JPS5930885B2 - Internal combustion engine exhaust gas heat recovery device - Google Patents

Internal combustion engine exhaust gas heat recovery device

Info

Publication number
JPS5930885B2
JPS5930885B2 JP54170602A JP17060279A JPS5930885B2 JP S5930885 B2 JPS5930885 B2 JP S5930885B2 JP 54170602 A JP54170602 A JP 54170602A JP 17060279 A JP17060279 A JP 17060279A JP S5930885 B2 JPS5930885 B2 JP S5930885B2
Authority
JP
Japan
Prior art keywords
exhaust gas
steam
piping system
separation drum
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54170602A
Other languages
Japanese (ja)
Other versions
JPS5696105A (en
Inventor
嘉春 田中
耕 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP54170602A priority Critical patent/JPS5930885B2/en
Publication of JPS5696105A publication Critical patent/JPS5696105A/en
Publication of JPS5930885B2 publication Critical patent/JPS5930885B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の排ガス回収装置に係り、特にディー
ゼル機関やガスタービン等の内燃機関の排ガスを利用し
て蒸気を発生させ、これを発動機タービンの駆動用蒸気
や雑用蒸気等に使用するための内燃機関の排ガス回収装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas recovery device for an internal combustion engine, and in particular, generates steam by using exhaust gas from an internal combustion engine such as a diesel engine or a gas turbine, and uses the steam to drive a motor turbine or the like. This invention relates to an exhaust gas recovery device for an internal combustion engine used for miscellaneous steam, etc.

従来、船舶等におけるディーゼル機関の排ガス熱を回収
する装置として、第1図に示すような排ガスエコノマイ
ザによって蒸気を発生させるものが知られている。
2. Description of the Related Art Conventionally, as a device for recovering exhaust gas heat from a diesel engine in a ship or the like, a device that generates steam using an exhaust gas economizer as shown in FIG. 1 has been known.

第1図における装置系統は、予熱部11、蒸発部12お
よび過熱部13の各配管系を内蔵する排ガスエコノマイ
ザ1と、この排ガスエコノマイザの予熱部11および蒸
発部12へ供給される水を加熱するための給水加熱器4
と、蒸発部12を出た気水混合流体から水蒸気を分離す
るための水蒸気分離ドラム2と、過熱部13からの過熱
蒸気が供給されるタービン21(これは発電機22に連
結されている)とから主として構成されている。
The equipment system in FIG. 1 includes an exhaust gas economizer 1 that includes piping systems for a preheating section 11, an evaporation section 12, and a superheating section 13, and heats water supplied to the preheating section 11 and the evaporation section 12 of this exhaust gas economizer. Water supply heater for 4
, a steam separation drum 2 for separating steam from the steam-water mixed fluid exiting the evaporation section 12, and a turbine 21 (which is connected to a generator 22) to which superheated steam from the superheating section 13 is supplied. It is mainly composed of.

上記構成において、ディーゼル機関より吐出される排ガ
スは、図中矢印喝で示すようにエコノマイザ1内に導入
され、蒸気を発生させてその熱量が回収される。
In the above configuration, exhaust gas discharged from a diesel engine is introduced into the economizer 1 as shown by the arrow in the figure, and steam is generated and its heat quantity is recovered.

排ガスエコノマイザ1への給水は、主給水ポンプ7によ
り行なわれ、表面式給水加熱器4で加熱された後、補助
ボイラの蒸気ドラムと兼用されている主蒸気分離ドラム
2に吐出され、排ガスエコノマイザ1の蒸発部12から
導かれた気水混合流体と混合され、ボイラ循環水として
給水循環ポンプ3により表面式給水加熱器4に戻され、
さらに配管4Aを経て排ガスエコノマイザ1の予熱部1
1に導入され、次いで蒸発部12にて蒸気を発生させた
後、気水混合流体として主蒸気分離ドラム2へ吐出され
る。
Water is supplied to the exhaust gas economizer 1 by the main water supply pump 7, heated by the surface type feed water heater 4, and then discharged to the main steam separation drum 2 which also serves as the steam drum of the auxiliary boiler. It is mixed with the steam/water mixed fluid led from the evaporation section 12 and returned to the surface type feed water heater 4 by the feed water circulation pump 3 as boiler circulating water,
Furthermore, the preheating section 1 of the exhaust gas economizer 1 is passed through the pipe 4A.
1, and then, after generating steam in the evaporator 12, it is discharged to the main steam separation drum 2 as a steam/water mixed fluid.

