JPS6333042B2 - - Google Patents

Info

Publication number
JPS6333042B2
JPS6333042B2 JP6039780A JP6039780A JPS6333042B2 JP S6333042 B2 JPS6333042 B2 JP S6333042B2 JP 6039780 A JP6039780 A JP 6039780A JP 6039780 A JP6039780 A JP 6039780A JP S6333042 B2 JPS6333042 B2 JP S6333042B2
Authority
JP
Japan
Prior art keywords
boiler
water
deaerator
economizer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6039780A
Other languages
Japanese (ja)
Other versions
JPS56157701A (en
Inventor
Katsushi Tanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP6039780A priority Critical patent/JPS56157701A/en
Publication of JPS56157701A publication Critical patent/JPS56157701A/en
Publication of JPS6333042B2 publication Critical patent/JPS6333042B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は主に廃熱用ボイラ等で比較的低温の
熱源を有するタイプのボイラの給水系統に関する
ものである。 現今のようにエネルギーの節約が唱えられてい
る時代においては、少しでも、エネルギーの無駄
を省き、熱効率の高いボイラを提供することが、
各メーカーの課題とされている。この様な課題の
解決策の一つとして、蒸発管を通過した熱ガスの
余熱によつて更にドラムへの給水を予熱するた
め、節炭器を使用する方法があるが、これについ
ては従来より既に一般に行なわれている。 ところで、従来の脱気器を有する一般的なボイ
ラは、第1図に示す様に、気水ドラム8から取り
出される蒸気の一部を加熱脱気に使用しているた
め、節炭器6で回収される熱量には一定の限界が
あつた。すなわち、払い出し蒸気量をAKg/Hと
し、脱気器1に使用する蒸気量をBKg/Hとする
と、節炭器6を通過する給水流量は(A+B)
Kg/Hとなり、また、気水ドラム8内のボイラ水
の飽和温度をT1℃、その水のエンタルピを
I1Kcal/Kgとし脱気器1内の給水の飽和温度を
T2℃その水のエンタルピをI2Kcal/Kgとすると、
節炭器6での回収熱量は(A+B)×(T1−T2
Kg/Hとなつた。というのは、ボイラ水の飽和温
度T1℃と、給水の飽和温度T2℃は、それぞれ気
水ドラム8と脱気器1の内圧によつて定まるた
め、その差(I1−I2)Kcal/Kgは、ボイラにより
常に一定となり、従つて、熱源の熱量に余裕があ
る場合にも、節炭器6から回収可能な熱量は、節
炭器6を通過する給水流量により決まることにな
る。 この発明は、上述の点に鑑み発明されたもの
で、節炭器を通過する給水流量を増やすことによ
つて、熱源からの回収可能な熱量を増加させ、熱
効率を向上することを目的としている。 以下、この発明の実施例を図面に基づいて説明
する。第2図において、1は給水を脱気するため
の脱気器で、蒸気消費量に相当する給水が給水調
節弁2を介して脱気器1内に流入するようになつ
ている。そして、脱気されかつ、予熱された給水
は、脱気器1から、給水ポンプ4および給水調節
弁5を介装した給水管3を通つて節炭器6へ送ら
れ、節炭器6で加熱された後、高温給水管7を通
つて、最後に気水ドラム8に流入する。更に、気
水ドラム8内のボイラ水は、循環ポンプ9により
蒸発管10へ強制的に送り出され、蒸発管10で
加熱された後再び気水ドラム8内へ戻される過程
で蒸気となり気水ドラム8から目的の消費先へ送
給される。11は熱交換室で、この室内を熱源と
しての廃熱ガスや燃焼ガス等が蒸発管10と節炭
器6に順次接触して通過するようになつている。
12は脱気器1と気水ドラム8を接続するボイラ
水循環管で、管12の途中に脱気器圧力調節弁1
3を介装してあり、ボイラ水の一部を脱気器1へ
送給するようにしてある。尚、ボイラ水だけでな
く、気水ドラム8入口の加熱給水も脱気に用いる
場合には、気水ドラム8入口付近から高温給水管
7を分岐7′して、ボイラ水循環管12に接続し
ておく。 上記したように、この発明のボイラは蒸気の代
わりに熱水を給水の脱気用に使用するのである
が、従来の脱気器1をそのまま用いる場合には、
第3図に示すように熱水を予め蒸気化するための
フラツシユタンクAを脱気器1の手前に介装す
る。また、フラツシユタンクを用いないときは、
脱気器1内に加熱水が蒸気化するのに必要な空室
を備えた脱気器を使用する必要がある。尚、特許
請求の範囲に記載の脱気器には、脱気の目的以外
に、給水の加熱を主目的として、従来蒸気を吹き
込んでいた圧力容器やタンク等を含むものとす
る。 次に、上記実施例のボイラが従来のボイラより
も熱効率が向上していることを明らかにするた
め、下記表〔〕に示される共通条件を与えて、
両ボイラの最低必要な総伝熱面積を求め、表
〔〕に示してみる。
The present invention mainly relates to a water supply system for a type of boiler having a relatively low temperature heat source, such as a waste heat boiler. In today's era where energy conservation is being advocated, it is important to reduce energy waste and provide boilers with high thermal efficiency.
This is considered an issue for each manufacturer. One solution to this problem is to use a energy saver to further preheat the water supplied to the drum using the residual heat of the hot gas that has passed through the evaporator tube, but this is not possible in the past. It is already commonly practiced. By the way, as shown in FIG. 1, in a general boiler with a conventional deaerator, a part of the steam taken out from the steam drum 8 is heated and degassed, so the energy saving device 6 There was a certain limit to the amount of heat that could be recovered. In other words, if the amount of steam discharged is AKg/H and the amount of steam used in the deaerator 1 is BKg/H, the flow rate of water supplied through the economizer 6 is (A+B).
Kg/H, and the saturation temperature of the boiler water in the air-water drum 8 is T 1 ℃, and the enthalpy of that water is
