ ベタ付きが明らかに感じられる試料:×(5)透明性 本発明のエチレン系共重合体およびそのポリプロピレン
樹脂組成物をそれぞれ0.5mlのシートに成形した後
、各実施例および比較例の試料間で比較して下記基準で
示した。
Sample with no stickiness: ◎ Sample with almost no stickiness: 20 Sample with slight stickiness: Δ Sample with obvious stickiness: ×(5) Transparency The ethylene-based copolymer of the present invention After molding the polymer and its polypropylene resin composition into sheets of 0.5 ml each, the samples of each Example and Comparative Example were compared and shown according to the following criteria.

非常に透明性に優れている試料:◎ 透明性がよい試料      :○ 透明性が劣る試料      :× 実施例1 内容量48Nの連続重合装置をN2ガスで充分に置換し
た後、エチルセスキアルミニウムクロリド12.9g/
Hr、オキシ三塩化バナジウム0.3g/Hr、n−ヘ
キサン181/Hrおよび1−ブテン1540g/Hr
を連続供給し、水素を6Nl/Hの流量で吹込み、20
℃に維持し、圧力が3.0kg/cdGになるようにエ
チレンを連続供給して共重合を行なった。なお滞留時間
は1時間とした。重合の結果、本発明のエチレン系共重
合体900g/Hrが得られ、得られた共重合体の分析
および物性評価の結果を第1表に示した。
Sample with very good transparency: ◎ Sample with good transparency: ○ Sample with poor transparency: × Example 1 After sufficiently replacing a continuous polymerization device with an internal capacity of 48N with N2 gas, ethylsesquialuminum chloride 12 .9g/
Hr, vanadium oxytrichloride 0.3g/Hr, n-hexane 181/Hr and 1-butene 1540g/Hr
was continuously supplied, hydrogen was blown in at a flow rate of 6Nl/H, and 20
The copolymerization was carried out by maintaining the temperature at 0.degree. C. and continuously supplying ethylene at a pressure of 3.0 kg/cdG. Note that the residence time was 1 hour. As a result of the polymerization, 900 g/Hr of the ethylene copolymer of the present invention was obtained, and the results of analysis and physical property evaluation of the obtained copolymer are shown in Table 1.

実施例2 実施例1と同様の装置を用い、エチルセスキアルミニウ
ムクロリドを4.3g/Hr、1−ブテンを700 g
/Hrで連続供給し、圧力を3.5kg/−Gになるよ
うにエチレンを連続供給し、その他は実施例1と同様に
処理して得られた共重合体の分析および物性評価の結果
を第1表に示した。一実施例3 実施例1と同様の装置を用い、圧力を2.8kg/cj
Gになるようにエチレンを連続供給し、その他は実施例
1と同様に処理して得られた共重合体の分析および物性
評価の結果を第1表に示した。
Example 2 Using the same equipment as in Example 1, 4.3 g/Hr of ethylsesquialuminum chloride and 700 g of 1-butene
/Hr, ethylene was continuously supplied at a pressure of 3.5 kg/-G, and the other conditions were the same as in Example 1. The results of analysis and physical property evaluation of the copolymer obtained were as follows. It is shown in Table 1. Example 3 Using the same device as Example 1, the pressure was 2.8 kg/cj
Table 1 shows the results of the analysis and physical property evaluation of the copolymer obtained by continuously supplying ethylene so as to obtain G and otherwise treating the same as in Example 1.

比較例1および2 実施例1と同様の装置を用い、それぞれ圧力を2.0k
g/Cl1iG(比較例1)および5.0 kg/cI
aG (比較例2)になるようにエチレンを連続供給し
、その他は実施例1と同様に処理して得られた共重合体
の分析および物性評価の結果を第1表に示した。
Comparative Examples 1 and 2 Using the same equipment as in Example 1, the pressure was 2.0 k, respectively.
g/Cl1iG (Comparative Example 1) and 5.0 kg/cI
Table 1 shows the results of analysis and physical property evaluation of a copolymer obtained by continuously supplying ethylene so as to obtain aG (Comparative Example 2) and otherwise treating the copolymer in the same manner as in Example 1.