主蒸気分離ドラム2で分離された飽和蒸気は、一部燃料
油加熱等のため雑用蒸気として使用され、そのドレンは
ドレンタンク26に導かれ、その他の主蒸気は排ガスエ
コノマイザ1の過熱部13に導かれ、過熱蒸気としてタ
ーボ発電機用蒸気タービン21を駆動し、排気を復水器
23にて復水後、復水ポンプ24によりドレンタンク2
6に吐出され、次いで主給水ポンプ7により吸引され、
給水加熱器4に戻される。
Part of the saturated steam separated by the main steam separation drum 2 is used as miscellaneous steam for heating fuel oil, etc. The drain is led to the drain tank 26, and the other main steam is sent to the superheating section 13 of the exhaust gas economizer 1. The exhaust gas is guided as superheated steam to drive the turbo generator steam turbine 21, and after being condensed in the condenser 23, it is sent to the drain tank 2 by the condensate pump 24.
6, and then sucked in by the main water pump 7,
The water is returned to the feed water heater 4.

上記従来装置の排ガスエコノマイザ1における排ガス側
と循環給水側の温度変化を第2図の実線で示す。
The temperature changes on the exhaust gas side and the circulating water supply side in the exhaust gas economizer 1 of the conventional device described above are shown by solid lines in FIG.

第2図において、Tiは排ガスエコノマイザ1の排ガス
入口温度、Toはその排ガス出口温度、T1は排ガスエ
コノマイザ1の予熱部11と蒸発部12との間の排ガス
温度、T2は同じく蒸発部12と過熱部13との間の排
ガス温度、tiは予熱部11の循環水入口温度、t8は
蒸発部12の循環給水の飽和温度、toは過熱部13の
過熱蒸気出口温度、Δtoは予熱部11の循環給水入口
温度tiと排ガス出口温度Toのターミナル温度差、Δ
t□は蒸発部12の循環給水出口温度tsと排ガス入口
温度T1のターミナル温度差である。
In Fig. 2, Ti is the exhaust gas inlet temperature of the exhaust gas economizer 1, To is the exhaust gas outlet temperature, T1 is the exhaust gas temperature between the preheating section 11 and the evaporation section 12 of the exhaust gas economizer 1, and T2 is the temperature between the evaporation section 12 and superheating. ti is the circulating water inlet temperature of the preheating section 11, t8 is the saturation temperature of the circulating water supply of the evaporation section 12, to is the superheated steam outlet temperature of the superheating section 13, and Δto is the circulating water temperature of the preheating section 11. Terminal temperature difference between water supply inlet temperature ti and exhaust gas outlet temperature To, Δ
t□ is the terminal temperature difference between the circulating water supply outlet temperature ts of the evaporator 12 and the exhaust gas inlet temperature T1.

ところでディーゼル機関の排ガス熱回収率を上げるため
には、排ガスエコノマイザ1の排ガス出口温度Toをで
きるだけ下げることが必要である。
By the way, in order to increase the exhaust gas heat recovery rate of a diesel engine, it is necessary to lower the exhaust gas outlet temperature To of the exhaust gas economizer 1 as much as possible.