I 1 Kcal/Kg, and the saturation temperature of the feed water in deaerator 1 is
If the enthalpy of water at T 2 ℃ is I 2 Kcal/Kg, then
The amount of heat recovered by the economizer 6 is (A + B) x (T 1 - T 2 )
Kg/H. This is because the boiler water saturation temperature T 1 °C and the feed water saturation temperature T 2 °C are determined by the internal pressures of the air-water drum 8 and the deaerator 1, respectively, so the difference (I 1I 2 ) Kcal/Kg is always constant due to the boiler, so even if there is a surplus of heat from the heat source, the amount of heat that can be recovered from the economizer 6 is determined by the flow rate of the feed water passing through the economizer 6. . This invention was invented in view of the above points, and aims to increase the amount of heat that can be recovered from the heat source and improve thermal efficiency by increasing the flow rate of water supply passing through the energy saver. . Embodiments of the present invention will be described below based on the drawings. In FIG. 2, reference numeral 1 denotes a deaerator for deaerating feed water, and feed water corresponding to the amount of steam consumed flows into the deaerator 1 via a feed water control valve 2. Then, the deaerated and preheated feed water is sent from the deaerator 1 to the energy saver 6 through the water supply pipe 3 in which the water supply pump 4 and the water supply adjustment valve 5 are interposed. After being heated, it passes through the high temperature water supply pipe 7 and finally flows into the air/water drum 8. Further, the boiler water in the steam drum 8 is forcibly sent to the evaporation pipe 10 by the circulation pump 9, heated in the evaporation pipe 10, and then turned into steam in the process of being returned to the steam drum 8. 8 and is sent to the intended consumer. Reference numeral 11 denotes a heat exchange chamber, through which waste heat gas, combustion gas, etc. as a heat source sequentially contact and pass through the evaporator tube 10 and the economizer 6.
12 is a boiler water circulation pipe connecting the deaerator 1 and the air-water drum 8, and a deaerator pressure control valve 1 is installed in the middle of the pipe 12.
3 is interposed, and a part of the boiler water is fed to the deaerator 1. If not only the boiler water but also the heated water supplied at the inlet of the air-water drum 8 is to be used for deaeration, the high-temperature water supply pipe 7 should be branched 7' from near the inlet of the air-water drum 8 and connected to the boiler water circulation pipe 12. I'll keep it. As mentioned above, the boiler of the present invention uses hot water instead of steam for deaeration of the feed water, but if the conventional deaerator 1 is used as is,
As shown in FIG. 3, a flash tank A for pre-vaporizing hot water is installed in front of the deaerator 1. Also, when not using a flash tank,
It is necessary to use a deaerator with the necessary space in the deaerator 1 for the heated water to vaporize. Note that the deaerator described in the claims includes a pressure vessel, a tank, etc. into which steam has conventionally been blown for the main purpose of heating feed water in addition to the purpose of deaeration. Next, in order to clarify that the boiler of the above example has improved thermal efficiency than the conventional boiler, the common conditions shown in the table [] below are given,
The minimum required total heat transfer area for both boilers is determined and shown in the table [ ].