エチレン含量が70重量%未満の比較例1の場合には実
施例の場合に比べて破断点強度が劣り、またM w /
 M nが大きくなり、表面のベタ付きが感じられた。
In the case of Comparative Example 1 in which the ethylene content was less than 70% by weight, the strength at break was inferior to that in the Examples, and M w /
Mn increased and the surface felt sticky.

また95重量%を越える比較例2の場合には透明性が低
下した。
Moreover, in the case of Comparative Example 2 where the content exceeded 95% by weight, the transparency decreased.

比較例3 実施例1と同様の装置を用い、n−ヘキサンを2Q1/
Hr、1−ブテンを1000kg/Hrで連続供給し、
圧力を2.0kg/cdGになるようにエチレンを連続
供給し、その他は実施例1と同様に処理して得られた共
重合体の分析および物性評価の結果を第1表に示した。
Comparative Example 3 Using the same apparatus as in Example 1, n-hexane was converted into 2Q1/
Hr, 1-butene is continuously supplied at 1000 kg/Hr,
Table 1 shows the results of the analysis and physical property evaluation of the copolymer obtained by continuously supplying ethylene at a pressure of 2.0 kg/cdG and otherwise treating the copolymer in the same manner as in Example 1.

得られた共重合体は、DSC測定で120℃に見られる
ポリエチレンの部分結晶が見られず、破断点強度が劣っ
ていた。
In the obtained copolymer, no partial polyethylene crystals observed at 120° C. were observed by DSC measurement, and the strength at break was poor.

比較例4 実施例1と同様の装置を用い、n−ヘキサンを18、g
/Hr、1−ブテンを2160g/Hrで連続供給し、
圧力を8.8 kg/ crA Gになるようにエチレ
ンを連続供給し、その他は実施例1と同様に処理して得
られた共重合体の分析および物性評価の結果を第1表に
示した。
Comparative Example 4 Using the same apparatus as in Example 1, 18 g of n-hexane was
/Hr, 1-butene was continuously supplied at 2160g/Hr,
Table 1 shows the results of the analysis and physical property evaluation of the copolymer obtained by continuously supplying ethylene so that the pressure was 8.8 kg/crA G, and otherwise treating the same as in Example 1. .

得られた共重合体はポリエチレンの結晶が多く、透明性
が悪く、また柔軟性にも劣っていた。
The obtained copolymer contained many polyethylene crystals, had poor transparency, and was also poor in flexibility.

比較例5 実施例1と同様の装置を用い、エチルセスキアルミニウ
ムクロリドを1.1g/Hrで連続供給し、その他は実
施例1と同様に処理して得られた共重合体の分析および
物性評価の結果を第1表に示した。
Comparative Example 5 Analysis and physical property evaluation of a copolymer obtained by using the same apparatus as in Example 1, continuously supplying ethylsesquialuminum chloride at 1.1 g/Hr, and otherwise treating in the same manner as in Example 1. The results are shown in Table 1.

得られた共重合体はGPC測定でM w / M nが
6.1と大きく、表面のベタ付きが感じられた。
The obtained copolymer had a large M w / M n of 6.1 as measured by GPC, and the surface appeared sticky.

以下余白 実施例4〜6 実施例1で得られた共重合体(イ)と結晶性ポリプロピ
レン樹脂(三菱油化(株)製、ノープレンBC−4) 
 (ロ)との(イ)/(ロ)−20/80.5/95.
50150の重量比の混合物650gを、内容量1iの
ニーグーを用いて予熱温度150℃、混練時間5分間で
混練りしてポリプロピレン樹脂組成物を得た。次いで直
ちに50℃のロールを用いてシートにした後、カッター
を用いて角ベレットを得、この角ペレットのメルトイン
デックスを測定した。残った角ペレットを日本製鋼所(
株)16.5オンス インラインスクリュータイプの射
出成形機を用いてテストピースを作成した。
Below are blank spaces Examples 4 to 6 Copolymer (A) obtained in Example 1 and crystalline polypropylene resin (Noprene BC-4, manufactured by Mitsubishi Yuka Co., Ltd.)
(b) with (a)/(b)-20/80.5/95.
A polypropylene resin composition was obtained by kneading 650 g of a mixture having a weight ratio of 50150 using a Ni-Goo with an internal capacity of 1i at a preheating temperature of 150° C. for a kneading time of 5 minutes. Next, it was immediately formed into a sheet using a roll at 50° C., a square pellet was obtained using a cutter, and the melt index of this square pellet was measured. The remaining square pellets are sent to Japan Steel Works (
A test piece was prepared using a 16.5 oz. inline screw type injection molding machine.