また排ガスエコノマイザ1の予熱部11人口の循環給水
温度tiおよび排ガス出口温度Toをある一定温度以上
に保持して排ガスエコノマイザチューブの表面温度を上
げ、排ガス中に含まれる硫黄分による硫酸腐食を防止す
ると、および排ガスエコノマイザ1の蒸発部12におけ
る気水混合蒸気の飽和温度t8と排ガス温度T1のター
ミナル温度差Δt1を排ガスエコノマイザ1の寸法上適
度なものとするため、通常15〜20℃に抑えることが
重要である。
In addition, the circulating water supply temperature ti of the preheating section 11 of the exhaust gas economizer 1 and the exhaust gas outlet temperature To are maintained above a certain temperature to raise the surface temperature of the exhaust gas economizer tube to prevent sulfuric acid corrosion due to sulfur contained in the exhaust gas. , and the terminal temperature difference Δt1 between the saturation temperature t8 of the steam/water mixture vapor in the evaporation section 12 of the exhaust gas economizer 1 and the exhaust gas temperature T1 can be kept to an appropriate value in terms of the dimensions of the exhaust gas economizer 1, so it is usually possible to suppress it to 15 to 20°C. is important.

しかし、排ガスエコノマイザ1の予熱部11人口の循環
給水温度tiを一定温度(通常130℃〜140℃)と
した場合、排ガスエコノマイザ1の蒸発部12における
ターミナル温度差Δt1を一定値(15〜20℃)に設
定すれば、排ガスエコノマイザ1出口の排ガス出口温度
を充分下げることができなくなり、従って排ガスの熱回
収率を高くすることができず、また排ガス出口温度To
を許容値まで下げて排ガス熱回収率を高めた場合、排ガ
スエコノマイザ1の予熱部11人口の給水温度tiが硫
酸腐食の可能性がある範囲まで低下せざるを得ないとい
う欠点があった。
However, if the circulating water supply temperature ti of the preheating section 11 of the exhaust gas economizer 1 is set to a constant temperature (usually 130 to 140 degrees Celsius), the terminal temperature difference Δt1 in the evaporation section 12 of the exhaust gas economizer 1 is set to a constant value (15 to 20 degrees Celsius). ), the exhaust gas outlet temperature of the exhaust gas economizer 1 outlet cannot be lowered sufficiently, and therefore the heat recovery rate of the exhaust gas cannot be increased, and the exhaust gas outlet temperature To
If the exhaust gas heat recovery rate is increased by lowering the temperature to an allowable value, there is a drawback that the feed water temperature ti of the preheating section 11 of the exhaust gas economizer 1 must fall to a range where sulfuric acid corrosion may occur.

本発明の目的は、上記した従来技術の欠点を除去し、排
ガスエコノマイザの伝熱管の硫酸腐食を防止しつつ、熱
回収率を高めることができる内燃機関の排ガス熱回収装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas heat recovery device for an internal combustion engine that can improve the heat recovery rate while eliminating the drawbacks of the prior art described above and preventing sulfuric acid corrosion of the heat exchanger tubes of an exhaust gas economizer. .

本発明は、予熱部、蒸発部および過熱部の各配管系を有
する排ガスエコノマイザと、排ガスエコノマイザの前記
配管系へ供給する水を加熱する給水加熱器と、排ガスエ
コノマイザを出た気水混合流体から蒸気を分離する主蒸
気分離ドラムと、この主蒸気分離ドラムで分離された蒸
気の少なくとも一部を排ガスエコノマイザの前記過熱部
に供給し、さらにこれを蒸気タービンに送る配管系と、
この蒸気タービンからの蒸気を復水器で凝縮させた後、
これを前記給水加熱器に循環させる配管系と、前記主蒸
気分離ドラムで分離された凝縮水を前記給水加熱器およ
び排ガスエコノマイザの蒸発部とにそれぞれ戻す配管系
と、前記主蒸気分離ドラムで分離された凝縮水を前記給
水加熱器に戻す配管系の途中に設けられた熱交換手段お
よび凝縮水の流量調整手段とを備えたことを特徴とし、
とれによって前記目的を達成せしめたものである。
The present invention provides an exhaust gas economizer that has piping systems for a preheating section, an evaporation section, and a superheating section, a feed water heater that heats water supplied to the piping system of the exhaust gas economizer, and an air-water mixed fluid that exits the exhaust gas economizer. a main steam separation drum that separates steam; a piping system that supplies at least a portion of the steam separated by the main steam separation drum to the superheating section of the exhaust gas economizer and further sends it to the steam turbine;
After condensing the steam from this steam turbine in a condenser,
A piping system that circulates the condensed water to the feed water heater, a piping system that returns the condensed water separated by the main steam separation drum to the feed water heater and the evaporation section of the exhaust gas economizer, and separates the condensed water by the main steam separation drum. It is characterized by comprising a heat exchange means and a condensed water flow rate adjustment means provided in the middle of a piping system that returns the condensed water to the feed water heater,
By doing so, the above objective was achieved.

以下、本発明の一実施例を図面によって説明する 第3図は本発明の一実施例を示す装置系統図である。Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. FIG. 3 is an apparatus system diagram showing one embodiment of the present invention.

この装置系統図において、第1図に示す従来装置と意な
る点は、表面式給水加熱器4の代りに混合式加熱器6を
用い、主蒸気分離ドラム2への給水配管を除き、また主
蒸気分離ドラム2から給水加熱器6への循環水の配管系
に熱交換手段としての低圧蒸気発生装置5、温水発生装
置54および雑用機器52を設けるとともに給水循環ポ
ンプ3から導かれる循環水を低圧蒸気発生装置5などの
熱交換手段と排ガスエコノマイザの蒸発部12とに供給
するための分岐した配管系を設け、この配管系の分岐点
に凝縮水の流量を調整する制御弁55を設けたことであ
る。
This system diagram is different from the conventional system shown in FIG. A low-pressure steam generator 5 as a heat exchange means, a hot water generator 54, and miscellaneous equipment 52 are installed in the circulating water piping system from the steam separation drum 2 to the feed water heater 6, and the circulating water led from the feed water circulation pump 3 is kept under low pressure. A branched piping system is provided for supplying heat exchange means such as the steam generator 5 and the evaporation section 12 of the exhaust gas economizer, and a control valve 55 for adjusting the flow rate of condensed water is provided at the branch point of this piping system. It is.

したがって第3図に示す装置系統図において、第1図に
示す装置系統図と同一または相当部分は同一符号で示し
ている。
Therefore, in the device system diagram shown in FIG. 3, the same or equivalent parts as in the device system diagram shown in FIG. 1 are indicated by the same symbols.

第3図において、主給水ポンプ7によって送水される給
水qfと、給水循環ポンプ3によって主蒸気分離ドラム
(またはボイラ蒸気ドラム)2から制御弁55を介して
吸引された循環水qrは、低圧蒸気発生装置5に送られ
、ここで低圧蒸気q、を発生させ、次いで温水発生装置
54にて温水(lhを発生させた後、混合式給水加熱器
6に供給される。
In FIG. 3, feed water qf fed by the main feed water pump 7 and circulating water qr sucked from the main steam separation drum (or boiler steam drum) 2 by the feed water circulation pump 3 via the control valve 55 are converted into low pressure steam. The water is sent to the generator 5, where it generates low-pressure steam q, and then the hot water generator 54 generates hot water (lh), which is then supplied to the mixed feed water heater 6.

温水発生装置54にて発生した温水(lhは温水供給ポ
ンプ51を介して雑用機器53の温熱に利用される。
Hot water (lh) generated by the hot water generator 54 is used to heat the miscellaneous equipment 53 via the hot water supply pump 51.

主給水ポンプ7より配管7Aを経て低圧蒸気発生装置5
に導入され、ここで発生した低圧蒸気q、は雑用機器類
52に導入された後、ドレンはドレンタンク26に返送
される。
Low pressure steam generator 5 from main water supply pump 7 via piping 7A
The low-pressure steam q, generated here is introduced into the miscellaneous equipment 52, and then the drain is returned to the drain tank 26.

混合式給水加熱器6に供給された水は、ここで熱交換さ
れた後排ガスエコノマイザ1の予熱部11を通り、内燃
機関の排ガスQi熱交換され、気水混合流体として主蒸
気ドラム2に導入される。
The water supplied to the mixed feed water heater 6 undergoes heat exchange there, passes through the preheating section 11 of the exhaust gas economizer 1, undergoes heat exchange with the exhaust gas Qi of the internal combustion engine, and is introduced into the main steam drum 2 as a steam-water mixed fluid. be done.