【表】【table】

【表】【table】

【表】 表〔〕によつてこの発明のボイラの総伝熱面
積は、従来のボイラの約56.9%で足りることがわ
かる。このことは両ボイラの総伝熱面積が同じで
あれば、本発明のボイラの方が熱の回収量が多
く、従つて熱効率が高いことを意味する。 更に、ここで、この発明のボイラにおける熱回
収方法が従来の方法よりも優れている理由を追記
すると、前記表〔〕において節炭器を通過する
給水流量が、従来のボイラではW5=138950Kg/
hであるのに対し、本発明のボイラではW5
236540Kg/hであるから、本発明のボイラの方が
従来のボイラよりW5−W5゜=236540−138950=
97590Kg/h程、給水流量が多くなり、また、節
炭器を通過することにより給水が吸収する1Kg単
位エンタルピは、Iw3−Iw2=218.6−119.92=
98.68Kcal/Kgであるから、結局、この発明のボ
イラの方が98.68×97590=9630181Kcal/h程、
従来のボイラよりも節炭器の熱回収量が多くなる
ということがわかる。 なお、両ボイラとも脱気器1で必要な給水脱気
のための熱量は、(Iw2−Iw1)×W1=(119.92−
20)×117530=11.74×106Kcal/hであるが、従
来のボイラの場合、これに気水ボイラ8から送給
する蒸気の一部を充当その熱量は、(Is4−Iw2)×
(W5−W0)=(668.25−119.92)×(138950−
117530)=11.74×106Kcal/hとなり、一方、こ
の発明のボイラの場合、これに気水ドラム8また
は、ドラム8入口の加熱給水を充当し、その熱量
は(Iw3pr4−Iw2)×(w5−w0)=(218.6−119.92)
×(236540−117530)=11.74×106Kcal/hとなる
から、それぞれのボイラにおいて略一致し、かつ
両ボイラとも給水の脱気に必要な熱量も充たして
いる。 以上、説明したように、この発明のボイラの給
水系は、従来の蒸気に代えて、気水ドラム内のボ
イラ水又は節炭器出口の熱水の少なくとも一方を
給水の加熱脱気に使用するようにして、脱気に蒸
気を用いるボイラの熱回収方法に比べて、節炭器
を通過する給水流量を大幅に増大させたから、節
炭器による熱回収量が増加し、ボイラの熱効率を
向上させることができる。特にこの発明は比較的
低温の熱源を有する廃熱ボイラに好適であり、ま
た従来の方法に代えて、この発明を採用すること
により得られる効果は、給水の脱気に要する熱量
が多い比較的高温の加熱脱気器を使用するボイラ
ほど顕著となる。 更に、この発明は、従来のボイラに比べてその
蒸気供給量が等しい場合には、蒸発管や節炭器の
伝熱面積を小さくできるから、ボイラの製作費を
削減でき、その上、気水ドラム又は節炭器出口付
近から脱気器への配管を設けるだけで、既存のボ
イラをこの発明のボイラに変更でき、しかも、そ
の変更が容易である等の効果を奏する。
[Table] From the table [], it can be seen that the total heat transfer area of the boiler of the present invention is approximately 56.9% of that of the conventional boiler. This means that if the total heat transfer area of both boilers is the same, the boiler of the present invention recovers more heat and therefore has higher thermal efficiency. Furthermore, here, to add the reason why the heat recovery method in the boiler of this invention is superior to the conventional method, in the table [] above, the feed water flow rate passing through the economizer is W 5 = 138950 Kg in the conventional boiler. /
h, whereas in the boiler of the present invention W 5 =
236540Kg/h, the boiler of the present invention has a lower W 5 −W 5゜=236540−138950= than the conventional boiler.
The water supply flow rate increases by 97590Kg/h, and the enthalpy per kg absorbed by the water supply after passing through the economizer is Iw 3 - Iw 2 = 218.6 - 119.92 =
Since it is 98.68Kcal/Kg, in the end, the boiler of this invention is about 98.68×97590=9630181Kcal/h,
It can be seen that the amount of heat recovered by the economizer is greater than that of the conventional boiler. The amount of heat required for deaeration of feed water in deaerator 1 for both boilers is (Iw 2 - Iw 1 ) x W 1 = (119.92 -