射出成形条件は第2表のとおりである。The injection molding conditions are shown in Table 2.

第   2   表 得られた樹脂組成物の物性評価の結果を第3表に示した
Table 2 Table 3 shows the results of evaluating the physical properties of the resin compositions obtained.

比較例6〜8 それぞれ比較例3〜5で得られたエチレン系共重合体を
用い、その他は実施例4と同様に処理してポリプロピレ
ン樹脂組成物を得た。得られた樹脂組成物の物性評価の
結果を第3表に示した。
Comparative Examples 6 to 8 Polypropylene resin compositions were obtained by using the ethylene copolymers obtained in Comparative Examples 3 to 5, respectively, and otherwise treating in the same manner as in Example 4. The results of physical property evaluation of the obtained resin composition are shown in Table 3.

比較例7の場合には実施例4の場合に比べて耐衝撃性が
劣り、また比較例6および8の場合には破断点強度が低
下していた。
In the case of Comparative Example 7, the impact resistance was inferior to that in Example 4, and in the cases of Comparative Examples 6 and 8, the strength at break was decreased.

以下余白Margin below

Claims (2)

【特許請求の範囲】[Claims] (1)エチレンと1−ブテンを主重合単位とし、下記(
A)〜(E)の要件を満足する実質上線状構造を有する
エチレン系共重合体(イ)を少なくとも5重量%含有す
るエチレン系共重合体組成物。 (A)共重合体中のエチレン含量が85〜95モル%で
あること、 (B)重量平均分子量が3万〜20万であること、(C
)GPCで測定した分子量分布が単一のピークで、かつ
重量平均分子量(Mw)と数平均分子量(Mn)との比
Mw/Mnが2〜5であること、(D)示差走査型熱量
計で求められる融点が高温側と低温側の2個存在し、高
温側融点(Th)が115〜125℃、低温側融点(T
l)が40〜90℃に存在すること、 (E)示差走査型熱量計で求められる115℃以上の温
度における結晶融解熱量(Hh)の全結晶融解熱量(H
t)に対する割合が0.015≦Hh/Ht≦0.15
であること。
(1) The main polymerization units are ethylene and 1-butene, and the following (
An ethylene copolymer composition containing at least 5% by weight of an ethylene copolymer (a) having a substantially linear structure that satisfies the requirements of A) to (E). (A) The ethylene content in the copolymer is 85 to 95 mol%, (B) The weight average molecular weight is 30,000 to 200,000, (C
) The molecular weight distribution measured by GPC is a single peak, and the ratio Mw/Mn of weight average molecular weight (Mw) to number average molecular weight (Mn) is 2 to 5, (D) Differential scanning calorimeter There are two melting points, one on the high temperature side and one on the low temperature side.
(E) The total heat of crystal fusion (Hh) at a temperature of 115°C or higher determined by a differential scanning calorimeter
t) is 0.015≦Hh/Ht≦0.15
To be.
(2)上記エチレン系共重合体(イ)と、結晶性ポリプ
ロピレン(ロ)とを含み、(イ)と(ロ)の混合比率(
(イ)/(ロ))が50/50〜5/95(重量比)で
あることを特徴とする、特許請求の範囲第1項に記載の
エチレン系共重合体組成物。
(2) Contains the above ethylene copolymer (a) and crystalline polypropylene (b), and the mixing ratio of (a) and (b) (
The ethylene copolymer composition according to claim 1, wherein (a)/(b)) is 50/50 to 5/95 (weight ratio).
JP61177390A 1986-07-28 1986-07-28 Ethylene copolymer composition Expired - Fee Related JPH0645731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61177390A JPH0645731B2 (en) 1986-07-28 1986-07-28 Ethylene copolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61177390A JPH0645731B2 (en) 1986-07-28 1986-07-28 Ethylene copolymer composition

Publications (2)

Publication Number Publication Date
JPS6333449A true JPS6333449A (en) 1988-02-13
JPH0645731B2 JPH0645731B2 (en) 1994-06-15