一方、給水循環ポンプ3によって主蒸気分離ドラム(ま
たはボイラの蒸気ドラム)2から吸引された循環水の一
部は制御弁55を介して排ガスエコノマイザ1の蒸発部
12に導入され、気水混合流体として主蒸気ドラム2に
導入される。
On the other hand, a part of the circulating water sucked from the main steam separation drum (or steam drum of the boiler) 2 by the feed water circulation pump 3 is introduced into the evaporation section 12 of the exhaust gas economizer 1 via the control valve 55, and the water-water mixture is The steam is introduced into the main steam drum 2 as a

主蒸気分離ドラム2によって分離された飽和蒸気の一部
は比較的圧力の高い蒸気を必要とする雑用蒸気qmとし
て機関用燃料油加熱器等の雑用機器25へ導かれ、他の
飽和蒸気は排ガスエコノマイザ1の過熱部13で過熱さ
れ、発電機用蒸気タービン21を1駆動した後、復水器
23で復水し、復水ポンプ24によってドレンタンク2
6へ導入される。
A part of the saturated steam separated by the main steam separation drum 2 is led to miscellaneous equipment 25 such as an engine fuel oil heater as miscellaneous steam qm that requires relatively high pressure steam, and the other saturated steam is used as exhaust gas. After being superheated in the superheating part 13 of the economizer 1 and driving the generator steam turbine 21, the water is condensed in the condenser 23 and sent to the drain tank 2 by the condensate pump 24.
6 will be introduced.

ここで、第5図に本願明細書記載の従来例と本発明との
排ガスエコノマイザの温度変化の差を示す。
Here, FIG. 5 shows the difference in temperature change of the exhaust gas economizer between the conventional example described in this specification and the present invention.

本発明によれば、排ガスエコノマイザ1の予熱部11に
おける循環給水側の温度勾配(t8−ti)が排ガス側
の温度勾配(TI TOつとほぼ等しくなるように給水
循環ポンプによる流量qrを決定することにより、第5
図に示す如く排ガスエコノマイザ1の予熱部11出入口
における排ガスと循環給水の各ターミナル温度差をほぼ
同じにすることができる。
According to the present invention, the flow rate qr by the water supply circulation pump is determined so that the temperature gradient (t8-ti) on the circulating water supply side in the preheating section 11 of the exhaust gas economizer 1 is approximately equal to the temperature gradient (TITO) on the exhaust gas side. According to the fifth
As shown in the figure, the temperature difference between the terminals of the exhaust gas and the circulating supply water at the inlet and outlet of the preheating section 11 of the exhaust gas economizer 1 can be made almost the same.

また低圧蒸気発生装置5および温水発生装置54により
排ガスエコノマイザ1への循環給水の入口温度tiを排
ガスエコノマイザチューブの硫酸腐食を防止し得る許容
最低温度(約130〜140℃)となるように設定でき
る。
Furthermore, the inlet temperature ti of the circulating water supply to the exhaust gas economizer 1 can be set by the low-pressure steam generator 5 and the hot water generator 54 to be the lowest allowable temperature (approximately 130 to 140°C) that can prevent sulfuric acid corrosion of the exhaust gas economizer tube. .

したがって硫酸腐食防止を考慮した上で、排ガスの熱回
収率を向上させることができる。
Therefore, the heat recovery rate of exhaust gas can be improved while taking prevention of sulfuric acid corrosion into consideration.

すなわち、第5図に示すように従来例では低温腐食防止
のため排ガスエコノマイザの予熱部11においては給水
加熱量Hfのみしか排熱を回収できなかったが、本発明
では循環給水入口温度tiを一定に保持しつつ排ガス出
口温度をTo→To′と低下させ、給水加熱量Hfのみ
ならず低圧蒸気(及び温水)の発生必要熱量Heも排熱
から回収することができる。
That is, as shown in FIG. 5, in the conventional example, only the feed water heating amount Hf could be recovered in the preheating section 11 of the exhaust gas economizer to prevent low-temperature corrosion, but in the present invention, the circulating feed water inlet temperature ti is kept constant. By lowering the exhaust gas outlet temperature from To to To' while maintaining the same temperature, not only the feed water heating amount Hf but also the required heat amount He for generating low pressure steam (and hot water) can be recovered from the exhaust heat.

一例として、常用出力12,300PSの2サイクルデ
イ一ゼル機関に上記の本発明システムを採用した場合、
第1図に示す従来のシステムと比較して回収熱量で約1
5係、ターボ発電機の出力で100〜120kWの増加
が期待できる。
As an example, when the above-mentioned system of the present invention is adopted in a two-stroke diesel engine with a normal output of 12,300 PS,
Compared to the conventional system shown in Figure 1, the amount of recovered heat is approximately 1
In Section 5, the output of the turbo generator can be expected to increase by 100 to 120 kW.

第2に制御弁55を設けているため、給水循環ポンプ3
によって主蒸気分離ドラム2から吸引された循環水を雑
用機器52などを設けた熱交換手段と、排ガスエコノマ
イザ1の蒸発部12とに適量ずつ供給できることから、
排ガスのみならず、主蒸気分離ドラム2の圧力P3、雑
用機器52.53の負荷変動に対しても対処でき、また
給水循環ポンプの必要動力を小さくすることができる。
Secondly, since the control valve 55 is provided, the water supply circulation pump 3
Since the circulating water sucked from the main steam separation drum 2 can be supplied in appropriate amounts to the heat exchange means provided with the miscellaneous equipment 52 and the like, and to the evaporation section 12 of the exhaust gas economizer 1,
It is possible to deal with not only the exhaust gas but also the pressure P3 of the main steam separation drum 2 and load fluctuations of the miscellaneous equipment 52, 53, and the power required for the feed water circulation pump can be reduced.

第3に排ガスエコノマイザ1の予熱部11において発生
する気水混合流体は直接主蒸気分離ドラム2に導入され
るようになっているため、予熱部11で蒸発が起っても
これは直ちに主蒸気分離ドラム2に導入される結果、ベ
ーパロックによる排ガスエコノマイザ1の損傷を最小限
に抑えることができる。
Thirdly, the steam/water mixed fluid generated in the preheating section 11 of the exhaust gas economizer 1 is directly introduced into the main steam separation drum 2, so even if evaporation occurs in the preheating section 11, it is immediately removed from the main steam. As a result of being introduced into the separation drum 2, damage to the exhaust gas economizer 1 due to vapor lock can be minimized.

本発明において、第3図の1点鎖線のブロックで示す熱
交換手段の代りに第4図に示す雑用機器52aを設け、
給水循環ポンプ3から制御弁55を介して導入される循
環水を温水加熱として使用後、混合式給水加熱器6へ返
すシステムとすることもできる。
In the present invention, a miscellaneous equipment 52a shown in FIG. 4 is provided in place of the heat exchange means shown in the block indicated by the dashed dotted line in FIG.
It is also possible to adopt a system in which circulating water introduced from the water supply circulation pump 3 via the control valve 55 is used for hot water heating and then returned to the mixed water supply heater 6.

本実施例によっても、上記同様の効果を有する。This embodiment also has the same effects as described above.

以上、本発明によれば、排ガスエコノマイザの循環給水
入口温度を一定値以上に保持して排ガスエコノマイザの
硫酸腐食を防止することができ、かつ排ガス出口温度を
給水入口温度とのターミナル温度差の許容最小値まで下
げることができるので、従来の排ガス熱回収システムよ
りも熱回収率を高めることができる。
As described above, according to the present invention, it is possible to prevent sulfuric acid corrosion of the exhaust gas economizer by maintaining the circulating water inlet temperature of the exhaust gas economizer above a certain value, and to allow for a terminal temperature difference between the exhaust gas outlet temperature and the water supply inlet temperature. Since the heat recovery rate can be lowered to the minimum value, the heat recovery rate can be higher than that of conventional exhaust gas heat recovery systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の排ガス熱回収の装置系統を示す図、第2
図は排ガスエコノマイザの各部の温度変化を示す図、第
3図は本発明の一例を示す装置系統図、第4図は第3図
における熱交換手段の変形例を示す図、第5図は従来例
と本発明との排ガスエコノマイザの温度変化の差を示す
グラフである。 1・・・排ガスエコノマイザ、2主蒸気分離ドラム、3
・・・給水循環ポンプ、4・・・表面式給水加熱器、5
・・・低圧蒸気発生器、6・・・混合式給水加熱器、7
・・・主給水ポンプ、11・・・予熱部、12・・・蒸
発部、13・・・過熱部、21・・・蒸気タービン、2
3・・・復水器、25.52.52a、53・・・雑用
機器、26・・・ドレンタンク、54・・・温水発生装
置。
Figure 1 shows the conventional exhaust gas heat recovery equipment system, Figure 2
The figure shows the temperature changes in each part of the exhaust gas economizer, Figure 3 is a system diagram of the device showing an example of the present invention, Figure 4 is a diagram showing a modification of the heat exchange means in Figure 3, and Figure 5 is the conventional one. It is a graph showing the difference in temperature change of the exhaust gas economizer of the example and the present invention. 1...Exhaust gas economizer, 2 main steam separation drum, 3
...Water circulation pump, 4...Surface water heater, 5
...Low pressure steam generator, 6...Mixed feed water heater, 7
... Main water pump, 11 ... Preheating section, 12 ... Evaporation section, 13 ... Superheating section, 21 ... Steam turbine, 2
3... Condenser, 25.52.52a, 53... Miscellaneous equipment, 26... Drain tank, 54... Hot water generator.

Claims (1)

【特許請求の範囲】 1 予熱部、蒸発部および過熱部の各配管系を有する排
ガスエコノマイザと、排ガスエコノマイザの前記配管系
へ供給する水を加熱する給水加熱器と、排ガスエコノマ
イザを出た気水混合流体から蒸気を分離する主蒸気分離
ドラムと、この主蒸気分離ドラムで分離された蒸気の少
なくとも一部を排ガスエコノマイザの前記過熱部に供給
し、さらにこれを蒸気タービンに送る配管系と、この蒸
気タービンからの蒸気を復水器で凝縮させた後、これを
前記給水加熱器に循環させる配管系と、前記主蒸気分離
ドラムで分離された凝縮水を前記給水加熱器および排ガ
スエコノマイザの前記蒸発部とにそれぞれ戻す配管系と
、前記主蒸気分離ドラムで分離された凝縮水を前記給水
加熱器に戻す配管系に設けられた熱交換手段および凝縮
水の流量調整手段とを備えたことを特徴とする内燃機関
の排ガス熱回収装置。 2、特許請求の範囲第1項において、前記凝縮水の流量
調整手段は、前記主蒸気分離ドラムで分離された凝縮水
を前記給水加熱器に戻す配管系と排ガスエコノマイザの
前記蒸発部に戻す配管系との分岐点に設けられた流量制
御弁であることを特徴とする内燃機関の排ガス熱回収装
置。 3 特許請求の範囲第1項において、前記熱交換手段は
、前記主蒸気ドラムで分離された凝縮水を順次導入する
低圧蒸気発生装置および温水発生装置と、前記低圧蒸気
発生装置より発生した低圧蒸気を導入する加熱機器とか
らなることを特徴とする内燃機関の排ガス熱回収装置。 4 特許請求の範囲第3項において、前記蒸気タービン
からの蒸気を復水器で凝縮させた後、これを前記給水加
熱器に循環させる配管を分岐させ、前記低圧蒸気発生装
置と連結したことを特徴とする内燃機関の排ガス熱回収
装置。
[Scope of Claims] 1. An exhaust gas economizer that has piping systems for a preheating section, an evaporation section, and a superheating section, a feed water heater that heats water supplied to the piping system of the exhaust gas economizer, and air water that exits the exhaust gas economizer. a main steam separation drum that separates steam from a mixed fluid; a piping system that supplies at least a portion of the steam separated by the main steam separation drum to the superheating section of the exhaust gas economizer and further sends it to the steam turbine; A piping system that condenses steam from a steam turbine in a condenser and then circulates it to the feed water heater; and a piping system that circulates the condensed water separated in the main steam separation drum to the feed water heater and the exhaust gas economizer. and a piping system for returning the condensed water separated by the main steam separation drum to the feed water heater, respectively, and a heat exchange means and a condensed water flow rate adjustment means provided in the piping system for returning the condensed water separated by the main steam separation drum to the feed water heater. Exhaust gas heat recovery equipment for internal combustion engines. 2. In claim 1, the condensed water flow rate adjustment means includes a piping system that returns the condensed water separated by the main steam separation drum to the feed water heater, and a piping system that returns the condensed water separated by the main steam separation drum to the evaporation section of the exhaust gas economizer. An exhaust gas heat recovery device for an internal combustion engine, characterized in that it is a flow control valve provided at a branch point with a system. 3. In claim 1, the heat exchange means includes a low-pressure steam generator and a hot water generator that sequentially introduce condensed water separated by the main steam drum, and low-pressure steam generated from the low-pressure steam generator. An exhaust gas heat recovery device for an internal combustion engine, comprising a heating device that introduces. 4. Claim 3 provides that after condensing steam from the steam turbine in a condenser, piping for circulating the steam to the feed water heater is branched and connected to the low-pressure steam generator. Features of exhaust gas heat recovery equipment for internal combustion engines.
JP54170602A 1979-12-28 1979-12-28 Internal combustion engine exhaust gas heat recovery device Expired JPS5930885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54170602A JPS5930885B2 (en) 1979-12-28 1979-12-28 Internal combustion engine exhaust gas heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54170602A JPS5930885B2 (en) 1979-12-28 1979-12-28 Internal combustion engine exhaust gas heat recovery device

Publications (2)

Publication Number Publication Date
JPS5696105A JPS5696105A (en) 1981-08-04
JPS5930885B2 true JPS5930885B2 (en) 1984-07-30

Family

ID=15907885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54170602A Expired JPS5930885B2 (en) 1979-12-28 1979-12-28 Internal combustion engine exhaust gas heat recovery device

Country Status (1)

Country Link
JP (1) JPS5930885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166912U (en) * 1985-04-05 1986-10-16

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010247B4 (en) * 2006-03-02 2019-12-19 Man Truck & Bus Se Drive unit with heat recovery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166912U (en) * 1985-04-05 1986-10-16

Also Published As

Publication number Publication date
JPS5696105A (en) 1981-08-04

Similar Documents

Publication Publication Date Title
JP3883627B2 (en) Waste heat recovery steam generator and method for operating a gas turbocharger combined with a steam consumer
KR920009576B1 (en) Waste heat recovery system
US4232522A (en) Method and apparatus for utilizing waste heat from a flowing heat vehicle medium
CA2718367C (en) Direct heating organic ranking cycle
US4214450A (en) Apparatus for recovering heat from exhaust gases of marine prime movers
US4207842A (en) Mixed-flow feedwater heater having a regulating device
EP0391082A2 (en) Improved efficiency combined cycle power plant
JP2004515673A (en) Fuel heating apparatus and method for combined gas and steam turbine equipment
US6250258B1 (en) Method for starting up a once-through heat recovery steam generator and apparatus for carrying out the method
US4394813A (en) Exhaust gas heat recovery system in internal combustion engine
US6089013A (en) Configuration for deaerating a condensate
JPS5930885B2 (en) Internal combustion engine exhaust gas heat recovery device
US5904039A (en) Method and configuration for deaerating a condensate
SU1514966A1 (en) Power unit
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
US6152085A (en) Method for operating a boiler with forced circulation and boiler for its implementation
JPS6047481B2 (en) Internal combustion engine exhaust gas heat recovery method and device
JPS6319683Y2 (en)
JP3085785B2 (en) Boiler feedwater heating device
JPH01280604A (en) Method of improving efficiency of steam process
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
US3441006A (en) Waste heat boilers
JPH0842802A (en) Device for controlling generating quantity of intermediate/low pressure steam in exhaust gas boiler
JPS6137923Y2 (en)
JPS6365806B2 (en)