20) × 117530 = 11.74 × 10 6 Kcal/h, but in the case of a conventional boiler, part of the steam sent from the steam-water boiler 8 is used for this, and the amount of heat is (Is 4 − Iw 2 ) ×
( W5W0 )=(668.25−119.92)×(138950−
117530) = 11.74×10 6 Kcal/h. On the other hand, in the case of the boiler of this invention, the air-water drum 8 or the heated water supply at the inlet of the drum 8 is used, and the amount of heat is (Iw 3pr4 − Iw 2 )× ( w5w0 )=(218.6−119.92)
×(236540−117530)=11.74×10 6 Kcal/h, which is approximately the same for each boiler, and both boilers also satisfy the amount of heat required for degassing the feed water. As explained above, the boiler water supply system of the present invention uses at least one of the boiler water in the air-water drum or the hot water at the exit of the economizer instead of conventional steam for heating and degassing of the feed water. In this way, compared to the boiler heat recovery method that uses deaeration steam, the flow rate of feed water passing through the economizer is significantly increased, which increases the amount of heat recovered by the economizer and improves the thermal efficiency of the boiler. can be done. In particular, this invention is suitable for waste heat boilers that have a relatively low-temperature heat source, and the effects obtained by adopting this invention in place of conventional methods are This is more noticeable in boilers that use high-temperature heating deaerators. Furthermore, compared to conventional boilers, when the amount of steam supplied is the same, the heat transfer area of the evaporator tube and economizer can be made smaller, so the manufacturing cost of the boiler can be reduced, and the An existing boiler can be changed to the boiler of the present invention by simply providing piping from the drum or near the exit of the economizer to the deaerator, and the change is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のボイラのシステム図、第2図は
この発明のボイラの実施例を示すシステム図、第
3図はこの発明の他の実施例の一部を示すシステ
ム図である。 1…脱気器、2…給水調節弁、3…給水管、4
…給水ポンプ、5…給水調節弁、6…節炭器、
7,7′…高温給水管、8…気水ドラム、9…循
環ポンプ、10…蒸発管、11…熱交換器、12
…ボイラ水循環管、13…脱気器圧力調節弁、A
…フラツシユタンク。
FIG. 1 is a system diagram of a conventional boiler, FIG. 2 is a system diagram showing an embodiment of the boiler of the present invention, and FIG. 3 is a system diagram showing a part of another embodiment of the present invention. 1... Deaerator, 2... Water supply control valve, 3... Water supply pipe, 4
... water supply pump, 5 ... water supply control valve, 6 ... energy saver,
7, 7'...High temperature water supply pipe, 8...Air/water drum, 9...Circulation pump, 10...Evaporation pipe, 11...Heat exchanger, 12
... Boiler water circulation pipe, 13 ... Deaerator pressure control valve, A
...Flat tank.

Claims (1)

【特許請求の範囲】 1 脱気器で脱気したボイラ給水を節炭器で昇温
し、ボイラに給水するボイラの給水系において、
脱気器内の給水を節炭器に導き節炭器で昇温した
給水をドラムに導きドラム内のボイラ水の一部を
脱気器に導いて、ドラム内のボイラ水の一部を再
循環することを特徴とするボイラの給水系統。 2 脱気器で脱気したボイラ給水を節炭器で昇温
し、ボイラに給水するボイラの給水系において、
脱気器内の給水を節炭器に導き節炭器で昇温した
給水をボイラに導く途中で、その一部を脱気器に
分流し、節炭器を出た給水の一部を再循環するこ
とを特徴とするボイラの給水系統。
[Scope of Claims] 1. In a boiler water supply system in which boiler feed water deaerated by a deaerator is heated by an economizer and water is supplied to the boiler,
The feed water in the deaerator is led to the economizer, and the feed water heated by the economizer is led to the drum. A part of the boiler water in the drum is led to the deaerator, and a part of the boiler water in the drum is recycled. A boiler water supply system characterized by circulation. 2. In the boiler water supply system where the boiler feed water is deaerated by the deaerator, heated by the economizer, and then supplied to the boiler,
The feed water in the deaerator is led to the economizer, and the feed water heated by the economizer is led to the boiler, and part of it is diverted to the deaerator, and part of the feed water that left the economizer is recycled. A boiler water supply system characterized by circulation.
JP6039780A 1980-05-06 1980-05-06 Heat recovery of boiler Granted JPS56157701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6039780A JPS56157701A (en) 1980-05-06 1980-05-06 Heat recovery of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6039780A JPS56157701A (en) 1980-05-06 1980-05-06 Heat recovery of boiler

Publications (2)

Publication Number Publication Date
JPS56157701A JPS56157701A (en) 1981-12-05
JPS6333042B2 true JPS6333042B2 (en) 1988-07-04

Family

ID=13140977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6039780A Granted JPS56157701A (en) 1980-05-06 1980-05-06 Heat recovery of boiler

Country Status (1)

Country Link
JP (1) JPS56157701A (en)

Also Published As

Publication number Publication date
JPS56157701A (en) 1981-12-05

Similar Documents

Publication Publication Date Title
JP4540719B2 (en) Waste heat boiler
RU2152527C1 (en) Method of operation of gas-and-steam turbine plant and plant operating according to this method
JPH0626606A (en) Method of operating steam generator and steam generator
KR101584418B1 (en) Boiler plant
JP2008298308A (en) Supply water preheating boiler
RU2152521C1 (en) Condensate degassing method and device
KR870001256B1 (en) Exhaust gas heat recovery system in internal combustion engine
CN208139253U (en) Boiler supply water deaerating system
JPS6333042B2 (en)
JP3291075B2 (en) Boiler water supply system
JPH0440524B2 (en)
JPH09119604A (en) Condensate deaerating device for exhaust gas boiler
JPH01280604A (en) Method of improving efficiency of steam process
CN220119351U (en) Steam boiler with high heat efficiency and heat supply system thereof
JPH05322105A (en) Device for heating feedwater for boiler
JP2023037664A (en) Latent heat recovery economizer
JP6745971B2 (en) Vertical heat recovery steam generator
JPH07117292B2 (en) Water heater
SU909413A1 (en) Boiler unit
US1736411A (en) Steam-generating installation
JPH08170801A (en) Vertical type exhaust heat boiler
JPS6047481B2 (en) Internal combustion engine exhaust gas heat recovery method and device
JPS5930885B2 (en) Internal combustion engine exhaust gas heat recovery device
JPS59103904A (en) Regenerated-steam cycle plant
JPS6137923Y2 (en)