Family

ID=16030101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61177390A Expired - Fee Related JPH0645731B2 (en) 1986-07-28 1986-07-28 Ethylene copolymer composition

Country Status (1)

Country Link
JP (1) JPH0645731B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268220A (en) * 1989-05-11 1993-12-07 Nippon Petrochemicals Company, Limited Polypropylene film
US5389448A (en) * 1990-08-13 1995-02-14 W.R. Grace & Co.-Conn. Blends of polypropylene and ethylene copolymer and films made from the blend
JP2002256027A (en) * 1992-03-20 2002-09-11 Dow Chem Co:The Ethylenic copolymer
JP2022541941A (en) * 2019-09-30 2022-09-28 エルジー・ケム・リミテッド Polypropylene composite material
JP2022541943A (en) * 2019-09-30 2022-09-28 エルジー・ケム・リミテッド Polypropylene composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295759A (en) * 1976-02-06 1977-08-11 Mitsui Petrochem Ind Ltd Polypropylene compositions with good transparency and shock resistance
JPS6088016A (en) * 1983-10-21 1985-05-17 Mitsui Petrochem Ind Ltd Ethylene copolymer
JPS6320309A (en) * 1986-07-11 1988-01-28 Japan Synthetic Rubber Co Ltd Ethylene copolymer and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295759A (en) * 1976-02-06 1977-08-11 Mitsui Petrochem Ind Ltd Polypropylene compositions with good transparency and shock resistance
JPS6088016A (en) * 1983-10-21 1985-05-17 Mitsui Petrochem Ind Ltd Ethylene copolymer
JPS6320309A (en) * 1986-07-11 1988-01-28 Japan Synthetic Rubber Co Ltd Ethylene copolymer and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268220A (en) * 1989-05-11 1993-12-07 Nippon Petrochemicals Company, Limited Polypropylene film
US5389448A (en) * 1990-08-13 1995-02-14 W.R. Grace & Co.-Conn. Blends of polypropylene and ethylene copolymer and films made from the blend
JP2002256027A (en) * 1992-03-20 2002-09-11 Dow Chem Co:The Ethylenic copolymer
JP2002284904A (en) * 1992-03-20 2002-10-03 Dow Chem Co:The Film
JP2022541941A (en) * 2019-09-30 2022-09-28 エルジー・ケム・リミテッド Polypropylene composite material
JP2022541943A (en) * 2019-09-30 2022-09-28 エルジー・ケム・リミテッド Polypropylene composite material

Also Published As

Publication number Publication date
JPH0645731B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
JP3045548B2 (en) Polyethylene composition
EP0235956B1 (en) Polyolefin composition having high rigidity and high impact resistance
WO2014126839A1 (en) Ethylene-based polymer compositions with improved processibility
MXPA02011072A (en) Polyolefin compositions having improved low temperature toughness and methods therefor.
JPS6333449A (en) Ethylenic copolymer composition
CN113242883B (en) Polyolefin compositions with improved impact and whitening resistance
EP0994920B1 (en) Polyolefin compositions and films obtained therefrom
JP3372074B2 (en) Polyethylene composition
JPS6320309A (en) Ethylene copolymer and its production
JPH07103280B2 (en) Polypropylene resin composition for automobile interior and exterior parts
EP1541599B1 (en) Ethylene type ternary copolymer and propylene type resin composition
JPH0649287A (en) Ethylenic polymer composition
JPH0987330A (en) Ethylene based terpolymer and composition
JP3341568B2 (en) Propylene / ethylene block copolymer composition and method for producing the same
JPH06248127A (en) Polyethylene resin composition
WO2024073577A1 (en) Polyolefin compositions with excellent impact strength and light transmittance
JPH04130146A (en) Composition containing ethylene copolymer
JPS60202137A (en) Electromagnetic wave shielding material
JP3416880B2 (en) Resin composition
JPS6358176B2 (en)
JPH09255821A (en) Modifier for polypropylene-based resin and highly impact-resistant polypropylene-based resin composition
JPH0881594A (en) Polypropylene resin composition
JPH0616879A (en) Ethylene polymer composition
JPH09255822A (en) Modifier for polypropylene-based resin and whitening-resistant and impact-resistant polypropylene-based resin composition
KR20030054086A (en) Linear low density polyethylene resin composition with high impact strength

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees